Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .history/datasets/a2d_20241227174300.py +241 -0
- .history/datasets/a2d_20250203155857.py +243 -0
- .history/datasets/a2d_20250203160149.py +247 -0
- .history/datasets/a2d_20250203174309.py +247 -0
- .history/datasets/ytvos_ref_20250113163537.py +250 -0
- .history/datasets/ytvos_ref_20250116071955.py +240 -0
- .history/datasets/ytvos_ref_20250116072439.py +240 -0
- .history/datasets/ytvos_ref_20250116073540.py +239 -0
- .history/datasets/ytvos_ref_20250116073706.py +240 -0
- .history/datasets/ytvos_ref_20250116073858.py +239 -0
- .history/mbench/gpt_ref-ytvos-cy_20250121143328.py +0 -0
- .history/mbench/gpt_ref-ytvos-cy_20250121155631.py +428 -0
- .history/mbench/gpt_ref-ytvos_20250119071933.py +292 -0
- .history/mbench/gpt_ref-ytvos_20250119072546.py +292 -0
- .history/mbench/make_ref-ytvos_json_20250113181932.py +0 -0
- .history/mbench/make_ref-ytvos_json_20250113182455.py +100 -0
- .history/mbench/make_ref-ytvos_json_20250113182916.py +102 -0
- .history/mbench/make_ref-ytvos_json_20250113182917.py +102 -0
- .history/mbench/make_ref-ytvos_json_20250113183527.py +103 -0
- .history/mbench/make_ref-ytvos_json_20250113195258.py +103 -0
- .history/mbench/make_ref-ytvos_json_20250113195443.py +103 -0
- .history/mbench/make_ref-ytvos_json_20250116140957.py +103 -0
- .history/mbench/make_ref-ytvos_json_20250117032934.py +105 -0
- .history/mbench/make_ref-ytvos_json_20250117074200.py +107 -0
- .history/mbench/make_ref-ytvos_json_20250117074329.py +107 -0
- .history/slurm_script/jupyter_20250106230703.sh +16 -0
- .history/slurm_script/jupyter_20250113135212.sh +16 -0
- .history/slurm_script/jupyter_20250117012746.sh +16 -0
- .history/slurm_script/jupyter_20250117012750.sh +16 -0
- .history/slurm_script/jupyter_20250117143527.sh +16 -0
- .history/slurm_script/mbench_gpt_a2d_20250205122407.sh +0 -0
- .history/slurm_script/mbench_gpt_a2d_20250205151525.sh +19 -0
- .history/slurm_script/mbench_gpt_ref-ytvos-revised_20250121155759.sh +0 -0
- .history/slurm_script/mbench_gpt_ref-ytvos_20250119070901.sh +0 -0
- .history/slurm_script/mbench_gpt_ref-ytvos_20250119070932.sh +18 -0
- .history/slurm_script/mbench_gtp_ref-ytvos_numbered_20250130185113.sh +0 -0
- .history/slurm_script/mbench_gtp_ref-ytvos_numbered_20250130220432.sh +20 -0
- .history/slurm_script/mbench_gtp_ref-ytvos_numbered_20250130220435.sh +20 -0
- .history/slurm_script/mbench_gtp_ref-ytvos_numbered_20250207171522.sh +20 -0
- .history/slurm_script/mbench_ref-ytvos_json_20250113182619.sh +18 -0
- .history/slurm_script/mbench_ref-ytvos_json_20250113182952.sh +18 -0
- .history/slurm_script/mbench_ref-ytvos_json_20250116141255.sh +18 -0
- .history/slurm_script/mbench_ref-ytvos_json_20250117072826.sh +18 -0
- davis2017/results.py +31 -0
- hf_cache/.locks/models--zhiqiulin--clip-flant5-xxl/7528dbb1b6ce860d242aff71294a5fef12a41572.lock +0 -0
- hf_cache/.locks/models--zhiqiulin--clip-flant5-xxl/cc6c13cb9acd48b061e2d2664a50963c338b4998.lock +0 -0
- hf_cache/.locks/models--zhiqiulin--clip-flant5-xxl/e7dbc990f8ede75b1ad2fd17028fbd89a950286a.lock +0 -0
- hf_cache/models--zhiqiulin--clip-flant5-xxl/.no_exist/89bad6fffe1126b24d4360c1e1f69145eb6103aa/model.safetensors +0 -0
- hf_cache/models--zhiqiulin--clip-flant5-xxl/.no_exist/89bad6fffe1126b24d4360c1e1f69145eb6103aa/model.safetensors.index.json +0 -0
- hf_cache/models--zhiqiulin--clip-flant5-xxl/blobs/7528dbb1b6ce860d242aff71294a5fef12a41572 +7 -0
.history/datasets/a2d_20241227174300.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A2D-Sentences data loader
|
3 |
+
modified from https://github.com/mttr2021/MTTR/blob/main/datasets/a2d_sentences/a2d_sentences_dataset.py
|
4 |
+
"""
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torchvision.io import read_video
|
9 |
+
import torchvision.transforms.functional as F
|
10 |
+
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
import datasets.transforms_video as T
|
13 |
+
|
14 |
+
import os
|
15 |
+
from PIL import Image
|
16 |
+
import json
|
17 |
+
import numpy as np
|
18 |
+
import random
|
19 |
+
|
20 |
+
import h5py
|
21 |
+
from pycocotools.mask import encode, area
|
22 |
+
|
23 |
+
|
24 |
+
def get_image_id(video_id, frame_idx, ref_instance_a2d_id):
|
25 |
+
image_id = f'v_{video_id}_f_{frame_idx}_i_{ref_instance_a2d_id}'
|
26 |
+
return image_id
|
27 |
+
|
28 |
+
class A2DSentencesDataset(Dataset):
|
29 |
+
"""
|
30 |
+
A Torch dataset for A2D-Sentences.
|
31 |
+
For more information check out: https://kgavrilyuk.github.io/publication/actor_action/ or the original paper at:
|
32 |
+
https://arxiv.org/abs/1803.07485
|
33 |
+
"""
|
34 |
+
def __init__(self, image_folder: Path, ann_file: Path, transforms, return_masks: bool,
|
35 |
+
num_frames: int, max_skip: int, subset):
|
36 |
+
super(A2DSentencesDataset, self).__init__()
|
37 |
+
dataset_path = str(image_folder)
|
38 |
+
self.mask_annotations_dir = os.path.join(dataset_path, 'text_annotations/a2d_annotation_with_instances')
|
39 |
+
self.videos_dir = os.path.join(dataset_path, 'Release/clips320H')
|
40 |
+
self.ann_file = ann_file
|
41 |
+
self.text_annotations = self.get_text_annotations()
|
42 |
+
|
43 |
+
self._transforms = transforms
|
44 |
+
self.return_masks = return_masks # not used
|
45 |
+
self.num_frames = num_frames
|
46 |
+
self.max_skip = max_skip
|
47 |
+
self.subset = subset
|
48 |
+
|
49 |
+
print(f'\n {subset} sample num: ', len(self.text_annotations))
|
50 |
+
print('\n')
|
51 |
+
|
52 |
+
def get_text_annotations(self):
|
53 |
+
with open(str(self.ann_file), 'r') as f:
|
54 |
+
text_annotations_by_frame = [tuple(a) for a in json.load(f)]
|
55 |
+
return text_annotations_by_frame
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def bounding_box(img):
|
59 |
+
rows = np.any(img, axis=1)
|
60 |
+
cols = np.any(img, axis=0)
|
61 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
62 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
63 |
+
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
|
64 |
+
|
65 |
+
def __len__(self):
|
66 |
+
return len(self.text_annotations)
|
67 |
+
|
68 |
+
def __getitem__(self, idx):
|
69 |
+
instance_check = False
|
70 |
+
while not instance_check:
|
71 |
+
text_query, video_id, frame_idx, instance_id = self.text_annotations[idx]
|
72 |
+
|
73 |
+
text_query = " ".join(text_query.lower().split()) # clean up the text query
|
74 |
+
|
75 |
+
# read the source window frames:
|
76 |
+
video_frames, _, _ = read_video(os.path.join(self.videos_dir, f'{video_id}.mp4'), pts_unit='sec') # (T, H, W, C)
|
77 |
+
vid_len = len(video_frames)
|
78 |
+
# note that the original a2d dataset is 1 indexed, so we have to subtract 1 from frame_idx
|
79 |
+
frame_id = frame_idx - 1
|
80 |
+
|
81 |
+
if self.subset == 'train':
|
82 |
+
# get a window of window_size frames with frame frame_id in the middle.
|
83 |
+
num_frames = self.num_frames
|
84 |
+
# random sparse sample
|
85 |
+
sample_indx = [frame_id]
|
86 |
+
# local sample
|
87 |
+
sample_id_before = random.randint(1, 3)
|
88 |
+
sample_id_after = random.randint(1, 3)
|
89 |
+
local_indx = [max(0, frame_id - sample_id_before), min(vid_len - 1, frame_id + sample_id_after)]
|
90 |
+
sample_indx.extend(local_indx)
|
91 |
+
|
92 |
+
# global sampling
|
93 |
+
if num_frames > 3:
|
94 |
+
all_inds = list(range(vid_len))
|
95 |
+
global_inds = all_inds[:min(sample_indx)] + all_inds[max(sample_indx):]
|
96 |
+
global_n = num_frames - len(sample_indx)
|
97 |
+
if len(global_inds) > global_n:
|
98 |
+
select_id = random.sample(range(len(global_inds)), global_n)
|
99 |
+
for s_id in select_id:
|
100 |
+
sample_indx.append(global_inds[s_id])
|
101 |
+
elif vid_len >=global_n: # sample long range global frames
|
102 |
+
select_id = random.sample(range(vid_len), global_n)
|
103 |
+
for s_id in select_id:
|
104 |
+
sample_indx.append(all_inds[s_id])
|
105 |
+
else:
|
106 |
+
select_id = random.sample(range(vid_len), global_n - vid_len) + list(range(vid_len))
|
107 |
+
for s_id in select_id:
|
108 |
+
sample_indx.append(all_inds[s_id])
|
109 |
+
sample_indx.sort()
|
110 |
+
# find the valid frame index in sampled frame list, there is only one valid frame
|
111 |
+
valid_indices = sample_indx.index(frame_id)
|
112 |
+
|
113 |
+
elif self.subset == 'val':
|
114 |
+
start_idx, end_idx = frame_id - self.num_frames // 2, frame_id + (self.num_frames + 1) // 2
|
115 |
+
sample_indx = []
|
116 |
+
for i in range(start_idx, end_idx):
|
117 |
+
i = min(max(i, 0), len(video_frames)-1) # pad out of range indices with edge frames
|
118 |
+
sample_indx.append(i)
|
119 |
+
sample_indx.sort()
|
120 |
+
# find the valid frame index in sampled frame list, there is only one valid frame
|
121 |
+
valid_indices = sample_indx.index(frame_id)
|
122 |
+
|
123 |
+
|
124 |
+
# read frames
|
125 |
+
imgs, labels, boxes, masks, valid = [], [], [], [], []
|
126 |
+
for j in range(self.num_frames):
|
127 |
+
frame_indx = sample_indx[j]
|
128 |
+
img = F.to_pil_image(video_frames[frame_indx].permute(2, 0, 1))
|
129 |
+
imgs.append(img)
|
130 |
+
|
131 |
+
# read the instance mask
|
132 |
+
frame_annot_path = os.path.join(self.mask_annotations_dir, video_id, f'{frame_idx:05d}.h5')
|
133 |
+
f = h5py.File(frame_annot_path)
|
134 |
+
instances = list(f['instance'])
|
135 |
+
instance_idx = instances.index(instance_id) # existence was already validated during init
|
136 |
+
|
137 |
+
instance_masks = np.array(f['reMask'])
|
138 |
+
if len(instances) == 1:
|
139 |
+
instance_masks = instance_masks[np.newaxis, ...]
