File size: 19,268 Bytes
91e3dad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
import sys
from os import path as osp
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
from mbench.ytvos_ref import build as build_ytvos_ref
import argparse
import opts
import sys
from pathlib import Path
import os
from os import path as osp
import skimage
from io import BytesIO
import numpy as np
import pandas as pd
import regex as re
import json
import cv2
from PIL import Image, ImageDraw
import torch
from torchvision.transforms import functional as F
from skimage import measure # (pip install scikit-image)
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
import ipywidgets as widgets
from IPython.display import display, clear_output
from openai import OpenAI
import base64
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
# Captioner
ytvos_category_valid_list = [
'airplane', 'ape', 'bear', 'bike', 'bird', 'boat', 'bus', 'camel', 'cat', 'cow', 'crocodile',
'deer', 'dog', 'dolphin', 'duck', 'eagle', 'earless_seal', 'elephant', 'fish', 'fox', 'frog',
'giant_panda', 'giraffe', 'hedgehog', 'horse', 'leopard', 'lion', 'lizard',
'monkey', 'motorbike', 'mouse', 'owl', 'parrot', 'penguin', 'person',
'rabbit', 'raccoon', 'sedan', 'shark', 'sheep', 'snail', 'snake',
'squirrel', 'tiger', 'train', 'truck', 'turtle', 'whale', 'zebra'
]
def getCaption(video_id, json_data):
#๋ฐ์ดํฐ ๊ฐ์ ธ์ค๊ธฐ
video_data = json_data[video_id]
frame_names = video_data['frame_names']
video_path = video_data['video_path']
cat_names = set()
all_captions = dict()
for obj_id in list(video_data['annotations'][0].keys()):
cat_names.add(video_data['annotations'][0][obj_id]['category_name'])
# cat_names : person, snowboard
# 1. gpt์์ ์ง์ action์ ๋์์ด ๋ ์ ์๋๊ฐ ๋ฌผ์ด๋ณด๊ธฐ
# 2. ref-youtube-vos ์์ ์ ๊ณตํ๋ ์นดํ
๊ณ ๋ฆฌ ์ ๋ณด์์ ์ฐ๋ฆฌ๊ฐ ์ฒ๋ฆฌํ๊ณ ์ถ์ ์นดํ
๊ณ ๋ฆฌ ์ด๋ฆ๋ง ๋จ๊ธด๋ค
for cat_name in list(cat_names) :
image_paths = [os.path.join(video_path, frame_name + '.jpg') for frame_name in frame_names]
image_captions = {}
captioner = OpenAI()
#0๋จ๊ณ: action์ ๋์์ด ๋ ์ ์๋๊ฐ?
is_movable = False
if cat_name in ytvos_category_valid_list :
is_movable = True
# response_check = captioner.chat.completions.create(
# model="gpt-4o",
# messages=[
# {
# "role": "user",
# "content": f"""
# Can a {cat_name} be a subject of distinct actions or movements?
# For example, if {cat_name} is a person, animal, or vehicle, it is likely an action-capable subject.
# However, if it is an inanimate object like a snowboard, tree, or book, it cannot independently perform actions.
# Respond with YES if {cat_name} can perform distinct actions or movements; otherwise, respond with NONE.
# Answer only YES or NONE.
# """
# }
# ],
# )
# response_check_content = response_check.choices[0].message.content.strip().lower()
# print(f"Movable Check for {cat_name}: {response_check_content}")
# if response_check_content == "yes": is_movable = True
if not is_movable:
print(f"Skipping {cat_name}: Determined to be non-movable.")
continue
for i in range(len(image_paths)):
image_path = image_paths[i]
frame_name = frame_names[i]
base64_image = encode_image(image_path)
#1๋จ๊ณ: ํํฐ๋ง
#print(f"-----------category name: {cat_name}, frame name: {frame_name}")
response1 = captioner.chat.completions.create(
model="chatgpt-4o-latest",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": f"""Are there multiple {cat_name}s in the image, each performing distinct and recognizable actions?
Focus only on clear and prominent actions, avoiding minor or ambiguous ones.
Each action should be unique and clearly associated with a specific object.
Respond with YES if:
- The {cat_name}s are people, animals or vehicles, and their actions are distinct and recognizable.
- The {cat_name}s involve clear, distinguishable actions performed independently.
Respond with NONE if:
- The {cat_name}s are objects (e.g., snowboard, tree, books) and do not involve direct interaction with a person.
- Actions are ambiguous, minor, or not clearly visible.
If the {cat_name} is 'snowboard' and it is not actively being used or interacted with by a person, output NONE.
If the {cat_name} is 'person' and their actions are distinct and clear, output YES.
