File size: 6,229 Bytes
9b855a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""
Various positional encodings for the transformer.
Modified from DETR (https://github.com/facebookresearch/detr)
"""
import math
import torch
from torch import nn

from util.misc import NestedTensor

# dimension == 1
class PositionEmbeddingSine1D(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images.
    """
    def __init__(self, num_pos_feats=256, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, tensor_list: NestedTensor):
        x = tensor_list.tensors # [B, C, T]
        mask = tensor_list.mask # [B, T]
        assert mask is not None
        not_mask = ~mask
        x_embed = not_mask.cumsum(1, dtype=torch.float32)  # [B, T]
        if self.normalize:
            eps = 1e-6
            x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, None] / dim_t  # [B, T, C]
        # n,c,t
        pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
        pos = pos_x.permute(0, 2, 1)    # [B, C, T]
        return pos

# dimension == 2
class PositionEmbeddingSine2D(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images.
    """
    def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, tensor_list: NestedTensor):
        x = tensor_list.tensors  # [B, C, H, W]
        mask = tensor_list.mask  # [B, H, W]
        assert mask is not None
        not_mask = ~mask
        y_embed = not_mask.cumsum(1, dtype=torch.float32)
        x_embed = not_mask.cumsum(2, dtype=torch.float32)
        if self.normalize:
            eps = 1e-6
            y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos  # [B, C, H, W]


# dimension == 3
class PositionEmbeddingSine3D(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images.
    """
    def __init__(self, num_pos_feats=64, num_frames=36, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        self.frames = num_frames
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, tensor_list: NestedTensor):
        x = tensor_list.tensors # [B*T, C, H, W]
        mask = tensor_list.mask # [B*T, H, W]
        n,h,w = mask.shape
        mask = mask.reshape(n//self.frames, self.frames,h,w) # [B, T, H, W]
        assert mask is not None
        not_mask = ~mask
        z_embed = not_mask.cumsum(1, dtype=torch.float32) # [B, T, H, W]
        y_embed = not_mask.cumsum(2, dtype=torch.float32) # [B, T, H, W]
        x_embed = not_mask.cumsum(3, dtype=torch.float32) # [B, T, H, W]
        if self.normalize:
            eps = 1e-6
            z_embed = z_embed / (z_embed[:, -1:, :, :] + eps) * self.scale
            y_embed = y_embed / (y_embed[:, :, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) # 
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, :, :, None] / dim_t # [B, T, H, W, c]
        pos_y = y_embed[:, :, :, :, None] / dim_t
        pos_z = z_embed[:, :, :, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, :, :, 0::2].sin(), pos_x[:, :, :, :, 1::2].cos()), dim=5).flatten(4) # [B, T, H, W, c]
        pos_y = torch.stack((pos_y[:, :, :, :, 0::2].sin(), pos_y[:, :, :, :, 1::2].cos()), dim=5).flatten(4)
        pos_z = torch.stack((pos_z[:, :, :, :, 0::2].sin(), pos_z[:, :, :, :, 1::2].cos()), dim=5).flatten(4)
        pos = torch.cat((pos_z, pos_y, pos_x), dim=4).permute(0, 1, 4, 2, 3) # [B, T, C, H, W]
        return pos



def build_position_encoding(args):
    # build 2D position encoding
    N_steps = args.hidden_dim // 2  # 256 / 2 = 128
    if args.position_embedding in ('v2', 'sine'):
        # TODO find a better way of exposing other arguments
        position_embedding = PositionEmbeddingSine2D(N_steps, normalize=True)
    else:
        raise ValueError(f"not supported {args.position_embedding}")

    return position_embedding