|
140 |
+
instance_masks = torch.tensor(instance_masks).transpose(1, 2)
|
141 |
+
mask_rles = [encode(mask) for mask in instance_masks.numpy()]
|
142 |
+
mask_areas = area(mask_rles).astype(np.float)
|
143 |
+
f.close()
|
144 |
+
|
145 |
+
# select the referred mask
|
146 |
+
label = torch.tensor(0, dtype=torch.long)
|
147 |
+
mask = instance_masks[instance_idx].numpy()
|
148 |
+
if (mask > 0).any():
|
149 |
+
y1, y2, x1, x2 = self.bounding_box(mask)
|
150 |
+
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
|
151 |
+
valid.append(1)
|
152 |
+
else: # some frame didn't contain the instance
|
153 |
+
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
|
154 |
+
valid.append(0)
|
155 |
+
mask = torch.from_numpy(mask)
|
156 |
+
labels.append(label)
|
157 |
+
boxes.append(box)
|
158 |
+
masks.append(mask)
|
159 |
+
|
160 |
+
# transform
|
161 |
+
h, w = instance_masks.shape[-2:]
|
162 |
+
labels = torch.stack(labels, dim=0)
|
163 |
+
boxes = torch.stack(boxes, dim=0)
|
164 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
165 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
166 |
+
masks = torch.stack(masks, dim=0)
|
167 |
+
# there is only one valid frame
|
168 |
+
target = {
|
169 |
+
'frames_idx': torch.tensor(sample_indx), # [T,]
|
170 |
+
'valid_indices': torch.tensor([valid_indices]),
|
171 |
+
'labels': labels, # [1,]
|
172 |
+
'boxes': boxes, # [1, 4], xyxy
|
173 |
+
'masks': masks, # [1, H, W]
|
174 |
+
'valid': torch.tensor(valid), # [1,]
|
175 |
+
'caption': text_query,
|
176 |
+
'orig_size': torch.as_tensor([int(h), int(w)]),
|
177 |
+
'size': torch.as_tensor([int(h), int(w)]),
|
178 |
+
'image_id': get_image_id(video_id,frame_idx, instance_id)
|
179 |
+
}
|
180 |
+
|
181 |
+
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
|
182 |
+
imgs, target = self._transforms(imgs, target)
|
183 |
+
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
|
184 |
+
|
185 |
+
# FIXME: handle "valid", since some box may be removed due to random crop
|
186 |
+
if torch.any(target['valid'] == 1): # at leatst one instance
|
187 |
+
instance_check = True
|
188 |
+
else:
|
189 |
+
idx = random.randint(0, self.__len__() - 1)
|
190 |
+
|
191 |
+
return imgs, target
|
192 |
+
|
193 |
+
|
194 |
+
def make_coco_transforms(image_set, max_size=640):
|
195 |
+
normalize = T.Compose([
|
196 |
+
T.ToTensor(),
|
197 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
198 |
+
])
|
199 |
+
|
200 |
+
scales = [288, 320, 352, 392, 416, 448, 480, 512]
|
201 |
+
|
202 |
+
if image_set == 'train':
|
203 |
+
return T.Compose([
|
204 |
+
T.RandomHorizontalFlip(),
|
205 |
+
T.PhotometricDistort(),
|
206 |
+
T.RandomSelect(
|
207 |
+
T.Compose([
|
208 |
+
T.RandomResize(scales, max_size=max_size),
|
209 |
+
T.Check(),
|
210 |
+
]),
|
211 |
+
T.Compose([
|
212 |
+
T.RandomResize([400, 500, 600]),
|
213 |
+
T.RandomSizeCrop(384, 600),
|
214 |
+
T.RandomResize(scales, max_size=max_size),
|
215 |
+
T.Check(),
|
216 |
+
])
|
217 |
+
),
|
218 |
+
normalize,
|
219 |
+
])
|
220 |
+
|
221 |
+
# we do not use the 'val' set since the annotations are inaccessible
|
222 |
+
if image_set == 'val':
|
223 |
+
return T.Compose([
|
224 |
+
T.RandomResize([360], max_size=640),
|
225 |
+
normalize,
|
226 |
+
])
|
227 |
+
|
228 |
+
raise ValueError(f'unknown {image_set}')
|
229 |
+
|
230 |
+
|
231 |
+
def build(image_set, args):
|
232 |
+
root = Path(args.a2d_path)
|
233 |
+
assert root.exists(), f'provided A2D-Sentences path {root} does not exist'
|
234 |
+
PATHS = {
|
235 |
+
"train": (root, root / "a2d_sentences_single_frame_train_annotations.json"),
|
236 |
+
"val": (root, root / "a2d_sentences_single_frame_test_annotations.json"),
|
237 |
+
}
|
238 |
+
img_folder, ann_file = PATHS[image_set]
|
239 |
+
dataset = A2DSentencesDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size),
|
240 |
+
return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
|
241 |
+
return dataset
|
.history/datasets/a2d_20250203155857.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A2D-Sentences data loader
|
3 |
+
modified from https://github.com/mttr2021/MTTR/blob/main/datasets/a2d_sentences/a2d_sentences_dataset.py
|
4 |
+
"""
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torchvision.io import read_video
|
9 |
+
import torchvision.transforms.functional as F
|
10 |
+
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
import datasets.transforms_video as T
|
13 |
+
|
14 |
+
import os
|
15 |
+
from PIL import Image
|
16 |
+
import json
|
17 |
+
import numpy as np
|
18 |
+
import random
|
19 |
+
|
20 |
+
import h5py
|
21 |
+
from pycocotools.mask import encode, area
|
22 |
+
|
23 |
+
|
24 |
+
def get_image_id(video_id, frame_idx, ref_instance_a2d_id):
|
25 |
+
image_id = f'v_{video_id}_f_{frame_idx}_i_{ref_instance_a2d_id}'
|
26 |
+
return image_id
|
27 |
+
|
28 |
+
class A2DSentencesDataset(Dataset):
|
29 |
+
"""
|
30 |
+
A Torch dataset for A2D-Sentences.
|
31 |
+
For more information check out: https://kgavrilyuk.github.io/publication/actor_action/ or the original paper at:
|
32 |
+
https://arxiv.org/abs/1803.07485
|
33 |
+
"""
|
34 |
+
def __init__(self, image_folder: Path, ann_file: Path, transforms, return_masks: bool,
|
35 |
+
num_frames: int, max_skip: int, subset):
|
36 |
+
super(A2DSentencesDataset, self).__init__()
|
37 |
+
dataset_path = str(image_folder)
|
38 |
+
self.mask_annotations_dir = os.path.join(dataset_path, 'text_annotations/a2d_annotation_with_instances')
|
39 |
+
self.videos_dir = os.path.join(dataset_path, 'Release/clips320H')
|
40 |
+
self.ann_file = ann_file
|
41 |
+
self.text_annotations = self.get_text_annotations()
|
42 |
+
|
43 |
+
self._transforms = transforms
|
44 |
+
self.return_masks = return_masks # not used
|
45 |
+
self.num_frames = num_frames
|
46 |
+
self.max_skip = max_skip
|
47 |
+
self.subset = subset
|
48 |
+
|
49 |
+
print(f'\n {subset} sample num: ', len(self.text_annotations))
|
50 |
+
print('\n')
|
51 |
+
|
52 |
+
def get_text_annotations(self):
|
53 |
+
with open(str(self.ann_file), 'r') as f:
|
54 |
+
text_annotations_by_frame = [tuple(a) for a in json.load(f)]
|
55 |
+
return text_annotations_by_frame
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def bounding_box(img):
|
59 |
+
rows = np.any(img, axis=1)
|
60 |
+
cols = np.any(img, axis=0)
|
61 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
62 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
63 |
+
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
|
64 |
+
|
65 |
+
def __len__(self):
|
66 |
+
return len(self.text_annotations)
|
67 |
+
|
68 |
+
def __getitem__(self, idx):
|
69 |
+
instance_check = False
|
70 |
+
while not instance_check:
|
71 |
+
text_query, video_id, frame_idx, instance_id = self.text_annotations[idx]
|
72 |
+
|
73 |
+
text_query = " ".join(text_query.lower().split()) # clean up the text query
|
74 |
+
|
75 |
+
# read the source window frames:
|
76 |
+
video_frames, _, _ = read_video(os.path.join(self.videos_dir, f'{video_id}.mp4'), pts_unit='sec') # (T, H, W, C)
|
77 |
+
vid_len = len(video_frames)
|
78 |
+
# note that the original a2d dataset is 1 indexed, so we have to subtract 1 from frame_idx
|
79 |
+
frame_id = frame_idx - 1
|
80 |
+
|
81 |
+
if self.subset == 'train':
|
82 |
+
# get a window of window_size frames with frame frame_id in the middle.
|
83 |
+
num_frames = self.num_frames
|
84 |
+
# random sparse sample
|
85 |
+
sample_indx = [frame_id]
|
86 |
+
# local sample
|
87 |
+
sample_id_before = random.randint(1, 3)
|
88 |
+
sample_id_after = random.randint(1, 3)
|
89 |
+
local_indx = [max(0, frame_id - sample_id_before), min(vid_len - 1, frame_id + sample_id_after)]
|
90 |
+
sample_indx.extend(local_indx)
|
91 |
+
|
92 |
+
# global sampling
|
93 |
+
if num_frames > 3:
|
94 |
+
all_inds = list(range(vid_len))
|
95 |
+
global_inds = all_inds[:min(sample_indx)] + all_inds[max(sample_indx):]
|
96 |
+
global_n = num_frames - len(sample_indx)
|
97 |
+
if len(global_inds) > global_n:
|
98 |
+
select_id = random.sample(range(len(global_inds)), global_n)
|
99 |
+
for s_id in select_id:
|
100 |
+
sample_indx.append(global_inds[s_id])
|
101 |
+
elif vid_len >=global_n: # sample long range global frames
|
102 |
+
select_id = random.sample(range(vid_len), global_n)
|
103 |
+
for s_id in select_id:
|
104 |
+
sample_indx.append(all_inds[s_id])
|
105 |
+
else:
|
106 |
+
select_id = random.sample(range(vid_len), global_n - vid_len) + list(range(vid_len))
|
107 |
+
for s_id in select_id:
|
108 |
+
sample_indx.append(all_inds[s_id])
|
109 |
+
sample_indx.sort()
|
110 |
+
# find the valid frame index in sampled frame list, there is only one valid frame
|
111 |
+
valid_indices = sample_indx.index(frame_id)
|
112 |
+
|
113 |
+
elif self.subset == 'val':
|
114 |
+
start_idx, end_idx = frame_id - self.num_frames // 2, frame_id + (self.num_frames + 1) // 2
|
115 |
+
sample_indx = []
|
116 |
+
for i in range(start_idx, end_idx):
|
117 |
+
i = min(max(i, 0), len(video_frames)-1) # pad out of range indices with edge frames
|
118 |
+
sample_indx.append(i)
|
119 |
+
sample_indx.sort()
|
120 |
+
# find the valid frame index in sampled frame list, there is only one valid frame
|
121 |
+
valid_indices = sample_indx.index(frame_id)
|
122 |
+
|
123 |
+
|
124 |
+
# read frames
|
125 |
+
imgs, labels, boxes, masks, valid = [], [], [], [], []
|
126 |
+
for j in range(self.num_frames):
|
127 |
+
frame_indx = sample_indx[j]
|
128 |
+
img = F.to_pil_image(video_frames[frame_indx].permute(2, 0, 1))
|
129 |
+
imgs.append(img)
|
130 |
+
|
131 |
+
# read the instance mask
|
132 |
+
frame_annot_path = os.path.join(self.mask_annotations_dir, video_id, f'{frame_idx:05d}.h5')
|
133 |
+
f = h5py.File(frame_annot_path)
|
134 |
+
instances = list(f['instance'])
|
135 |
+
instance_idx = instances.index(instance_id) # existence was already validated during init
|
136 |
+
|
137 |
+
instance_masks = np.array(f['reMask'])
|
138 |
+
if len(instances) == 1:
|
139 |
+
instance_masks = instance_masks[np.newaxis, ...]
|
140 |
+
instance_masks = torch.tensor(instance_masks).transpose(1, 2)
|
141 |
+
mask_rles = [encode(mask) for mask in instance_masks.numpy()]
|
142 |
+
mask_areas = area(mask_rles).astype(np.float)
|
143 |
+
f.close()
|
144 |
+
|
145 |
+
# select the referred mask
|
146 |
+
label = torch.tensor(0, dtype=torch.long)
|
147 |
+
mask = instance_masks[instance_idx].numpy()
|
148 |
+
if (mask > 0).any():
|
149 |
+
y1, y2, x1, x2 = self.bounding_box(mask)
|
150 |
+
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
|
151 |
+
valid.append(1)
|
152 |
+
else: # some frame didn't contain the instance
|
153 |
+
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
|
154 |
+
valid.append(0)
|
155 |
+
mask = torch.from_numpy(mask)
|
156 |
+
labels.append(label)
|
157 |
+
boxes.append(box)
|
158 |
+
masks.append(mask)
|
159 |
+
|
160 |
+
# transform
|
161 |
+
h, w = instance_masks.shape[-2:]
|
162 |
+
labels = torch.stack(labels, dim=0)
|
163 |
+
boxes = torch.stack(boxes, dim=0)
|
164 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
165 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
166 |
+
masks = torch.stack(masks, dim=0)
|
167 |
+
# there is only one valid frame
|
168 |
+
target = {
|
169 |
+
'frames_idx': torch.tensor(sample_indx), # [T,]
|
170 |
+
'valid_indices': torch.tensor([valid_indices]),
|
171 |
+
'labels': labels, # [1,]
|
172 |
+
'boxes': boxes, # [1, 4], xyxy
|
173 |
+
'masks': masks, # [1, H, W]
|
174 |
+
'valid': torch.tensor(valid), # [1,]
|
175 |
+
'caption': text_query,
|
176 |
+
'orig_size': torch.as_tensor([int(h), int(w)]),
|
177 |
+
'size': torch.as_tensor([int(h), int(w)]),
|
178 |
+
'image_id': get_image_id(video_id,frame_idx, instance_id)
|
179 |
+
}
|
180 |
+
|
181 |
+
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
|
182 |
+
imgs, target = self._transforms(imgs, target)
|
183 |
+
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
|
184 |
+
|
185 |
+
# FIXME: handle "valid", since some box may be removed due to random crop
|
186 |
+
if torch.any(target['valid'] == 1): # at leatst one instance
|
187 |
+
instance_check = True
|
188 |
+
else:
|
189 |
+
idx = random.randint(0, self.__len__() - 1)
|
190 |
+
|
191 |
+
return imgs, target
|
192 |
+
|
193 |
+
|
194 |
+
def make_coco_transforms(image_set, max_size=640):
|
195 |
+
normalize = T.Compose([
|
196 |
+
T.ToTensor(),
|
197 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
198 |
+
])
|
199 |
+
|
200 |
+
scales = [288, 320, 352, 392, 416, 448, 480, 512]
|
201 |
+
|
202 |
+
if image_set == 'train':
|
203 |
+
return T.Compose([
|
204 |
+
T.RandomHorizontalFlip(),
|
205 |
+
T.PhotometricDistort(),
|
206 |
+
T.RandomSelect(
|
207 |
+
T.Compose([
|
208 |
+
T.RandomResize(scales, max_size=max_size),
|
209 |
+
T.Check(),
|
210 |
+
]),
|
211 |
+
T.Compose([
|
212 |
+
T.RandomResize([400, 500, 600]),
|
213 |
+
T.RandomSizeCrop(384, 600),
|
214 |
+
T.RandomResize(scales, max_size=max_size),
|
215 |
+
T.Check(),
|
216 |
+
])
|
217 |
+
),
|
218 |
+
normalize,
|
219 |
+
])
|
220 |
+
|
221 |
+
# we do not use the 'val' set since the annotations are inaccessible
|
222 |
+
if image_set == 'val':
|
223 |
+
return T.Compose([
|
224 |
+
T.RandomResize([360], max_size=640),
|
225 |
+
normalize,
|
226 |
+
])
|
227 |
+
|
228 |
+
raise ValueError(f'unknown {image_set}')
|
229 |
+
|
230 |
+
|
231 |
+
def build(image_set, args):
|
232 |
+
root = Path(args.a2d_path)
|
233 |
+
assert root.exists(), f'provided A2D-Sentences path {root} does not exist'
|
234 |
+
PATHS = {
|
235 |
+
"train": (root, root / "a2d_sentences_single_frame_train_annotations.json"),
|
236 |
+
"val": (root, root / "a2d_sentences_single_frame_test_annotations.json"),
|
237 |
+
}
|
238 |
+
img_folder, ann_file = PATHS[image_set]
|
239 |
+
#dataset = A2DSentencesDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size),
|
240 |
+
# return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
|
241 |
+
dataset = A2DSentencesDataset(img_folder, ann_file, transforms=None,
|
242 |
+
return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
|
243 |
+
return dataset
|
.history/datasets/a2d_20250203160149.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A2D-Sentences data loader
|
3 |
+
modified from https://github.com/mttr2021/MTTR/blob/main/datasets/a2d_sentences/a2d_sentences_dataset.py
|
4 |
+
"""
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torchvision.io import read_video
|
9 |
+
import torchvision.transforms.functional as F
|
10 |
+
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
import datasets.transforms_video as T
|
13 |
+
|
14 |
+
import os
|
15 |
+
from PIL import Image
|
16 |
+
import json
|
17 |
+
import numpy as np
|
18 |
+
import random
|
19 |
+
|
20 |
+
import h5py
|
21 |
+
from pycocotools.mask import encode, area
|
22 |
+
|
23 |
+
|
24 |
+
def get_image_id(video_id, frame_idx, ref_instance_a2d_id):
|
25 |
+
image_id = f'v_{video_id}_f_{frame_idx}_i_{ref_instance_a2d_id}'
|
26 |
+
return image_id
|
27 |
+
|
28 |
+
class A2DSentencesDataset(Dataset):
|
29 |
+
"""
|
30 |
+
A Torch dataset for A2D-Sentences.