Answer only YES or NONE."""
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
}
],
)
response_content = response1.choices[0].message.content
should_caption = True if "yes" in response_content.lower() else False
#print(f"are {cat_name}s distinguished by action: {response_content}")
#2๋จ๊ณ: dense caption ๋ง๋ค๊ธฐ
if should_caption:
response2 = captioner.chat.completions.create(
model="chatgpt-4o-latest",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": f"""
Generate a detailed action-centric caption describing the actions of the {cat_name}s in the image.
1. Focus only on clear, unique, and prominent actions that distinguish each object.
2. Avoid describing actions that are too minor, ambiguous, or not visible from the image.
3. Avoid subjective terms such as 'skilled', 'controlled', or 'focused'. Only describe observable actions.
4. Do not include common-sense or overly general descriptions like 'the elephant walks'.
5. Use dynamic action verbs (e.g., holding, throwing, jumping, inspecting) to describe interactions, poses, or movements.
6. Avoid overly detailed or speculative descriptions such as 'slightly moving its mouth' or 'appears to be anticipating'.
7. Pretend you are observing the scene directly, avoiding phrases like 'it seems' or 'based on the description'.
8. Include interactions with objects or other entities when they are prominent and observable.
9. If the image contains multiple {cat_name}s, describe the actions of each individually and ensure the descriptions are non-overlapping and specific.
Output only the caption.""",
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
}
],
)
caption = response2.choices[0].message.content
#print(f"{image_path} - {frame_name}: {caption}")
else:
caption = None
image_captions[frame_name] = caption
all_captions[cat_name] = image_captions
# final : also prepare valid object ids
valid_obj_ids = []
valid_cat_names = list(all_captions.keys())
for obj_id in list(video_data['annotations'][0].keys()):
cat = video_data['annotations'][0][obj_id]['category_name']
if cat in valid_cat_names : valid_obj_ids.append(obj_id)
return all_captions, valid_obj_ids
# Referring expression generator and QA filter
def getRefExp(video_id, frame_name, caption, obj_id, json_data):
# ์ด๋ฏธ์ง์ ํด๋น ๋ฌผ์ฒด ๋ฐ์ด๋ฉ ๋ฐ์ค ๊ทธ๋ฆฌ๊ธฐ
video_data = json_data[video_id]
frame_names = video_data['frame_names']
video_path = video_data['video_path']
I = skimage.io.imread(osp.join(video_path, frame_name + '.jpg'))
frame_indx = frame_names.index(frame_name)
obj_data = video_data['annotations'][frame_indx][obj_id]
bbox = obj_data['bbox']
cat_name = obj_data['category_name']
valid = obj_data['valid']
if valid == 0:
print("Object not in this frame!")
return {}
x_min, y_min, x_max, y_max = bbox
x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), int(y_max)
cv2.rectangle(I, (x_min, y_min), (x_max, y_max), (225, 0, 0), 2)
plt.figure()
plt.imshow(I)
plt.axis('off')
plt.show()
#cropped object for visibility check
cropped_I = I[y_min:y_max, x_min:x_max]
pil_cropped_I = Image.fromarray(cropped_I)
buff_crop = BytesIO()
pil_cropped_I.save(buff_crop, format='JPEG')
base64_cropped_I = base64.b64encode(buff_crop.getvalue()).decode("utf-8")
#entire image for referring expression generation
pil_I = Image.fromarray(I)
buff = BytesIO()
pil_I.save(buff, format='JPEG')
base64_I = base64.b64encode(buff.getvalue()).decode("utf-8")
# ๊ตฌ๋ถ ๊ฐ๋ฅ ์ฌ๋ถ ํ์ธ
generator = OpenAI()
response_check = generator.chat.completions.create(
model="chatgpt-4o-latest",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": f"""Can the {cat_name} in the provided cropped image be clearly identified as belonging to the category {cat_name}?
Focus on whether the cropped image provides enough visible features (e.g., ears, head shape, fur texture) to confirm that it is a {cat_name}, even if the full body is not visible.
Guidelines:
- If the visible features (like ears, fur texture or head shape) are sufficient to identify the {cat_name}, respond with YES.
- If multiple {cat_name}s are entangled or overlapping, making it difficult to distinguish one from another, respond with NONE.
- If the object is clearly visible and identifiable as a {cat_name}, respond with YES.
Output only either YES or NONE.
