#!/bin/bash #SBATCH --job-name=lavt_ccggr # Submit a job named "example" #SBATCH --mail-user=vip.maildummy@gmail.com #SBATCH --mail-type=BEGIN,END,FAIL #SBATCH --partition=a3000 # a6000 or a100 #SBATCH --gres=gpu:2 #SBATCH --time=7-00:00:00 # d-hh:mm:ss, max time limit #SBATCH --mem=84000 # cpu memory size #SBATCH --cpus-per-task=8 # cpu num #SBATCH --output=log_refcocog_google_random_460_0up_resume.txt # std output filename ml cuda/11.0 # 필요한 쿠다 버전 로드 eval "$(conda shell.bash hook)" # Initialize Conda Environment conda activate lavt # Activate your conda environment # train # mkdir ./models # mkdir ./models/gref_umd/ # srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 train_mosaic.py --model lavt --dataset refcocog --splitBy umd --model_id gref_umd --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/gref_umd/output # mkdir ./models/mosaic_gref_umd_lavt_one/ # srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 train_mosaic.py --model lavt_one --dataset refcocog --splitBy umd --model_id mosaic_gref_umd_lavt_one --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/mosaic_gref_umd_lavt_one/output # mkdir ./models/gref_google # srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 12345 train_mosaic.py --model lavt_one --dataset refcocog --splitBy google --model_id gref_google_lavt_one --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/mosaic_gref_google_lavt_one/output # mkdir ./models/mosaic_gref_google_lavt_one # srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 13347 train_mosaic.py --model lavt_one --dataset refcocog --splitBy google --model_id mosaic_gref_google_lavt_one --batch-size 14 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 50 --img_size 480 2>&1 | tee ./models/mosaic_gref_google_lavt_one/output # tensorboard X # srun python -m torch.distributed.launch --nproc_per_node 1 --master_port 14567 train_mosaic.py --model lavt_one --dataset refcocog --splitBy umd --model_id lmdb_test --batch-size 5 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 50 --img_size 480 2>&1 | tee ./models/lmdb_test/output # tensorboard O # mkdir ./experiments/refcocog_google/gref_google_random_460_0up srun python -m torch.distributed.launch --nproc_per_node 2 --master_port 35327 train_mosaic.py \ --model lavt_one --dataset refcocog --splitBy google --model_id gref_google_random_460_0up \ --batch-size 16 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth \ --epochs 40 --img_size 480 --config config/random_460.yaml \ --resume experiments/refcocog_google/gref_google_random_460_0up/model_best_gref_google_random_460_0up.pth 2>&1 | tee ./experiments/refcocog_google/gref_google_random_460_0up/log_resume.txt