|
31 |
+
For more information check out: https://kgavrilyuk.github.io/publication/actor_action/ or the original paper at:
|
32 |
+
https://arxiv.org/abs/1803.07485
|
33 |
+
"""
|
34 |
+
def __init__(self, image_folder: Path, ann_file: Path, transforms, return_masks: bool,
|
35 |
+
num_frames: int, max_skip: int, subset):
|
36 |
+
super(A2DSentencesDataset, self).__init__()
|
37 |
+
dataset_path = str(image_folder)
|
38 |
+
self.mask_annotations_dir = os.path.join(dataset_path, 'text_annotations/a2d_annotation_with_instances')
|
39 |
+
self.videos_dir = os.path.join(dataset_path, 'Release/clips320H')
|
40 |
+
self.ann_file = ann_file
|
41 |
+
self.text_annotations = self.get_text_annotations()
|
42 |
+
|
43 |
+
self._transforms = transforms
|
44 |
+
self.return_masks = return_masks # not used
|
45 |
+
self.num_frames = num_frames
|
46 |
+
self.max_skip = max_skip
|
47 |
+
self.subset = subset
|
48 |
+
|
49 |
+
print(f'\n {subset} sample num: ', len(self.text_annotations))
|
50 |
+
print('\n')
|
51 |
+
|
52 |
+
def get_text_annotations(self):
|
53 |
+
with open(str(self.ann_file), 'r') as f:
|
54 |
+
text_annotations_by_frame = [tuple(a) for a in json.load(f)]
|
55 |
+
return text_annotations_by_frame
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def bounding_box(img):
|
59 |
+
rows = np.any(img, axis=1)
|
60 |
+
cols = np.any(img, axis=0)
|
61 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
62 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
63 |
+
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
|
64 |
+
|
65 |
+
def __len__(self):
|
66 |
+
return len(self.text_annotations)
|
67 |
+
|
68 |
+
def __getitem__(self, idx):
|
69 |
+
instance_check = False
|
70 |
+
while not instance_check:
|
71 |
+
text_query, video_id, frame_idx, instance_id = self.text_annotations[idx]
|
72 |
+
|
73 |
+
text_query = " ".join(text_query.lower().split()) # clean up the text query
|
74 |
+
|
75 |
+
# read the source window frames:
|
76 |
+
video_frames, _, _ = read_video(os.path.join(self.videos_dir, f'{video_id}.mp4'), pts_unit='sec') # (T, H, W, C)
|
77 |
+
vid_len = len(video_frames)
|
78 |
+
# note that the original a2d dataset is 1 indexed, so we have to subtract 1 from frame_idx
|
79 |
+
frame_id = frame_idx - 1
|
80 |
+
|
81 |
+
if self.subset == 'train':
|
82 |
+
# get a window of window_size frames with frame frame_id in the middle.
|
83 |
+
num_frames = self.num_frames
|
84 |
+
# random sparse sample
|
85 |
+
sample_indx = [frame_id]
|
86 |
+
# local sample
|
87 |
+
sample_id_before = random.randint(1, 3)
|
88 |
+
sample_id_after = random.randint(1, 3)
|
89 |
+
local_indx = [max(0, frame_id - sample_id_before), min(vid_len - 1, frame_id + sample_id_after)]
|
90 |
+
sample_indx.extend(local_indx)
|
91 |
+
|
92 |
+
# global sampling
|
93 |
+
if num_frames > 3:
|
94 |
+
all_inds = list(range(vid_len))
|
95 |
+
global_inds = all_inds[:min(sample_indx)] + all_inds[max(sample_indx):]
|
96 |
+
global_n = num_frames - len(sample_indx)
|
97 |
+
if len(global_inds) > global_n:
|
98 |
+
select_id = random.sample(range(len(global_inds)), global_n)
|
99 |
+
for s_id in select_id:
|
100 |
+
sample_indx.append(global_inds[s_id])
|
101 |
+
elif vid_len >=global_n: # sample long range global frames
|
102 |
+
select_id = random.sample(range(vid_len), global_n)
|
103 |
+
for s_id in select_id:
|
104 |
+
sample_indx.append(all_inds[s_id])
|
105 |
+
else:
|
106 |
+
select_id = random.sample(range(vid_len), global_n - vid_len) + list(range(vid_len))
|
107 |
+
for s_id in select_id:
|
108 |
+
sample_indx.append(all_inds[s_id])
|
109 |
+
sample_indx.sort()
|
110 |
+
# find the valid frame index in sampled frame list, there is only one valid frame
|
111 |
+
valid_indices = sample_indx.index(frame_id)
|
112 |
+
|
113 |
+
elif self.subset == 'val':
|
114 |
+
start_idx, end_idx = frame_id - self.num_frames // 2, frame_id + (self.num_frames + 1) // 2
|
115 |
+
sample_indx = []
|
116 |
+
for i in range(start_idx, end_idx):
|
117 |
+
i = min(max(i, 0), len(video_frames)-1) # pad out of range indices with edge frames
|
118 |
+
sample_indx.append(i)
|
119 |
+
sample_indx.sort()
|
120 |
+
# find the valid frame index in sampled frame list, there is only one valid frame
|
121 |
+
valid_indices = sample_indx.index(frame_id)
|
122 |
+
|
123 |
+
|
124 |
+
# read frames
|
125 |
+
imgs, labels, boxes, masks, valid = [], [], [], [], []
|
126 |
+
for j in range(self.num_frames):
|
127 |
+
frame_indx = sample_indx[j]
|
128 |
+
img = F.to_pil_image(video_frames[frame_indx].permute(2, 0, 1))
|
129 |
+
imgs.append(img)
|
130 |
+
|
131 |
+
# read the instance mask
|
132 |
+
frame_annot_path = os.path.join(self.mask_annotations_dir, video_id, f'{frame_idx:05d}.h5')
|
133 |
+
f = h5py.File(frame_annot_path)
|
134 |
+
instances = list(f['instance'])
|
135 |
+
instance_idx = instances.index(instance_id) # existence was already validated during init
|
136 |
+
|
137 |
+
instance_masks = np.array(f['reMask'])
|
138 |
+
if len(instances) == 1:
|
139 |
+
instance_masks = instance_masks[np.newaxis, ...]
|
140 |
+
instance_masks = torch.tensor(instance_masks).transpose(1, 2)
|
141 |
+
mask_rles = [encode(mask) for mask in instance_masks.numpy()]
|
142 |
+
mask_areas = area(mask_rles).astype(np.float)
|
143 |
+
f.close()
|
144 |
+
|
145 |
+
# select the referred mask
|
146 |
+
label = torch.tensor(0, dtype=torch.long)
|
147 |
+
mask = instance_masks[instance_idx].numpy()
|
148 |
+
if (mask > 0).any():
|
149 |
+
y1, y2, x1, x2 = self.bounding_box(mask)
|
150 |
+
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
|
151 |
+
valid.append(1)
|
152 |
+
else: # some frame didn't contain the instance
|
153 |
+
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
|
154 |
+
valid.append(0)
|
155 |
+
mask = torch.from_numpy(mask)
|
156 |
+
labels.append(label)
|
157 |
+
boxes.append(box)
|
158 |
+
masks.append(mask)
|
159 |
+
|
160 |
+
# transform
|
161 |
+
h, w = instance_masks.shape[-2:]
|
162 |
+
labels = torch.stack(labels, dim=0)
|
163 |
+
boxes = torch.stack(boxes, dim=0)
|
164 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
165 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
166 |
+
masks = torch.stack(masks, dim=0)
|
167 |
+
# there is only one valid frame
|
168 |
+
target = {
|
169 |
+
'frames_idx': torch.tensor(sample_indx), # [T,]
|
170 |
+
'valid_indices': torch.tensor([valid_indices]),
|
171 |
+
'labels': labels, # [1,]
|
172 |
+
'boxes': boxes, # [1, 4], xyxy
|
173 |
+
'masks': masks, # [1, H, W]
|
174 |
+
'valid': torch.tensor(valid), # [1,]
|
175 |
+
'caption': text_query,
|
176 |
+
'orig_size': torch.as_tensor([int(h), int(w)]),
|
177 |
+
'size': torch.as_tensor([int(h), int(w)]),
|
178 |
+
'image_id': get_image_id(video_id,frame_idx, instance_id)
|
179 |
+
}
|
180 |
+
|
181 |
+
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
|
182 |
+
if self._transforms:
|
183 |
+
imgs, target = self._transforms(imgs, target)
|
184 |
+
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
|
185 |
+
else:
|
186 |
+
imgs = np.array(imgs)
|
187 |
+
imgs = torch.tensor(imgs.transpose(0, 3, 1, 2))
|
188 |
+
|
189 |
+
# FIXME: handle "valid", since some box may be removed due to random crop
|
190 |
+
if torch.any(target['valid'] == 1): # at leatst one instance
|
191 |
+
instance_check = True
|
192 |
+
else:
|
193 |
+
idx = random.randint(0, self.__len__() - 1)
|
194 |
+
|
195 |
+
return imgs, target
|
196 |
+
|
197 |
+
|
198 |
+
def make_coco_transforms(image_set, max_size=640):
|
199 |
+
normalize = T.Compose([
|
200 |
+
T.ToTensor(),
|
201 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
202 |
+
])
|
203 |
+
|
204 |
+
scales = [288, 320, 352, 392, 416, 448, 480, 512]
|
205 |
+
|
206 |
+
if image_set == 'train':
|
207 |
+
return T.Compose([
|
208 |
+
T.RandomHorizontalFlip(),
|
209 |
+
T.PhotometricDistort(),
|
210 |
+
T.RandomSelect(
|
211 |
+
T.Compose([
|
212 |
+
T.RandomResize(scales, max_size=max_size),
|
213 |
+
T.Check(),
|
214 |
+
]),
|
215 |
+
T.Compose([
|
216 |
+
T.RandomResize([400, 500, 600]),
|
217 |
+
T.RandomSizeCrop(384, 600),
|
218 |
+
T.RandomResize(scales, max_size=max_size),
|
219 |
+
T.Check(),
|
220 |
+
])
|
221 |
+
),
|
222 |
+
normalize,
|
223 |
+
])
|
224 |
+
|
225 |
+
# we do not use the 'val' set since the annotations are inaccessible
|
226 |
+
if image_set == 'val':
|
227 |
+
return T.Compose([
|
228 |
+
T.RandomResize([360], max_size=640),
|
229 |
+
normalize,
|
230 |
+
])
|
231 |
+
|
232 |
+
raise ValueError(f'unknown {image_set}')
|
233 |
+
|
234 |
+
|
235 |
+
def build(image_set, args):
|
236 |
+
root = Path(args.a2d_path)
|
237 |
+
assert root.exists(), f'provided A2D-Sentences path {root} does not exist'
|
238 |
+
PATHS = {
|
239 |
+
"train": (root, root / "a2d_sentences_single_frame_train_annotations.json"),
|
240 |
+
"val": (root, root / "a2d_sentences_single_frame_test_annotations.json"),
|
241 |
+
}
|
242 |
+
img_folder, ann_file = PATHS[image_set]
|
243 |
+
#dataset = A2DSentencesDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size),
|
244 |
+
# return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
|
245 |
+
dataset = A2DSentencesDataset(img_folder, ann_file, transforms=None,
|
246 |
+
return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
|
247 |
+
return dataset
|
.history/datasets/a2d_20250203174309.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A2D-Sentences data loader
|
3 |
+
modified from https://github.com/mttr2021/MTTR/blob/main/datasets/a2d_sentences/a2d_sentences_dataset.py
|
4 |
+
"""
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torchvision.io import read_video
|
9 |
+
import torchvision.transforms.functional as F
|
10 |
+
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
import datasets.transforms_video as T
|
13 |
+
|
14 |
+
import os
|
15 |
+
from PIL import Image
|
16 |
+
import json
|
17 |
+
import numpy as np
|
18 |
+
import random
|
19 |
+
|
20 |
+
import h5py
|
21 |
+
from pycocotools.mask import encode, area
|
22 |
+
|
23 |
+
|
24 |
+
def get_image_id(video_id, frame_idx, ref_instance_a2d_id):
|
25 |
+
image_id = f'v_{video_id}_f_{frame_idx}_i_{ref_instance_a2d_id}'
|
26 |
+
return image_id
|
27 |
+
|
28 |
+
class A2DSentencesDataset(Dataset):
|
29 |
+
"""
|
30 |
+
A Torch dataset for A2D-Sentences.