"""
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_cropped_I}"},
}
]
},
]
)
response_check_content = response_check.choices[0].message.content.strip().lower()
#print(f"is object {obj_id} visible: {response_check_content}")
if "yes" not in response_check_content:
print(f"Referring expression not generated: {cat_name} is ambiguous in this frame.")
return {"ref_exp": "NONE", "caption": caption, "cat_name": cat_name, "file_name": frame_name, "isValid" : False}
# Referring expression ๋ง๋ค๊ธฐ
# generator = OpenAI()
response = generator.chat.completions.create(
model="chatgpt-4o-latest",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": f"""Based on the dense caption, create a referring expression for the {cat_name} highlighted with the red box, corresponding to Object ID {obj_id}.
Guidelines for creating the referring expression:
1. The referring expression should describe the prominent actions or poses of the highlighted {cat_name} (Object ID {obj_id}).
2. Focus on the behavior or pose described in the caption that is specifically associated with this {cat_name}. Do not include actions or poses of other {cat_name}s.
3. If multiple {cat_name}s are present, ensure that the referring expression exclusively describes the {cat_name} corresponding to Object ID {obj_id}.
4. Avoid ambiguous or subjective terms. Use specific and clear action verbs to describe the highlighted {cat_name}.
5. The referring expression should only describe Object ID {obj_id} and not any other objects or entities.
6. Use '{cat_name}' as the noun for the referring expressions.
Output only the referring expression for the highlighted {cat_name} (Object ID {obj_id}).
{caption}
"""
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
},
# {
# "type": "image_url",
# "image_url": {"url": f"data:image/jpeg;base64,{base64_cropped_I}"},
# }
],
}
],
)
ref_exp = response.choices[0].message.content.strip()
#QA filtering
#QA1: ์ํ๋ ๋ฌผ์ฒด๋ฅผ ์ค๋ช
ํ๋์ง
filter = OpenAI()
response1 = filter.chat.completions.create(
model="chatgpt-4o-latest",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": f"""Does the given expression describe the {cat_name} highlighted with the red box? If so, only return YES and if not, NO.
{ref_exp}""",
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
},
],
}
],
)
response1_content = response1.choices[0].message.content
describesHighlighted = True if "yes" in response1_content.lower() else False
#QA2: ์ํ์ง ์๋ ๋ฌผ์ฒด๋ฅผ ์ค๋ช
ํ์ง ์๋์ง
response2 = filter.chat.completions.create(
model="chatgpt-4o-latest",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": f"""Does the given expression describe the person not highlighted with the red box? If so, only return YES and if not, NO.
{ref_exp}""",
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
},
],
}
],
)
response2_content = response2.choices[0].message.content
notDescribesNotHighlighted = False if "yes" in response2_content.lower() else True
isValid = True if describesHighlighted and notDescribesNotHighlighted else False
#print(f"describesHighlighted: {describesHighlighted}, notDescribesNotHighlighted: {notDescribesNotHighlighted}")
#print(f"ref exp: {ref_exp}")
#print("")
return {"ref_exp": ref_exp, "caption": caption, "cat_name": cat_name, "file_name": frame_name, "isValid" : isValid}
if __name__ == '__main__':
with open('mbench/sampled_frame3.json', 'r') as file:
data = json.load(file)
vid_ids = list(data.keys())
all_ref_exps = {}
os.environ['OPENAI_API_KEY'] = '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'
# ์ ์ฒด ๋ฐ์ดํฐ์
์ vid_id์ ๋ํด
for i in range(1):
vid_id = vid_ids[i]
#====์บก์
๋ง๋ค๊ธฐ====
# print("=====================captioner========================")
captions, valid_obj_ids = getCaption(vid_id, data)
cats_in_vid = list(captions.keys())
# print()
#====referring expression ๋ง๋ค๊ณ QA filtering====
# print("=====================referring expression generator & QA filter========================")
ref_expressions = {}
# ๊ฐ ์นดํ
๊ณ ๋ฆฌ๋ณ๋ก
for cat_name in cats_in_vid:
if cat_name not in ref_expressions:
ref_expressions[cat_name] = {}
# ๊ฐ ๋น๋์ค ํ๋ ์ ๋ณ๋ก
for frame_name in data[vid_id]['frame_names']:
# print(f'--------category: {cat_name}, frame_name: {frame_name}')
if frame_name not in ref_expressions[cat_name]:
ref_expressions[cat_name][frame_name] = {} # Create frame-level dictionary
caption = captions[cat_name][frame_name]
if not caption : continue
else :
# ๊ฐ obj id๋ณ๋ก
for obj_id in valid_obj_ids:
ref_exp = getRefExp(vid_id, frame_name, caption, obj_id, data)
ref_expressions[cat_name][frame_name][obj_id] = ref_exp # Store ref_exp
all_ref_exps[vid_id] = ref_expressions
with open('mbench/result_revised.json', 'w') as file:
json.dump(all_ref_exps, file)
|