#SBATCH --job-name=lavt_ccggr # Submit a job named "example" | |
#SBATCH [email protected] | |
#SBATCH --mail-type=BEGIN,END,FAIL | |
#SBATCH --partition=a3000 # a6000 or a100 | |
#SBATCH --gres=gpu:2 | |
#SBATCH --time=7-00:00:00 # d-hh:mm:ss, max time limit | |
#SBATCH --mem=84000 # cpu memory size | |
#SBATCH --cpus-per-task=8 # cpu num | |
#SBATCH --output=log_refcocog_google_random_460_0up_resume.txt # std output filename | |
ml cuda/11.0 # ํ์ํ ์ฟ ๋ค ๋ฒ์ ๋ก๋ | |
eval "$(conda shell.bash hook)" # Initialize Conda Environment | |
conda activate lavt # Activate your conda environment | |
# train | |
# mkdir ./models | |
# mkdir ./models/gref_umd/ | |
# srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 train_mosaic.py --model lavt --dataset refcocog --splitBy umd --model_id gref_umd --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/gref_umd/output | |
# mkdir ./models/mosaic_gref_umd_lavt_one/ | |
# srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 train_mosaic.py --model lavt_one --dataset refcocog --splitBy umd --model_id mosaic_gref_umd_lavt_one --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/mosaic_gref_umd_lavt_one/output | |
# mkdir ./models/gref_google | |
# srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 train_mosaic.py --model lavt_one --dataset refcocog --splitBy google --model_id gref_google_lavt_one --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/mosaic_gref_google_lavt_one/output | |
# mkdir ./models/mosaic_gref_google_lavt_one | |
# srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 13347 train_mosaic.py --model lavt_one --dataset refcocog --splitBy google --model_id mosaic_gref_google_lavt_one --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 50 --img_size 480 2>&1 | tee ./models/mosaic_gref_google_lavt_one/output | |
# tensorboard X | |
# srun python -m torch.distributed.launch --nproc_per_node 1 --master_port 14567 train_mosaic.py --model lavt_one --dataset refcocog --splitBy umd --model_id lmdb_test --batch-size 5 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 50 --img_size 480 2>&1 | tee ./models/lmdb_test/output | |
# tensorboard O | |
# mkdir ./experiments/refcocog_google/gref_google_random_460_0up | |
srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 35327 train_mosaic.py \ | |
--model lavt_one --dataset refcocog --splitBy google --model_id gref_google_random_460_0up \ | |
--batch-size 16 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth \ | |
--epochs 40 --img_size 480 --config config/random_460.yaml \ | |
--resume experiments/refcocog_google/gref_google_random_460_0up/model_best_gref_google_random_460_0up.pth 2>&1 | tee ./experiments/refcocog_google/gref_google_random_460_0up/log_resume.txt | |