|
31 |
+
For more information check out: https://kgavrilyuk.github.io/publication/actor_action/ or the original paper at:
|
32 |
+
https://arxiv.org/abs/1803.07485
|
33 |
+
"""
|
34 |
+
def __init__(self, image_folder: Path, ann_file: Path, transforms, return_masks: bool,
|
35 |
+
num_frames: int, max_skip: int, subset):
|
36 |
+
super(A2DSentencesDataset, self).__init__()
|
37 |
+
dataset_path = str(image_folder)
|
38 |
+
self.mask_annotations_dir = os.path.join(dataset_path, 'text_annotations/a2d_annotation_with_instances')
|
39 |
+
self.videos_dir = os.path.join(dataset_path, 'Release/clips320H')
|
40 |
+
self.ann_file = ann_file
|
41 |
+
self.text_annotations = self.get_text_annotations()
|
42 |
+
|
43 |
+
self._transforms = transforms
|
44 |
+
self.return_masks = return_masks # not used
|
45 |
+
self.num_frames = num_frames
|
46 |
+
self.max_skip = max_skip
|
47 |
+
self.subset = subset
|
48 |
+
|
49 |
+
print(f'\n {subset} sample num: ', len(self.text_annotations))
|
50 |
+
print('\n')
|
51 |
+
|
52 |
+
def get_text_annotations(self):
|
53 |
+
with open(str(self.ann_file), 'r') as f:
|
54 |
+
text_annotations_by_frame = [tuple(a) for a in json.load(f)]
|
55 |
+
return text_annotations_by_frame
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def bounding_box(img):
|
59 |
+
rows = np.any(img, axis=1)
|
60 |
+
cols = np.any(img, axis=0)
|
61 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
62 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
63 |
+
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
|
64 |
+
|
65 |
+
def __len__(self):
|
66 |
+
return len(self.text_annotations)
|
67 |
+
|
68 |
+
def __getitem__(self, idx):
|
69 |
+
instance_check = False
|
70 |
+
while not instance_check:
|
71 |
+
text_query, video_id, frame_idx, instance_id = self.text_annotations[idx]
|
72 |
+
|
73 |
+
text_query = " ".join(text_query.lower().split()) # clean up the text query
|
74 |
+
|
75 |
+
# read the source window frames:
|
76 |
+
video_frames, _, _ = read_video(os.path.join(self.videos_dir, f'{video_id}.mp4'), pts_unit='sec') # (T, H, W, C)
|
77 |
+
vid_len = len(video_frames)
|
78 |
+
# note that the original a2d dataset is 1 indexed, so we have to subtract 1 from frame_idx
|
79 |
+
frame_id = frame_idx - 1
|
80 |
+
|
81 |
+
if self.subset == 'train':
|
82 |
+
# get a window of window_size frames with frame frame_id in the middle.
|
83 |
+
num_frames = self.num_frames
|
84 |
+
# random sparse sample
|
85 |
+
sample_indx = [frame_id]
|
86 |
+
# local sample
|
87 |
+
sample_id_before = random.randint(1, 3)
|
88 |
+
sample_id_after = random.randint(1, 3)
|
89 |
+
local_indx = [max(0, frame_id - sample_id_before), min(vid_len - 1, frame_id + sample_id_after)]
|
90 |
+
sample_indx.extend(local_indx)
|
91 |
+
|
92 |
+
# global sampling
|
93 |
+
if num_frames > 3:
|
94 |
+
all_inds = list(range(vid_len))
|
95 |
+
global_inds = all_inds[:min(sample_indx)] + all_inds[max(sample_indx):]
|
96 |
+
global_n = num_frames - len(sample_indx)
|
97 |
+
if len(global_inds) > global_n:
|
98 |
+
select_id = random.sample(range(len(global_inds)), global_n)
|
99 |
+
for s_id in select_id:
|
100 |
+
sample_indx.append(global_inds[s_id])
|
101 |
+
elif vid_len >=global_n: # sample long range global frames
|
102 |
+
select_id = random.sample(range(vid_len), global_n)
|
103 |
+
for s_id in select_id:
|
104 |
+
sample_indx.append(all_inds[s_id])
|
105 |
+
else:
|
106 |
+
select_id = random.sample(range(vid_len), global_n - vid_len) + list(range(vid_len))
|
107 |
+
for s_id in select_id:
|
108 |
+
sample_indx.append(all_inds[s_id])
|
109 |
+
sample_indx.sort()
|
110 |
+
# find the valid frame index in sampled frame list, there is only one valid frame
|
111 |
+
valid_indices = sample_indx.index(frame_id)
|
112 |
+
|
113 |
+
elif self.subset == 'val':
|
114 |
+
start_idx, end_idx = frame_id - self.num_frames // 2, frame_id + (self.num_frames + 1) // 2
|
115 |
+
sample_indx = []
|
116 |
+
for i in range(start_idx, end_idx):
|
117 |
+
i = min(max(i, 0), len(video_frames)-1) # pad out of range indices with edge frames
|
118 |
+
sample_indx.append(i)
|
119 |
+
sample_indx.sort()
|
120 |
+
# find the valid frame index in sampled frame list, there is only one valid frame
|
121 |
+
valid_indices = sample_indx.index(frame_id)
|
122 |
+
|
123 |
+
|
124 |
+
# read frames
|
125 |
+
imgs, labels, boxes, masks, valid = [], [], [], [], []
|
126 |
+
for j in range(self.num_frames):
|
127 |
+
frame_indx = sample_indx[j]
|
128 |
+
img = F.to_pil_image(video_frames[frame_indx].permute(2, 0, 1))
|
129 |
+
imgs.append(img)
|
130 |
+
|
131 |
+
# read the instance mask
|
132 |
+
frame_annot_path = os.path.join(self.mask_annotations_dir, video_id, f'{frame_idx:05d}.h5')
|
133 |
+
f = h5py.File(frame_annot_path)
|
134 |
+
instances = list(f['instance'])
|
135 |
+
instance_idx = instances.index(instance_id) # existence was already validated during init
|
136 |
+
|
137 |
+
instance_masks = np.array(f['reMask'])
|
138 |
+
if len(instances) == 1:
|
139 |
+
instance_masks = instance_masks[np.newaxis, ...]
|
140 |
+
instance_masks = torch.tensor(instance_masks).transpose(1, 2)
|
141 |
+
mask_rles = [encode(mask) for mask in instance_masks.numpy()]
|
142 |
+
mask_areas = area(mask_rles).astype(float)
|
143 |
+
f.close()
|
144 |
+
|
145 |
+
# select the referred mask
|
146 |
+
label = torch.tensor(0, dtype=torch.long)
|
147 |
+
mask = instance_masks[instance_idx].numpy()
|
148 |
+
if (mask > 0).any():
|
149 |
+
y1, y2, x1, x2 = self.bounding_box(mask)
|
150 |
+
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
|
151 |
+
valid.append(1)
|
152 |
+
else: # some frame didn't contain the instance
|
153 |
+
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
|
154 |
+
valid.append(0)
|
155 |
+
mask = torch.from_numpy(mask)
|
156 |
+
labels.append(label)
|
157 |
+
boxes.append(box)
|
158 |
+
masks.append(mask)
|
159 |
+
|
160 |
+
# transform
|
161 |
+
h, w = instance_masks.shape[-2:]
|
162 |
+
labels = torch.stack(labels, dim=0)
|
163 |
+
boxes = torch.stack(boxes, dim=0)
|
164 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
165 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
166 |
+
masks = torch.stack(masks, dim=0)
|
167 |
+
# there is only one valid frame
|
168 |
+
target = {
|
169 |
+
'frames_idx': torch.tensor(sample_indx), # [T,]
|
170 |
+
'valid_indices': torch.tensor([valid_indices]),
|
171 |
+
'labels': labels, # [1,]
|
172 |
+
'boxes': boxes, # [1, 4], xyxy
|
173 |
+
'masks': masks, # [1, H, W]
|
174 |
+
'valid': torch.tensor(valid), # [1,]
|
175 |
+
'caption': text_query,
|
176 |
+
'orig_size': torch.as_tensor([int(h), int(w)]),
|
177 |
+
'size': torch.as_tensor([int(h), int(w)]),
|
178 |
+
'image_id': get_image_id(video_id,frame_idx, instance_id)
|
179 |
+
}
|
180 |
+
|
181 |
+
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
|
182 |
+
if self._transforms:
|
183 |
+
imgs, target = self._transforms(imgs, target)
|
184 |
+
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
|
185 |
+
else:
|
186 |
+
imgs = np.array(imgs)
|
187 |
+
imgs = torch.tensor(imgs.transpose(0, 3, 1, 2))
|
188 |
+
|
189 |
+
# FIXME: handle "valid", since some box may be removed due to random crop
|
190 |
+
if torch.any(target['valid'] == 1): # at leatst one instance
|
191 |
+
instance_check = True
|
192 |
+
else:
|
193 |
+
idx = random.randint(0, self.__len__() - 1)
|
194 |
+
|
195 |
+
return imgs, target
|
196 |
+
|
197 |
+
|
198 |
+
def make_coco_transforms(image_set, max_size=640):
|
199 |
+
normalize = T.Compose([
|
200 |
+
T.ToTensor(),
|
201 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
202 |
+
])
|
203 |
+
|
204 |
+
scales = [288, 320, 352, 392, 416, 448, 480, 512]
|
205 |
+
|
206 |
+
if image_set == 'train':
|
207 |
+
return T.Compose([
|
208 |
+
T.RandomHorizontalFlip(),
|
209 |
+
T.PhotometricDistort(),
|
210 |
+
T.RandomSelect(
|
211 |
+
T.Compose([
|
212 |
+
T.RandomResize(scales, max_size=max_size),
|
213 |
+
T.Check(),
|
214 |
+
]),
|
215 |
+
T.Compose([
|
216 |
+
T.RandomResize([400, 500, 600]),
|
217 |
+
T.RandomSizeCrop(384, 600),
|
218 |
+
T.RandomResize(scales, max_size=max_size),
|
219 |
+
T.Check(),
|
220 |
+
])
|
221 |
+
),
|
222 |
+
normalize,
|
223 |
+
])
|
224 |
+
|
225 |
+
# we do not use the 'val' set since the annotations are inaccessible
|
226 |
+
if image_set == 'val':
|
227 |
+
return T.Compose([
|
228 |
+
T.RandomResize([360], max_size=640),
|
229 |
+
normalize,
|
230 |
+
])
|
231 |
+
|
232 |
+
raise ValueError(f'unknown {image_set}')
|
233 |
+
|
234 |
+
|
235 |
+
def build(image_set, args):
|
236 |
+
root = Path(args.a2d_path)
|
237 |
+
assert root.exists(), f'provided A2D-Sentences path {root} does not exist'
|
238 |
+
PATHS = {
|
239 |
+
"train": (root, root / "a2d_sentences_single_frame_train_annotations.json"),
|
240 |
+
"val": (root, root / "a2d_sentences_single_frame_test_annotations.json"),
|
241 |
+
}
|
242 |
+
img_folder, ann_file = PATHS[image_set]
|
243 |
+
#dataset = A2DSentencesDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size),
|
244 |
+
# return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
|
245 |
+
dataset = A2DSentencesDataset(img_folder, ann_file, transforms=None,
|
246 |
+
return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
|
247 |
+
return dataset
|
.history/datasets/ytvos_ref_20250113163537.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Ref-YoutubeVOS data loader
|
3 |
+
"""
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.autograd.grad_mode import F
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
import datasets.transforms_video as T
|
10 |
+
|
11 |
+
import os
|
12 |
+
from PIL import Image
|
13 |
+
import json
|
14 |
+
import numpy as np
|
15 |
+
import random
|
16 |
+
|
17 |
+
from datasets.categories import ytvos_category_dict as category_dict
|
18 |
+
|
19 |
+
|
20 |
+
class YTVOSDataset(Dataset):
|
21 |
+
"""
|
22 |
+
A dataset class for the Refer-Youtube-VOS dataset which was first introduced in the paper:
|
23 |
+
"URVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmark"
|
24 |
+
(see https://link.springer.com/content/pdf/10.1007/978-3-030-58555-6_13.pdf).
|
25 |
+
The original release of the dataset contained both 'first-frame' and 'full-video' expressions. However, the first
|
26 |
+
dataset is not publicly available anymore as now only the harder 'full-video' subset is available to download
|
27 |
+
through the Youtube-VOS referring video object segmentation competition page at:
|
28 |
+
https://competitions.codalab.org/competitions/29139
|
29 |
+
Furthermore, for the competition the subset's original validation set, which consists of 507 videos, was split into
|
30 |
+
two competition 'validation' & 'test' subsets, consisting of 202 and 305 videos respectively. Evaluation can
|
31 |
+
currently only be done on the competition 'validation' subset using the competition's server, as
|
32 |
+
annotations were publicly released only for the 'train' subset of the competition.
