File size: 5,514 Bytes
2c58401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
from glob import glob
from collections import defaultdict
import numpy as np
from PIL import Image


class DAVIS(object):
    SUBSET_OPTIONS = ['train', 'val', 'test-dev', 'test-challenge']
    TASKS = ['semi-supervised', 'unsupervised']
    DATASET_WEB = 'https://davischallenge.org/davis2017/code.html'
    VOID_LABEL = 255

    def __init__(self, root, task='unsupervised', subset='val', sequences='all', resolution='480p', codalab=False):
        """
        Class to read the DAVIS dataset
        :param root: Path to the DAVIS folder that contains JPEGImages, Annotations, etc. folders.
        :param task: Task to load the annotations, choose between semi-supervised or unsupervised.
        :param subset: Set to load the annotations
        :param sequences: Sequences to consider, 'all' to use all the sequences in a set.
        :param resolution: Specify the resolution to use the dataset, choose between '480' and 'Full-Resolution'
        """
        if subset not in self.SUBSET_OPTIONS:
            raise ValueError(f'Subset should be in {self.SUBSET_OPTIONS}')
        if task not in self.TASKS:
            raise ValueError(f'The only tasks that are supported are {self.TASKS}')

        self.task = task
        self.subset = subset
        self.root = root
        self.img_path = os.path.join(self.root, 'JPEGImages', resolution)
        annotations_folder = 'Annotations' if task == 'semi-supervised' else 'Annotations_unsupervised'
        self.mask_path = os.path.join(self.root, annotations_folder, resolution)
        year = '2019' if task == 'unsupervised' and (subset == 'test-dev' or subset == 'test-challenge') else '2017'
        self.imagesets_path = os.path.join(self.root, 'ImageSets', year)

        self._check_directories()

        if sequences == 'all':
            with open(os.path.join(self.imagesets_path, f'{self.subset}.txt'), 'r') as f:
                tmp = f.readlines()
            sequences_names = [x.strip() for x in tmp]
        else:
            sequences_names = sequences if isinstance(sequences, list) else [sequences]
        self.sequences = defaultdict(dict)

        for seq in sequences_names:
            images = np.sort(glob(os.path.join(self.img_path, seq, '*.jpg'))).tolist()
            if len(images) == 0 and not codalab:
                raise FileNotFoundError(f'Images for sequence {seq} not found.')
            self.sequences[seq]['images'] = images
            masks = np.sort(glob(os.path.join(self.mask_path, seq, '*.png'))).tolist()
            masks.extend([-1] * (len(images) - len(masks)))
            self.sequences[seq]['masks'] = masks

    def _check_directories(self):
        if not os.path.exists(self.root):
            raise FileNotFoundError(f'DAVIS not found in the specified directory, download it from {self.DATASET_WEB}')
        if not os.path.exists(os.path.join(self.imagesets_path, f'{self.subset}.txt')):
            raise FileNotFoundError(f'Subset sequences list for {self.subset} not found, download the missing subset '
                                    f'for the {self.task} task from {self.DATASET_WEB}')
        if self.subset in ['train', 'val'] and not os.path.exists(self.mask_path):
            raise FileNotFoundError(f'Annotations folder for the {self.task} task not found, download it from {self.DATASET_WEB}')

    def get_frames(self, sequence):
        for img, msk in zip(self.sequences[sequence]['images'], self.sequences[sequence]['masks']):
            image = np.array(Image.open(img))
            mask = None if msk is None else np.array(Image.open(msk))
            yield image, mask

    def _get_all_elements(self, sequence, obj_type):
        obj = np.array(Image.open(self.sequences[sequence][obj_type][0]))
        all_objs = np.zeros((len(self.sequences[sequence][obj_type]), *obj.shape))
        obj_id = []
        for i, obj in enumerate(self.sequences[sequence][obj_type]):
            all_objs[i, ...] = np.array(Image.open(obj))
            obj_id.append(''.join(obj.split('/')[-1].split('.')[:-1]))
        return all_objs, obj_id

    def get_all_images(self, sequence):
        return self._get_all_elements(sequence, 'images')

    def get_all_masks(self, sequence, separate_objects_masks=False):
        masks, masks_id = self._get_all_elements(sequence, 'masks')
        masks_void = np.zeros_like(masks)

        # Separate void and object masks
        for i in range(masks.shape[0]):
            masks_void[i, ...] = masks[i, ...] == 255
            masks[i, masks[i, ...] == 255] = 0

        if separate_objects_masks:
            num_objects = int(np.max(masks[0, ...]))
            tmp = np.ones((num_objects, *masks.shape))
            tmp = tmp * np.arange(1, num_objects + 1)[:, None, None, None]
            masks = (tmp == masks[None, ...])
            masks = masks > 0
        return masks, masks_void, masks_id

    def get_sequences(self):
        for seq in self.sequences:
            yield seq


if __name__ == '__main__':
    from matplotlib import pyplot as plt

    only_first_frame = True
    subsets = ['train', 'val']

    for s in subsets:
        dataset = DAVIS(root='/home/csergi/scratch2/Databases/DAVIS2017_private', subset=s)
        for seq in dataset.get_sequences():
            g = dataset.get_frames(seq)
            img, mask = next(g)
            plt.subplot(2, 1, 1)
            plt.title(seq)
            plt.imshow(img)
            plt.subplot(2, 1, 2)
            plt.imshow(mask)
            plt.show(block=True)