|
33 |
+
|
34 |
+
"""
|
35 |
+
def __init__(self, img_folder: Path, ann_file: Path, transforms, return_masks: bool,
|
36 |
+
num_frames: int, max_skip: int):
|
37 |
+
self.img_folder = img_folder
|
38 |
+
self.ann_file = ann_file
|
39 |
+
self._transforms = transforms
|
40 |
+
self.return_masks = return_masks # not used
|
41 |
+
self.num_frames = num_frames
|
42 |
+
self.max_skip = max_skip
|
43 |
+
# create video meta data
|
44 |
+
self.prepare_metas()
|
45 |
+
|
46 |
+
print('\n video num: ', len(self.videos), ' clip num: ', len(self.metas))
|
47 |
+
print('\n')
|
48 |
+
|
49 |
+
def prepare_metas(self):
|
50 |
+
# read object information
|
51 |
+
with open(os.path.join(str(self.img_folder), 'meta.json'), 'r') as f:
|
52 |
+
subset_metas_by_video = json.load(f)['videos']
|
53 |
+
|
54 |
+
# read expression data
|
55 |
+
with open(str(self.ann_file), 'r') as f:
|
56 |
+
subset_expressions_by_video = json.load(f)['videos']
|
57 |
+
self.videos = list(subset_expressions_by_video.keys())
|
58 |
+
|
59 |
+
self.metas = []
|
60 |
+
skip_vid_count = 0
|
61 |
+
|
62 |
+
for vid in self.videos:
|
63 |
+
vid_meta = subset_metas_by_video[vid]
|
64 |
+
vid_data = subset_expressions_by_video[vid]
|
65 |
+
vid_frames = sorted(vid_data['frames'])
|
66 |
+
vid_len = len(vid_frames)
|
67 |
+
|
68 |
+
if vid_len < 11:
|
69 |
+
#print(f"Too short video: {vid} with frame length {vid_len}")
|
70 |
+
skip_vid_count += 1
|
71 |
+
continue
|
72 |
+
|
73 |
+
for exp_id, exp_dict in vid_data['expressions'].items():
|
74 |
+
# Exclude start_idx (0, 1) and end_idx (vid_len-1, vid_len-2)
|
75 |
+
start_idx , end_idx = 2, vid_len-2
|
76 |
+
bin_size = (end_idx - start_idx) // 4
|
77 |
+
|
78 |
+
bins = []
|
79 |
+
for i in range(4):
|
80 |
+
bin_start = start_idx + i * bin_size
|
81 |
+
bin_end = bin_start + bin_size if i < 3 else end_idx
|
82 |
+
|
83 |
+
bins.append((bin_start, bin_end))
|
84 |
+
|
85 |
+
# Random sample one frame from each bin
|
86 |
+
sample_indx = []
|
87 |
+
for start_idx, end_idx in bins:
|
88 |
+
sample_indx.append(random.randint(start_idx, end_idx - 1))
|
89 |
+
sample_indx.sort() # Ensure indices are in order
|
90 |
+
|
91 |
+
|
92 |
+
for frame_id in sample_indx:
|
93 |
+
meta = {
|
94 |
+
'video': vid,
|
95 |
+
'exp': exp_dict['exp'],
|
96 |
+
'obj_id': int(exp_dict['obj_id']),
|
97 |
+
'frames': vid_frames,
|
98 |
+
'frame_id' : frame_id,
|
99 |
+
'sample_frames_id' : sample_indx,
|
100 |
+
'bins': bins,
|
101 |
+
'category': vid_meta['objects'][exp_dict['obj_id']]['category']
|
102 |
+
}
|
103 |
+
self.metas.append(meta)
|
104 |
+
|
105 |
+
print(f"skipped {skip_vid_count} short videos")
|
106 |
+
|
107 |
+
|
108 |
+
@staticmethod
|
109 |
+
def bounding_box(img):
|
110 |
+
rows = np.any(img, axis=1)
|
111 |
+
cols = np.any(img, axis=0)
|
112 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
113 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
114 |
+
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
|
115 |
+
|
116 |
+
def __len__(self):
|
117 |
+
return len(self.metas)
|
118 |
+
|
119 |
+
def __getitem__(self, idx):
|
120 |
+
instance_check = False
|
121 |
+
while not instance_check:
|
122 |
+
meta = self.metas[idx] # dict
|
123 |
+
|
124 |
+
|
125 |
+
video, exp, obj_id, category, frames, frame_id, sample_frames_id, bins = \
|
126 |
+
meta['video'], meta['exp'], meta['obj_id'], meta['category'], meta['frames'], meta['frame_id'], metas['sample_frames_id'], meta['bins']
|
127 |
+
|
128 |
+
|
129 |
+
# clean up the caption
|
130 |
+
exp = " ".join(exp.lower().split())
|
131 |
+
category_id = category_dict[category]
|
132 |
+
vid_len = len(frames)
|
133 |
+
|
134 |
+
# num_frames = self.num_frames
|
135 |
+
|
136 |
+
# read frames and masks
|
137 |
+
imgs, labels, boxes, masks, valid = [], [], [], [], []
|
138 |
+
for frame_indx in sample_frames_id:
|
139 |
+
frame_name = frames[frame_indx]
|
140 |
+
img_path = os.path.join(str(self.img_folder), 'JPEGImages', video, frame_name + '.jpg')
|
141 |
+
mask_path = os.path.join(str(self.img_folder), 'Annotations', video, frame_name + '.png')
|
142 |
+
img = Image.open(img_path).convert('RGB')
|
143 |
+
mask = Image.open(mask_path).convert('P')
|
144 |
+
|
145 |
+
# create the target
|
146 |
+
label = torch.tensor(category_id)
|
147 |
+
mask = np.array(mask)
|
148 |
+
mask = (mask==obj_id).astype(np.float32) # 0,1 binary
|
149 |
+
if (mask > 0).any():
|
150 |
+
y1, y2, x1, x2 = self.bounding_box(mask)
|
151 |
+
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
|
152 |
+
valid.append(1)
|
153 |
+
else: # some frame didn't contain the instance
|
154 |
+
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
|
155 |
+
valid.append(0)
|
156 |
+
mask = torch.from_numpy(mask)
|
157 |
+
|
158 |
+
# append
|
159 |
+
imgs.append(img)
|
160 |
+
labels.append(label)
|
161 |
+
masks.append(mask)
|
162 |
+
boxes.append(box)
|
163 |
+
|
164 |
+
# transform
|
165 |
+
w, h = img.size
|
166 |
+
labels = torch.stack(labels, dim=0)
|
167 |
+
boxes = torch.stack(boxes, dim=0)
|
168 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
169 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
170 |
+
masks = torch.stack(masks, dim=0)
|
171 |
+
target = {
|
172 |
+
'frames_idx': torch.tensor(sample_frames_id), # [T,]
|
173 |
+
'labels': labels, # [T,]
|
174 |
+
'boxes': boxes, # [T, 4], xyxy
|
175 |
+
'masks': masks, # [T, H, W]
|
176 |
+
'valid': torch.tensor(valid), # [T,]
|
177 |
+
'caption': exp,
|
178 |
+
'orig_size': torch.as_tensor([int(h), int(w)]),
|
179 |
+
'size': torch.as_tensor([int(h), int(w)])
|
180 |
+
}
|
181 |
+
|
182 |
+
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
|
183 |
+
if self._transforms:
|
184 |
+
imgs, target = self._transforms(imgs, target)
|
185 |
+
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
|
186 |
+
else:
|
187 |
+
imgs = np.array(imgs)
|
188 |
+
imgs = torch.tensor(imgs.transpose(0, 3, 1, 2))
|
189 |
+
|
190 |
+
|
191 |
+
# FIXME: handle "valid", since some box may be removed due to random crop
|
192 |
+
if torch.any(target['valid'] == 1): # at leatst one instance
|
193 |
+
instance_check = True
|
194 |
+
else:
|
195 |
+
idx = random.randint(0, self.__len__() - 1)
|
196 |
+
|
197 |
+
return imgs, target
|
198 |
+
|
199 |
+
|
200 |
+
def make_coco_transforms(image_set, max_size=640):
|
201 |
+
normalize = T.Compose([
|
202 |
+
T.ToTensor(),
|
203 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
204 |
+
])
|
205 |
+
|
206 |
+
scales = [288, 320, 352, 392, 416, 448, 480, 512]
|
207 |
+
|
208 |
+
if image_set == 'train':
|
209 |
+
return T.Compose([
|
210 |
+
T.RandomHorizontalFlip(),
|
211 |
+
T.PhotometricDistort(),
|
212 |
+
T.RandomSelect(
|
213 |
+
T.Compose([
|
214 |
+
T.RandomResize(scales, max_size=max_size),
|
215 |
+
T.Check(),
|
216 |
+
]),
|
217 |
+
T.Compose([
|
218 |
+
T.RandomResize([400, 500, 600]),
|
219 |
+
T.RandomSizeCrop(384, 600),
|
220 |
+
T.RandomResize(scales, max_size=max_size),
|
221 |
+
T.Check(),
|
222 |
+
])
|
223 |
+
),
|
224 |
+
normalize,
|
225 |
+
])
|
226 |
+
|
227 |
+
# we do not use the 'val' set since the annotations are inaccessible
|
228 |
+
if image_set == 'val':
|
229 |
+
return T.Compose([
|
230 |
+
T.RandomResize([360], max_size=640),
|
231 |
+
normalize,
|
232 |
+
])
|
233 |
+
|
234 |
+
raise ValueError(f'unknown {image_set}')
|
235 |
+
|
236 |
+
|
237 |
+
def build(image_set, args):
|
238 |
+
root = Path(args.ytvos_path)
|
239 |
+
assert root.exists(), f'provided YTVOS path {root} does not exist'
|
240 |
+
PATHS = {
|
241 |
+
"train": (root / "train", root / "meta_expressions" / "train" / "meta_expressions.json"),
|
242 |
+
"val": (root / "valid", root / "meta_expressions" / "valid" / "meta_expressions.json"), # not used actually
|
243 |
+
}
|
244 |
+
img_folder, ann_file = PATHS[image_set]
|
245 |
+
# dataset = YTVOSDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size), return_masks=args.masks,
|
246 |
+
# num_frames=args.num_frames, max_skip=args.max_skip)
|
247 |
+
dataset = YTVOSDataset(img_folder, ann_file, transforms=None, return_masks=args.masks,
|
248 |
+
num_frames=args.num_frames, max_skip=args.max_skip)
|
249 |
+
return dataset
|
250 |
+
|
.history/datasets/ytvos_ref_20250116071955.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Ref-YoutubeVOS data loader
|
3 |
+
"""
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.autograd.grad_mode import F
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
import datasets.transforms_video as T
|
10 |
+
|
11 |
+
import os
|
12 |
+
from PIL import Image
|
13 |
+
import json
|
14 |
+
import numpy as np
|
15 |
+
import random
|
16 |
+
|
17 |
+
from datasets.categories import ytvos_category_dict as category_dict
|
18 |
+
|
19 |
+
|
20 |
+
class YTVOSDataset(Dataset):
|
21 |
+
"""
|
22 |
+
A dataset class for the Refer-Youtube-VOS dataset which was first introduced in the paper:
|
23 |
+
"URVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmark"
|
24 |
+
(see https://link.springer.com/content/pdf/10.1007/978-3-030-58555-6_13.pdf).
|
25 |
+
The original release of the dataset contained both 'first-frame' and 'full-video' expressions. However, the first
|
26 |
+
dataset is not publicly available anymore as now only the harder 'full-video' subset is available to download
|
27 |
+
through the Youtube-VOS referring video object segmentation competition page at:
|
28 |
+
https://competitions.codalab.org/competitions/29139
|
29 |
+
Furthermore, for the competition the subset's original validation set, which consists of 507 videos, was split into
|
30 |
+
two competition 'validation' & 'test' subsets, consisting of 202 and 305 videos respectively. Evaluation can
|
31 |
+
currently only be done on the competition 'validation' subset using the competition's server, as
|
32 |
+
annotations were publicly released only for the 'train' subset of the competition.
|
33 |
+
|
34 |
+
"""
|
35 |
+
def __init__(self, img_folder: Path, ann_file: Path, transforms, return_masks: bool,
|
36 |
+
num_frames: int, max_skip: int):
|
37 |
+
self.img_folder = img_folder
|
38 |
+
self.ann_file = ann_file
|
39 |
+
self._transforms = transforms
|
40 |
+
self.return_masks = return_masks # not used
|
41 |
+
self.num_frames = num_frames
|
42 |
+
self.max_skip = max_skip
|
43 |
+
# create video meta data
|
44 |
+
self.prepare_metas()
|
45 |
+
|
46 |
+
print('\n video num: ', len(self.videos), ' clip num: ', len(self.metas))
|
47 |
+
print('\n')
|
48 |
+
|
49 |
+
def prepare_metas(self):
|
50 |
+
# read object information
|
51 |
+
with open(os.path.join(str(self.img_folder), 'meta.json'), 'r') as f:
|
52 |
+
subset_metas_by_video = json.load(f)['videos']
|
53 |
+
|
54 |
+
# read expression data
|
55 |
+
with open(str(self.ann_file), 'r') as f:
|
56 |
+
subset_expressions_by_video = json.load(f)['videos']
|
57 |
+
self.videos = list(subset_expressions_by_video.keys())
|
58 |
+
|
59 |
+
self.metas = []
|
60 |
+
skip_vid_count = 0
|
61 |
+
|
62 |
+
for vid in self.videos:
|
63 |
+
vid_meta = subset_metas_by_video[vid]
|
64 |
+
vid_data = subset_expressions_by_video[vid]
|
65 |
+
vid_frames = sorted(vid_data['frames'])
|
66 |
+
vid_len = len(vid_frames)
|
67 |
+
|
68 |
+
if vid_len < 11:
|
69 |
+
#print(f"Too short video: {vid} with frame length {vid_len}")
|
70 |
+
skip_vid_count += 1
|
71 |
+
continue
|
72 |
+
|
73 |
+
|
74 |
+
# Exclude start_idx (0, 1) and end_idx (vid_len-1, vid_len-2)
|
75 |
+
start_idx , end_idx = 2, vid_len-2
|
76 |
+
bin_size = (end_idx - start_idx) // 4
|
77 |
+
|
78 |
+
bins = []
|
79 |
+
for i in range(4):
|
80 |
+
bin_start = start_idx + i * bin_size
|
81 |
+
bin_end = bin_start + bin_size if i < 3 else end_idx
|
82 |
+
|
83 |
+
bins.append((bin_start, bin_end))
|
84 |
+
|
85 |
+
# Random sample one frame from each bin
|
86 |
+
sample_indx = []
|
87 |
+
for start_idx, end_idx in bins:
|
88 |
+
sample_indx.append(random.randint(start_idx, end_idx - 1))
|
89 |
+
sample_indx.sort() # Ensure indices are in order
|
90 |
+
|
91 |
+
|
92 |
+
meta = {
|
93 |
+
'video':vid,
|
94 |
+
'sample_indx':sample_indx,
|
95 |
+
'bins':bins,
|
96 |
+
'frames':vid_frames
|
97 |
+
}
|
98 |
+
obj_id_cat = {}
|
99 |
+
for exp_id, exp_dict in vid_data['expressions'].items():
|
100 |
+
obj_id = exp_dict['obj_id']
|
101 |
+
if obj_id not in obj_id_cat:
|
102 |
+
obj_id_cat[obj_id] = vid_meta['objects'][obj_id]['category']
|
103 |
+
meta['obj_id_cat'] = obj_id_cat
|
104 |
+
self.metas.append(meta)
|
105 |
+
|
106 |
+
print(f"skipped {skip_vid_count} short videos")
|
107 |
+
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def bounding_box(img):
|
111 |
+
rows = np.any(img, axis=1)
|
112 |
+
cols = np.any(img, axis=0)
|
113 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
114 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
115 |
+
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
|
116 |
+
|
117 |
+
def __len__(self):
|
118 |
+
return len(self.metas)
|
119 |
+
|
120 |
+
def __getitem__(self, idx):
|
121 |
+
instance_check = False
|
122 |
+
while not instance_check:
|
123 |
+
meta = self.metas[idx] # dict
|
124 |
+
|
125 |
+
video, sample_indx, bins, frames, obj_id_cat = \
|
126 |
+
meta['video'], meta['sample_indx'], meta['bins'], meta['frames'], meta['obj_id_cat']
|
127 |
+
|
128 |
+
# read frames and masks
|
129 |
+
imgs, labels, boxes, masks, valid = [], [], [], [], []
|
130 |
+
for frame_indx in sample_indx:
|
131 |
+
frame_name = frames[frame_indx]
|
132 |
+
img_path = os.path.join(str(self.img_folder), 'JPEGImages', video, frame_name + '.jpg')
|
133 |
+
mask_path = os.path.join(str(self.img_folder), 'Annotations', video, frame_name + '.png')
|
134 |
+
img = Image.open(img_path).convert('RGB')
|
135 |
+
print(f"img size: {img.shape}")
|
136 |
+
mask = Image.open(mask_path).convert('P')
|
137 |
+
mask = np.array(mask)
|
138 |
+
|
139 |
+
# create the target
|
140 |
+
for obj_id in list(obj_id_cat.keys()):
|
141 |
+
obj_mask = (mask==obj_id).astype(np.float32) # 0,1 binary
|
142 |
+
if (obj_mask > 0).any():
|
143 |
+
y1, y2, x1, x2 = self.bounding_box(mask)
|
144 |
+
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
|
145 |
+
valid.append(1)
|
146 |
+
else: # some frame didn't contain the instance
|
147 |
+
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
|
148 |
+
valid.append(0)
|
149 |
+
obj_mask = torch.from_numpy(obj_mask)
|
150 |
+
|
151 |
+
# append
|
152 |
+
masks.append(obj_mask)
|
153 |
+
boxes.append(box)
|
154 |
+
|
155 |
+
|
156 |
+
# transform
|
157 |
+
w, h = img.size
|
158 |
+
boxes = torch.stack(boxes, dim=0)
|
159 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
160 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
161 |
+
masks = torch.stack(masks, dim=0)
|
162 |
+
target = {
|
163 |
+
'frames_idx': sample_indx, # [T,]
|
164 |
+
'boxes': boxes, # [T, 4], xyxy
|
165 |
+
'masks': masks, # [T, H, W]
|
166 |
+
'valid': torch.tensor(valid), # [T,]
|
167 |
+
'obj_ids' : list(obj_id_cat.keys()),
|
168 |
+
'orig_size': torch.as_tensor([int(h), int(w)]),
|
169 |
+
'size': torch.as_tensor([int(h), int(w)])
|
170 |
+
}
|
171 |
+
|
172 |
+
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
|
173 |
+
if self._transforms:
|
174 |
+
imgs, target = self._transforms(imgs, target)
|
175 |
+
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
|
176 |
+
else:
|
177 |
+
imgs = np.array(imgs)
|
178 |
+
imgs = torch.tensor(imgs.transpose(0, 3, 1, 2))
|
179 |
+
|
180 |
+
|
181 |
+
# FIXME: handle "valid", since some box may be removed due to random crop
|
182 |
+
if torch.any(target['valid'] == 1): # at leatst one instance
|
183 |
+
instance_check = True
|
184 |
+
else:
|
185 |
+
idx = random.randint(0, self.__len__() - 1)
|
186 |
+
|
187 |
+
return imgs, target
|
188 |
+
|
189 |
+
|
190 |
+
def make_coco_transforms(image_set, max_size=640):
|
191 |
+
normalize = T.Compose([
|
192 |
+
T.ToTensor(),
|
193 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
194 |
+
])
|
195 |
+
|
196 |
+
scales = [288, 320, 352, 392, 416, 448, 480, 512]
|
197 |
+
|
198 |
+
if image_set == 'train':
|
199 |
+
return T.Compose([
|
200 |
+
T.RandomHorizontalFlip(),
|
201 |
+
T.PhotometricDistort(),
|
202 |
+
T.RandomSelect(
|
203 |
+
T.Compose([
|
204 |
+
T.RandomResize(scales, max_size=max_size),
|
205 |
+
T.Check(),
|
206 |
+
]),
|
207 |
+
T.Compose([
|
208 |
+
T.RandomResize([400, 500, 600]),
|
209 |
+
T.RandomSizeCrop(384, 600),
|
210 |
+
T.RandomResize(scales, max_size=max_size),
|
211 |
+
T.Check(),
|
212 |
+
])
|
213 |
+
),
|
214 |
+
normalize,
|
215 |
+
])
|
216 |
+
|
217 |
+
# we do not use the 'val' set since the annotations are inaccessible
|
218 |
+
if image_set == 'val':
|
219 |
+
return T.Compose([
|
220 |
+
T.RandomResize([360], max_size=640),
|
221 |
+
normalize,
|
222 |
+
])
|
223 |
+
|
224 |
+
raise ValueError(f'unknown {image_set}')
|
225 |
+
|
226 |
+
|
227 |
+
def build(image_set, args):
|
228 |
+
root = Path(args.ytvos_path)
|
229 |
+
assert root.exists(), f'provided YTVOS path {root} does not exist'
|
230 |
+
PATHS = {
|
231 |
+
"train": (root / "train", root / "meta_expressions" / "train" / "meta_expressions.json"),
|
232 |
+
"val": (root / "valid", root / "meta_expressions" / "valid" / "meta_expressions.json"), # not used actually
|
233 |
+
}
|
234 |
+
img_folder, ann_file = PATHS[image_set]
|
235 |
+
# dataset = YTVOSDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size), return_masks=args.masks,
|
236 |
+
# num_frames=args.num_frames, max_skip=args.max_skip)
|
237 |
+
dataset = YTVOSDataset(img_folder, ann_file, transforms=None, return_masks=args.masks,
|
238 |
+
num_frames=args.num_frames, max_skip=args.max_skip)
|
239 |
+
return dataset
|
240 |
+
|
.history/datasets/ytvos_ref_20250116072439.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Ref-YoutubeVOS data loader
|
3 |
+
"""
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.autograd.grad_mode import F
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
import datasets.transforms_video as T
|
10 |
+
|
11 |
+
import os
|
12 |
+
from PIL import Image
|
13 |
+
import json
|
14 |
+
import numpy as np
|
15 |
+
import random
|
16 |
+
|
17 |
+
from datasets.categories import ytvos_category_dict as category_dict
|
18 |
+
|
19 |
+
|
20 |
+
class YTVOSDataset(Dataset):
|
21 |
+
"""
|
22 |
+
A dataset class for the Refer-Youtube-VOS dataset which was first introduced in the paper:
|
23 |
+
"URVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmark"
|
24 |
+
(see https://link.springer.com/content/pdf/10.1007/978-3-030-58555-6_13.pdf).
|
25 |
+
The original release of the dataset contained both 'first-frame' and 'full-video' expressions. However, the first
|
26 |
+
dataset is not publicly available anymore as now only the harder 'full-video' subset is available to download
|
27 |
+
through the Youtube-VOS referring video object segmentation competition page at:
|
28 |
+
https://competitions.codalab.org/competitions/29139
|
29 |
+
Furthermore, for the competition the subset's original validation set, which consists of 507 videos, was split into
|
30 |
+
two competition 'validation' & 'test' subsets, consisting of 202 and 305 videos respectively. Evaluation can
|
31 |
+
currently only be done on the competition 'validation' subset using the competition's server, as
|
32 |
+
annotations were publicly released only for the 'train' subset of the competition.
|
33 |
+
|
34 |
+
"""
|
35 |
+
def __init__(self, img_folder: Path, ann_file: Path, transforms, return_masks: bool,
|
36 |
+
num_frames: int, max_skip: int):
|
37 |
+
self.img_folder = img_folder
|
38 |
+
self.ann_file = ann_file
|
39 |
+
self._transforms = transforms
|
40 |
+
self.return_masks = return_masks # not used
|
41 |
+
self.num_frames = num_frames
|
42 |
+
self.max_skip = max_skip
|
43 |
+
# create video meta data
|
44 |
+
self.prepare_metas()
|
45 |
+
|
46 |
+
print('\n video num: ', len(self.videos), ' clip num: ', len(self.metas))
|
47 |
+
print('\n')
|
48 |
+
|
49 |
+
def prepare_metas(self):
|
50 |
+
# read object information
|
51 |
+
with open(os.path.join(str(self.img_folder), 'meta.json'), 'r') as f:
|
52 |
+
subset_metas_by_video = json.load(f)['videos']
|
53 |
+
|
54 |
+
# read expression data
|
55 |
+
with open(str(self.ann_file), 'r') as f:
|
56 |
+
subset_expressions_by_video = json.load(f)['videos']
|
57 |
+
self.videos = list(subset_expressions_by_video.keys())
|
58 |
+
|
59 |
+
self.metas = []
|
60 |
+
skip_vid_count = 0
|
61 |
+
|
62 |
+
for vid in self.videos:
|
63 |
+
vid_meta = subset_metas_by_video[vid]
|
64 |
+
vid_data = subset_expressions_by_video[vid]
|
65 |
+
vid_frames = sorted(vid_data['frames'])
|
66 |
+
vid_len = len(vid_frames)
|
67 |
+
|
68 |
+
if vid_len < 11:
|
69 |
+
#print(f"Too short video: {vid} with frame length {vid_len}")
|
70 |
+
skip_vid_count += 1
|
71 |
+
continue
|
72 |
+
|
73 |
+
|
74 |
+
# Exclude start_idx (0, 1) and end_idx (vid_len-1, vid_len-2)
|
75 |
+
start_idx , end_idx = 2, vid_len-2
|
76 |
+
bin_size = (end_idx - start_idx) // 4
|
77 |
+
|
78 |
+
bins = []
|
79 |
+
for i in range(4):
|
80 |
+
bin_start = start_idx + i * bin_size
|
81 |
+
bin_end = bin_start + bin_size if i < 3 else end_idx
|
82 |
+
|
83 |
+
bins.append((bin_start, bin_end))
|
84 |
+
|
85 |
+
# Random sample one frame from each bin
|
86 |
+
sample_indx = []
|
87 |
+
for start_idx, end_idx in bins:
|
88 |
+
sample_indx.append(random.randint(start_idx, end_idx - 1))
|
89 |
+
sample_indx.sort() # Ensure indices are in order
|
90 |
+
|
91 |
+
|
92 |
+
meta = {
|
93 |
+
'video':vid,
|
94 |
+
'sample_indx':sample_indx,
|
95 |
+
'bins':bins,
|
96 |
+
'frames':vid_frames
|
97 |
+
}
|
98 |
+
obj_id_cat = {}
|
99 |
+
for exp_id, exp_dict in vid_data['expressions'].items():
|
100 |
+
obj_id = exp_dict['obj_id']
|
101 |
+
if obj_id not in obj_id_cat:
|
102 |
+
obj_id_cat[obj_id] = vid_meta['objects'][obj_id]['category']
|
103 |
+
meta['obj_id_cat'] = obj_id_cat
|
104 |
+
self.metas.append(meta)
|
105 |
+
|
106 |
+
print(f"skipped {skip_vid_count} short videos")
|
107 |
+
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def bounding_box(img):
|
111 |
+
rows = np.any(img, axis=1)
|
112 |
+
cols = np.any(img, axis=0)
|
113 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
114 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
115 |
+
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
|
116 |
+
|
117 |
+
def __len__(self):
|
118 |
+
return len(self.metas)
|
119 |
+
|
120 |
+
def __getitem__(self, idx):
|
121 |
+
instance_check = False
|
122 |
+
while not instance_check:
|
123 |
+
meta = self.metas[idx] # dict
|
124 |
+
|
125 |
+
video, sample_indx, bins, frames, obj_id_cat = \
|
126 |
+
meta['video'], meta['sample_indx'], meta['bins'], meta['frames'], meta['obj_id_cat']
|
127 |
+
|
128 |
+
# read frames and masks
|
129 |
+
imgs, labels, boxes, masks, valid = [], [], [], [], []
|
130 |
+
for frame_indx in sample_indx:
|
131 |
+
frame_name = frames[frame_indx]
|
132 |
+
img_path = os.path.join(str(self.img_folder), 'JPEGImages', video, frame_name + '.jpg')
|
133 |
+
mask_path = os.path.join(str(self.img_folder), 'Annotations', video, frame_name + '.png')
|
134 |
+
img = Image.open(img_path).convert('RGB')
|
135 |
+
imgs.append(img)
|
136 |
+
mask = Image.open(mask_path).convert('P')
|
137 |
+
mask = np.array(mask)
|
138 |
+
|
139 |
+
# create the target
|
140 |
+
for obj_id in list(obj_id_cat.keys()):
|
141 |
+
obj_mask = (mask==obj_id).astype(np.float32) # 0,1 binary
|
142 |
+
if (obj_mask > 0).any():
|
143 |
+
y1, y2, x1, x2 = self.bounding_box(mask)
|
144 |
+
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
|
145 |
+
valid.append(1)
|
146 |
+
else: # some frame didn't contain the instance
|
147 |
+
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
|
148 |
+
valid.append(0)
|
149 |
+
obj_mask = torch.from_numpy(obj_mask)
|
150 |
+
|
151 |
+
# append
|
152 |
+
masks.append(obj_mask)
|
153 |
+
boxes.append(box)
|
154 |
+
|
155 |
+
|
156 |
+
# transform
|
157 |
+
w, h = img.size
|
158 |
+
boxes = torch.stack(boxes, dim=0)
|
159 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
160 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
161 |
+
masks = torch.stack(masks, dim=0)
|
162 |
+
target = {
|
163 |
+
'frames_idx': sample_indx, # [T,]
|
164 |
+
'boxes': boxes, # [T, 4], xyxy
|
165 |
+
'masks': masks, # [T, H, W]
|
166 |
+
'valid': torch.tensor(valid), # [T,]
|
167 |
+
'obj_ids' : list(obj_id_cat.keys()),
|
168 |
+
'orig_size': torch.as_tensor([int(h), int(w)]),
|
169 |
+
'size': torch.as_tensor([int(h), int(w)])
|
170 |
+
}
|
171 |
+
|
172 |
+
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
|
173 |
+
if self._transforms:
|
174 |
+
imgs, target = self._transforms(imgs, target)
|
175 |
+
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
|
176 |
+
else:
|
177 |
+
imgs = np.array(imgs)
|
178 |
+
imgs = torch.tensor(imgs.transpose(0, 3, 1, 2))
|
179 |
+
|
180 |
+
|
181 |
+
# FIXME: handle "valid", since some box may be removed due to random crop
|
182 |
+
if torch.any(target['valid'] == 1): # at leatst one instance
|
183 |
+
instance_check = True
|
184 |
+
else:
|
185 |
+
idx = random.randint(0, self.__len__() - 1)
|
186 |
+
|
187 |
+
return imgs, target
|
188 |
+
|
189 |
+
|
190 |
+
def make_coco_transforms(image_set, max_size=640):
|
191 |
+
normalize = T.Compose([
|
192 |
+
T.ToTensor(),
|
193 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
194 |
+
])
|
195 |
+
|
196 |
+
scales = [288, 320, 352, 392, 416, 448, 480, 512]
|
197 |
+
|
198 |
+
if image_set == 'train':
|
199 |
+
return T.Compose([
|
200 |
+
T.RandomHorizontalFlip(),
|
201 |
+
T.PhotometricDistort(),
|
202 |
+
T.RandomSelect(
|
203 |
+
T.Compose([
|
204 |
+
T.RandomResize(scales, max_size=max_size),
|
205 |
+
T.Check(),
|
206 |
+
]),
|
207 |
+
T.Compose([
|
208 |
+
T.RandomResize([400, 500, 600]),
|
209 |
+
T.RandomSizeCrop(384, 600),
|
210 |
+
T.RandomResize(scales, max_size=max_size),
|
211 |
+
T.Check(),
|
212 |
+
])
|
213 |
+
),
|
214 |
+
normalize,
|
215 |
+
])
|
216 |
+
|
217 |
+
# we do not use the 'val' set since the annotations are inaccessible
|
218 |
+
if image_set == 'val':
|
219 |
+
return T.Compose([
|
220 |
+
T.RandomResize([360], max_size=640),
|
221 |
+
normalize,
|
222 |
+
])
|
223 |
+
|
224 |
+
raise ValueError(f'unknown {image_set}')
|
225 |
+
|
226 |
+
|
227 |
+
def build(image_set, args):
|
228 |
+
root = Path(args.ytvos_path)
|
229 |
+
assert root.exists(), f'provided YTVOS path {root} does not exist'
|
230 |
+
PATHS = {
|
231 |
+
"train": (root / "train", root / "meta_expressions" / "train" / "meta_expressions.json"),
|
232 |
+
"val": (root / "valid", root / "meta_expressions" / "valid" / "meta_expressions.json"), # not used actually
|
233 |
+
}
|
234 |
+
img_folder, ann_file = PATHS[image_set]
|
235 |
+
# dataset = YTVOSDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size), return_masks=args.masks,
|
236 |
+
# num_frames=args.num_frames, max_skip=args.max_skip)
|
237 |
+
dataset = YTVOSDataset(img_folder, ann_file, transforms=None, return_masks=args.masks,
|
238 |
+
num_frames=args.num_frames, max_skip=args.max_skip)
|
239 |
+
return dataset
|
240 |
+
|
.history/datasets/ytvos_ref_20250116073540.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Ref-YoutubeVOS data loader
|
3 |
+
"""
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.autograd.grad_mode import F
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
import datasets.transforms_video as T
|
10 |
+
|
11 |
+
import os
|
12 |
+
from PIL import Image
|
13 |
+
import json
|
14 |
+
import numpy as np
|
15 |
+
import random
|
16 |
+
|
17 |
+
from datasets.categories import ytvos_category_dict as category_dict
|
18 |
+
|
19 |
+
|
20 |
+
class YTVOSDataset(Dataset):
|
21 |
+
"""
|
22 |
+
A dataset class for the Refer-Youtube-VOS dataset which was first introduced in the paper:
|
23 |
+
"URVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmark"
|
24 |
+
(see https://link.springer.com/content/pdf/10.1007/978-3-030-58555-6_13.pdf).
|
25 |
+
The original release of the dataset contained both 'first-frame' and 'full-video' expressions. However, the first
|
26 |
+
dataset is not publicly available anymore as now only the harder 'full-video' subset is available to download
|
27 |
+
through the Youtube-VOS referring video object segmentation competition page at:
|
28 |
+
https://competitions.codalab.org/competitions/29139
|
29 |
+
Furthermore, for the competition the subset's original validation set, which consists of 507 videos, was split into
|
30 |
+
two competition 'validation' & 'test' subsets, consisting of 202 and 305 videos respectively. Evaluation can
|
31 |
+
currently only be done on the competition 'validation' subset using the competition's server, as
|
32 |
+
annotations were publicly released only for the 'train' subset of the competition.
|
33 |
+
|
34 |
+
"""
|
35 |
+
def __init__(self, img_folder: Path, ann_file: Path, transforms, return_masks: bool,
|
36 |
+
num_frames: int, max_skip: int):
|
37 |
+
self.img_folder = img_folder
|
38 |
+
self.ann_file = ann_file
|
39 |
+
self._transforms = transforms
|
40 |
+
self.return_masks = return_masks # not used
|
41 |
+
self.num_frames = num_frames
|
42 |
+
self.max_skip = max_skip
|
43 |
+
# create video meta data
|
44 |
+
self.prepare_metas()
|
45 |
+
|
46 |
+
print('\n video num: ', len(self.videos), ' clip num: ', len(self.metas))
|
47 |
+
print('\n')
|
48 |
+
|
49 |
+
def prepare_metas(self):
|
50 |
+
# read object information
|
51 |
+
with open(os.path.join(str(self.img_folder), 'meta.json'), 'r') as f:
|
52 |
+
subset_metas_by_video = json.load(f)['videos']
|
53 |
+
|
54 |
+
# read expression data
|
55 |
+
with open(str(self.ann_file), 'r') as f:
|
56 |
+
subset_expressions_by_video = json.load(f)['videos']
|
57 |
+
self.videos = list(subset_expressions_by_video.keys())
|
58 |
+
|
59 |
+
self.metas = []
|
60 |
+
skip_vid_count = 0
|
61 |
+
|
62 |
+
for vid in self.videos:
|
63 |
+
vid_meta = subset_metas_by_video[vid]
|
64 |
+
vid_data = subset_expressions_by_video[vid]
|
65 |
+
vid_frames = sorted(vid_data['frames'])
|
66 |
+
vid_len = len(vid_frames)
|
67 |
+
|
68 |
+
if vid_len < 11:
|
69 |
+
#print(f"Too short video: {vid} with frame length {vid_len}")
|
70 |
+
skip_vid_count += 1
|
71 |
+
continue
|
72 |
+
|
73 |
+
|
74 |
+
# Exclude start_idx (0, 1) and end_idx (vid_len-1, vid_len-2)
|
75 |
+
start_idx , end_idx = 2, vid_len-2
|
76 |
+
bin_size = (end_idx - start_idx) // 4
|
77 |
+
|
78 |
+
bins = []
|
79 |
+
for i in range(4):
|
80 |
+
bin_start = start_idx + i * bin_size
|
81 |
+
bin_end = bin_start + bin_size if i < 3 else end_idx
|
82 |
+
|
83 |
+
bins.append((bin_start, bin_end))
|
84 |
+
|
85 |
+
# Random sample one frame from each bin
|
86 |
+
sample_indx = []
|
87 |
+
for start_idx, end_idx in bins:
|
88 |
+
sample_indx.append(random.randint(start_idx, end_idx - 1))
|
89 |
+
sample_indx.sort() # Ensure indices are in order
|
90 |
+
|
91 |
+
|
92 |
+
meta = {
|
93 |
+
'video':vid,
|
94 |
+
'sample_indx':sample_indx,
|
95 |
+
'bins':bins,
|
96 |
+
'frames':vid_frames
|
97 |
+
}
|
98 |
+
obj_id_cat = {}
|
99 |
+
for exp_id, exp_dict in vid_data['expressions'].items():
|
100 |
+
obj_id = exp_dict['obj_id']
|
101 |
+
if obj_id not in obj_id_cat:
|
102 |
+
obj_id_cat[obj_id] = vid_meta['objects'][obj_id]['category']
|
103 |
+
meta['obj_id_cat'] = obj_id_cat
|
104 |
+
self.metas.append(meta)
|
105 |
+
|
106 |
+
print(f"skipped {skip_vid_count} short videos")
|
107 |
+
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def bounding_box(img):
|
111 |
+
rows = np.any(img, axis=1)
|
112 |
+
cols = np.any(img, axis=0)
|
113 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
114 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
115 |
+
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
|
116 |
+
|
117 |
+
def __len__(self):
|
118 |
+
return len(self.metas)
|
119 |
+
|
120 |
+
def __getitem__(self, idx):
|
121 |
+
meta = self.metas[idx] # dict
|
122 |
+
|
123 |
+
video, sample_indx, bins, frames, obj_id_cat = \
|
124 |
+
meta['video'], meta['sample_indx'], meta['bins'], meta['frames'], meta['obj_id_cat']
|
125 |
+
|
126 |
+
# read frames and masks
|
127 |
+
imgs, labels, boxes, masks, valid = [], [], [], [], []
|
128 |
+
for frame_indx in sample_indx:
|
129 |
+
frame_name = frames[frame_indx]
|
130 |
+
img_path = os.path.join(str(self.img_folder), 'JPEGImages', video, frame_name + '.jpg')
|
131 |
+
mask_path = os.path.join(str(self.img_folder), 'Annotations', video, frame_name + '.png')
|
132 |
+
img = Image.open(img_path).convert('RGB')
|
133 |
+
imgs.append(img)
|
134 |
+
|
135 |
+
mask = Image.open(mask_path).convert('P')
|
136 |
+
mask = np.array(mask)
|
137 |
+
|
138 |
+
# create the target
|
139 |
+
for obj_id in list(obj_id_cat.keys()):
|
140 |
+
obj_mask = (mask==obj_id).astype(np.float32) # 0,1 binary
|
141 |
+
if (obj_mask > 0).any():
|
142 |
+
y1, y2, x1, x2 = self.bounding_box(mask)
|
143 |
+
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
|
144 |
+
valid.append(1)
|
145 |
+
else: # some frame didn't contain the instance
|
146 |
+
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
|
147 |
+
valid.append(0)
|
148 |
+
obj_mask = torch.from_numpy(obj_mask)
|
149 |
+
|
150 |
+
# append
|
151 |
+
masks.append(obj_mask)
|
152 |
+
boxes.append(box)
|
153 |
+
|
154 |
+
|
155 |
+
# transform
|
156 |
+
w, h = img.size
|
157 |
+
boxes = torch.stack(boxes, dim=0)
|
158 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
159 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
160 |
+
masks = torch.stack(masks, dim=0)
|
161 |
+
target = {
|
162 |
+
'frames_idx': sample_indx, # [T,]
|
163 |
+
'boxes': boxes, # [T, 4], xyxy
|
164 |
+
'masks': masks, # [T, H, W]
|
165 |
+
'valid': torch.tensor(valid), # [T,]
|
166 |
+
'obj_ids' : list(obj_id_cat.keys()),
|
167 |
+
'orig_size': torch.as_tensor([int(h), int(w)]),
|
168 |
+
'size': torch.as_tensor([int(h), int(w)])
|
169 |
+
}
|
170 |
+
|
171 |
+
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
|
172 |
+
if self._transforms:
|
173 |
+
imgs, target = self._transforms(imgs, target)
|
174 |
+
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
|
175 |
+
else:
|
176 |
+
imgs = np.array(imgs)
|
177 |
+
imgs = torch.tensor(imgs.transpose(0, 3, 1, 2))
|
178 |
+
|
179 |
+
|
180 |
+
# # FIXME: handle "valid", since some box may be removed due to random crop
|
181 |
+
# if torch.any(target['valid'] == 1): # at leatst one instance
|
182 |
+
# instance_check = True
|
183 |
+
# else:
|
184 |
+
# idx = random.randint(0, self.__len__() - 1)
|
185 |
+
|
186 |
+
return imgs, target
|
187 |
+
|
188 |
+
|
189 |
+
def make_coco_transforms(image_set, max_size=640):
|
190 |
+
normalize = T.Compose([
|
191 |
+
T.ToTensor(),
|
192 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
193 |
+
])
|
194 |
+
|
195 |
+
scales = [288, 320, 352, 392, 416, 448, 480, 512]
|
196 |
+
|
197 |
+
if image_set == 'train':
|
198 |
+
return T.Compose([
|
199 |
+
T.RandomHorizontalFlip(),
|
200 |
+
T.PhotometricDistort(),
|
201 |
+
T.RandomSelect(
|
202 |
+
T.Compose([
|
203 |
+
T.RandomResize(scales, max_size=max_size),
|
204 |
+
T.Check(),
|
205 |
+
]),
|
206 |
+
T.Compose([
|
207 |
+
T.RandomResize([400, 500, 600]),
|
208 |
+
T.RandomSizeCrop(384, 600),
|
209 |
+
T.RandomResize(scales, max_size=max_size),
|
210 |
+
T.Check(),
|
211 |
+
])
|
212 |
+
),
|
213 |
+
normalize,
|
214 |
+
])
|
215 |
+
|
216 |
+
# we do not use the 'val' set since the annotations are inaccessible
|
217 |
+
if image_set == 'val':
|
218 |
+
return T.Compose([
|
219 |
+
T.RandomResize([360], max_size=640),
|
220 |
+
normalize,
|
221 |
+
])
|
222 |
+
|
223 |
+
raise ValueError(f'unknown {image_set}')
|
224 |
+
|
225 |
+
|
226 |
+
def build(image_set, args):
|
227 |
+
root = Path(args.ytvos_path)
|
228 |
+
assert root.exists(), f'provided YTVOS path {root} does not exist'
|
229 |
+
PATHS = {
|
230 |
+
"train": (root / "train", root / "meta_expressions" / "train" / "meta_expressions.json"),
|
231 |
+
"val": (root / "valid", root / "meta_expressions" / "valid" / "meta_expressions.json"), # not used actually
|
232 |
+
}
|
233 |
+
img_folder, ann_file = PATHS[image_set]
|
234 |
+
# dataset = YTVOSDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size), return_masks=args.masks,
|
235 |
+
# num_frames=args.num_frames, max_skip=args.max_skip)
|
236 |
+
dataset = YTVOSDataset(img_folder, ann_file, transforms=None, return_masks=args.masks,
|
237 |
+
num_frames=args.num_frames, max_skip=args.max_skip)
|
238 |
+
return dataset
|
239 |
+
|
.history/datasets/ytvos_ref_20250116073706.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Ref-YoutubeVOS data loader
|
3 |
+
"""
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.autograd.grad_mode import F
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
import datasets.transforms_video as T
|
10 |
+
|
11 |
+
import os
|
12 |
+
from PIL import Image
|
13 |
+
import json
|
14 |
+
import numpy as np
|
15 |
+
import random
|
16 |
+
|
17 |
+
from datasets.categories import ytvos_category_dict as category_dict
|
18 |
+
|
19 |
+
|
20 |
+
class YTVOSDataset(Dataset):
|
21 |
+
"""
|
22 |
+
A dataset class for the Refer-Youtube-VOS dataset which was first introduced in the paper:
|
23 |
+
"URVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmark"
|
24 |
+
(see https://link.springer.com/content/pdf/10.1007/978-3-030-58555-6_13.pdf).
|
25 |
+
The original release of the dataset contained both 'first-frame' and 'full-video' expressions. However, the first
|
26 |
+
dataset is not publicly available anymore as now only the harder 'full-video' subset is available to download
|
27 |
+
through the Youtube-VOS referring video object segmentation competition page at:
|
28 |
+
https://competitions.codalab.org/competitions/29139
|
29 |
+
Furthermore, for the competition the subset's original validation set, which consists of 507 videos, was split into
|
30 |
+
two competition 'validation' & 'test' subsets, consisting of 202 and 305 videos respectively. Evaluation can
|
31 |
+
currently only be done on the competition 'validation' subset using the competition's server, as
|
32 |
+
annotations were publicly released only for the 'train' subset of the competition.
|
33 |
+
|
34 |
+
"""
|
35 |
+
def __init__(self, img_folder: Path, ann_file: Path, transforms, return_masks: bool,
|
36 |
+
num_frames: int, max_skip: int):
|
37 |
+
self.img_folder = img_folder
|
38 |
+
self.ann_file = ann_file
|
39 |
+
self._transforms = transforms
|
40 |
+
self.return_masks = return_masks # not used
|
41 |
+
self.num_frames = num_frames
|
42 |
+
self.max_skip = max_skip
|
43 |
+
# create video meta data
|
44 |
+
self.prepare_metas()
|
45 |
+
|
46 |
+
print('\n video num: ', len(self.videos), ' clip num: ', len(self.metas))
|
47 |
+
print('\n')
|
48 |
+
|
49 |
+
def prepare_metas(self):
|
50 |
+
# read object information
|
51 |
+
with open(os.path.join(str(self.img_folder), 'meta.json'), 'r') as f:
|
52 |
+
subset_metas_by_video = json.load(f)['videos']
|
53 |
+
|
54 |
+
# read expression data
|
55 |
+
with open(str(self.ann_file), 'r') as f:
|
56 |
+
subset_expressions_by_video = json.load(f)['videos']
|
57 |
+
self.videos = list(subset_expressions_by_video.keys())
|
58 |
+
|
59 |
+
self.metas = []
|
60 |
+
skip_vid_count = 0
|
61 |
+
|
62 |
+
for vid in self.videos:
|
63 |
+
vid_meta = subset_metas_by_video[vid]
|
64 |
+
vid_data = subset_expressions_by_video[vid]
|
65 |
+
vid_frames = sorted(vid_data['frames'])
|
66 |
+
vid_len = len(vid_frames)
|
67 |
+
|
68 |
+
if vid_len < 11:
|
69 |
+
#print(f"Too short video: {vid} with frame length {vid_len}")
|
70 |
+
skip_vid_count += 1
|
71 |
+
continue
|
72 |
+
|
73 |
+
|
74 |
+
# Exclude start_idx (0, 1) and end_idx (vid_len-1, vid_len-2)
|
75 |
+
start_idx , end_idx = 2, vid_len-2
|
76 |
+
bin_size = (end_idx - start_idx) // 4
|
77 |
+
|
78 |
+
bins = []
|
79 |
+
for i in range(4):
|
80 |
+
bin_start = start_idx + i * bin_size
|
81 |
+
bin_end = bin_start + bin_size if i < 3 else end_idx
|
82 |
+
|
83 |
+
bins.append((bin_start, bin_end))
|
84 |
+
|
85 |
+
# Random sample one frame from each bin
|
86 |
+
sample_indx = []
|
87 |
+
for start_idx, end_idx in bins:
|
88 |
+
sample_indx.append(random.randint(start_idx, end_idx - 1))
|
89 |
+
sample_indx.sort() # Ensure indices are in order
|
90 |
+
|
91 |
+
|
92 |
+
meta = {
|
93 |
+
'video':vid,
|
94 |
+
'sample_indx':sample_indx,
|
95 |
+
'bins':bins,
|
96 |
+
'frames':vid_frames
|
97 |
+
}
|
98 |
+
obj_id_cat = {}
|
99 |
+
for exp_id, exp_dict in vid_data['expressions'].items():
|
100 |
+
obj_id = exp_dict['obj_id']
|
101 |
+
if obj_id not in obj_id_cat:
|
102 |
+
obj_id_cat[obj_id] = vid_meta['objects'][obj_id]['category']
|
103 |
+
meta['obj_id_cat'] = obj_id_cat
|
104 |
+
self.metas.append(meta)
|
105 |
+
|
106 |
+
print(f"skipped {skip_vid_count} short videos")
|
107 |
+
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def bounding_box(img):
|
111 |
+
rows = np.any(img, axis=1)
|
112 |
+
cols = np.any(img, axis=0)
|
113 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
114 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
115 |
+
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
|
116 |
+
|
117 |
+
def __len__(self):
|
118 |
+
return len(self.metas)
|
119 |
+
|
120 |
+
def __getitem__(self, idx):
|
121 |
+
meta = self.metas[idx] # dict
|
122 |
+
|
123 |
+
video, sample_indx, bins, frames, obj_id_cat = \
|
124 |
+
meta['video'], meta['sample_indx'], meta['bins'], meta['frames'], meta['obj_id_cat']
|
125 |
+
|
126 |
+
# read frames and masks
|
127 |
+
imgs, labels, boxes, masks, valid = [], [], [], [], []
|
128 |
+
for frame_indx in sample_indx:
|
129 |
+
frame_name = frames[frame_indx]
|
130 |
+
img_path = os.path.join(str(self.img_folder), 'JPEGImages', video, frame_name + '.jpg')
|
131 |
+
mask_path = os.path.join(str(self.img_folder), 'Annotations', video, frame_name + '.png')
|
132 |
+
img = Image.open(img_path).convert('RGB')
|
133 |
+
imgs.append(img)
|
134 |
+
|
135 |
+
mask = Image.open(mask_path).convert('P')
|
136 |
+
mask = np.array(mask)
|
137 |
+
print(np.unique(mask))
|
138 |
+
|
139 |
+
# create the target
|
140 |
+
for obj_id in list(obj_id_cat.keys()):
|
141 |
+
obj_mask = (mask==obj_id).astype(np.float32) # 0,1 binary
|
142 |
+
if (obj_mask > 0).any():
|
143 |
+
y1, y2, x1, x2 = self.bounding_box(mask)
|
144 |
+
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
|
145 |
+
valid.append(1)
|
146 |
+
else: # some frame didn't contain the instance
|
147 |
+
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
|
148 |
+
valid.append(0)
|
149 |
+
obj_mask = torch.from_numpy(obj_mask)
|
150 |
+
|
151 |
+
# append
|
152 |
+
masks.append(obj_mask)
|
153 |
+
boxes.append(box)
|
154 |
+
|
155 |
+
|
156 |
+
# transform
|
157 |
+
w, h = img.size
|
158 |
+
boxes = torch.stack(boxes, dim=0)
|
159 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
160 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
161 |
+
masks = torch.stack(masks, dim=0)
|
162 |
+
target = {
|
163 |
+
'frames_idx': sample_indx, # [T,]
|
164 |
+
'boxes': boxes, # [T, 4], xyxy
|
165 |
+
'masks': masks, # [T, H, W]
|
166 |
+
'valid': torch.tensor(valid), # [T,]
|
167 |
+
'obj_ids' : list(obj_id_cat.keys()),
|
168 |
+
'orig_size': torch.as_tensor([int(h), int(w)]),
|
169 |
+
'size': torch.as_tensor([int(h), int(w)])
|
170 |
+
}
|
171 |
+
|
172 |
+
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
|
173 |
+
if self._transforms:
|
174 |
+
imgs, target = self._transforms(imgs, target)
|
175 |
+
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
|
176 |
+
else:
|
177 |
+
imgs = np.array(imgs)
|
178 |
+
imgs = torch.tensor(imgs.transpose(0, 3, 1, 2))
|
179 |
+
|
180 |
+
|
181 |
+
# # FIXME: handle "valid", since some box may be removed due to random crop
|
182 |
+
# if torch.any(target['valid'] == 1): # at leatst one instance
|
183 |
+
# instance_check = True
|
184 |
+
# else:
|
185 |
+
# idx = random.randint(0, self.__len__() - 1)
|
186 |
+
|
187 |
+
return imgs, target
|
188 |
+
|
189 |
+
|
190 |
+
def make_coco_transforms(image_set, max_size=640):
|
191 |
+
normalize = T.Compose([
|
192 |
+
T.ToTensor(),
|
193 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
194 |
+
])
|
195 |
+
|
196 |
+
scales = [288, 320, 352, 392, 416, 448, 480, 512]
|
197 |
+
|
198 |
+
if image_set == 'train':
|
199 |
+
return T.Compose([
|
200 |
+
T.RandomHorizontalFlip(),
|
201 |
+
T.PhotometricDistort(),
|
202 |
+
T.RandomSelect(
|
203 |
+
T.Compose([
|
204 |
+
T.RandomResize(scales, max_size=max_size),
|
205 |
+
T.Check(),
|
206 |
+
]),
|
207 |
+
T.Compose([
|
208 |
+
T.RandomResize([400, 500, 600]),
|
209 |
+
T.RandomSizeCrop(384, 600),
|
210 |
+
T.RandomResize(scales, max_size=max_size),
|
211 |
+
T.Check(),
|
212 |
+
])
|
213 |
+
),
|
214 |
+
normalize,
|
215 |
+
])
|
216 |
+
|
217 |
+
# we do not use the 'val' set since the annotations are inaccessible
|
218 |
+
if image_set == 'val':
|
219 |
+
return T.Compose([
|
220 |
+
T.RandomResize([360], max_size=640),
|
221 |
+
normalize,
|
222 |
+
])
|
223 |
+
|
224 |
+
raise ValueError(f'unknown {image_set}')
|
225 |
+
|
226 |
+
|
227 |
+
def build(image_set, args):
|
228 |
+
root = Path(args.ytvos_path)
|
229 |
+
assert root.exists(), f'provided YTVOS path {root} does not exist'
|
230 |
+
PATHS = {
|
231 |
+
"train": (root / "train", root / "meta_expressions" / "train" / "meta_expressions.json"),
|
232 |
+
"val": (root / "valid", root / "meta_expressions" / "valid" / "meta_expressions.json"), # not used actually
|
233 |
+
}
|
234 |
+
img_folder, ann_file = PATHS[image_set]
|
235 |
+
# dataset = YTVOSDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size), return_masks=args.masks,
|
236 |
+
# num_frames=args.num_frames, max_skip=args.max_skip)
|
237 |
+
dataset = YTVOSDataset(img_folder, ann_file, transforms=None, return_masks=args.masks,
|
238 |
+
num_frames=args.num_frames, max_skip=args.max_skip)
|
239 |
+
return dataset
|
240 |
+
|
.history/datasets/ytvos_ref_20250116073858.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Ref-YoutubeVOS data loader
|
3 |
+
"""
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.autograd.grad_mode import F
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
import datasets.transforms_video as T
|
10 |
+
|
11 |
+
import os
|
12 |
+
from PIL import Image
|
13 |
+
import json
|
14 |
+
import numpy as np
|
15 |
+
import random
|
16 |
+
|
17 |
+
from datasets.categories import ytvos_category_dict as category_dict
|
18 |
+
|
19 |
+
|
20 |
+
class YTVOSDataset(Dataset):
|
21 |
+
"""
|
22 |
+
A dataset class for the Refer-Youtube-VOS dataset which was first introduced in the paper:
|
23 |
+
"URVOS: Unified Referring Video Object Segmentation Network with a Large-Scale Benchmark"
|
24 |
+
(see https://link.springer.com/content/pdf/10.1007/978-3-030-58555-6_13.pdf).
|
25 |
+
The original release of the dataset contained both 'first-frame' and 'full-video' expressions. However, the first
|
26 |
+
dataset is not publicly available anymore as now only the harder 'full-video' subset is available to download
|
27 |
+
through the Youtube-VOS referring video object segmentation competition page at:
|
28 |
+
https://competitions.codalab.org/competitions/29139
|
29 |
+
Furthermore, for the competition the subset's original validation set, which consists of 507 videos, was split into
|
30 |
+
two competition 'validation' & 'test' subsets, consisting of 202 and 305 videos respectively. Evaluation can
|
31 |
+
currently only be done on the competition 'validation' subset using the competition's server, as
|
32 |
+
annotations were publicly released only for the 'train' subset of the competition.
|
33 |
+
|
34 |
+
"""
|
35 |
+
def __init__(self, img_folder: Path, ann_file: Path, transforms, return_masks: bool,
|
36 |
+
num_frames: int, max_skip: int):
|
37 |
+
self.img_folder = img_folder
|
38 |
+
self.ann_file = ann_file
|
39 |
+
self._transforms = transforms
|
40 |
+
self.return_masks = return_masks # not used
|
41 |
+
self.num_frames = num_frames
|
42 |
+
self.max_skip = max_skip
|
43 |
+
# create video meta data
|
44 |
+
self.prepare_metas()
|
45 |
+
|
46 |
+
print('\n video num: ', len(self.videos), ' clip num: ', len(self.metas))
|
47 |
+
print('\n')
|
48 |
+
|
49 |
+
def prepare_metas(self):
|
50 |
+
# read object information
|
51 |
+
with open(os.path.join(str(self.img_folder), 'meta.json'), 'r') as f:
|
52 |
+
subset_metas_by_video = json.load(f)['videos']
|
53 |
+
|
54 |
+
# read expression data
|
55 |
+
with open(str(self.ann_file), 'r') as f:
|
56 |
+
subset_expressions_by_video = json.load(f)['videos']
|
57 |
+
self.videos = list(subset_expressions_by_video.keys())
|
58 |
+
|
59 |
+
self.metas = []
|
60 |
+
skip_vid_count = 0
|
61 |
+
|
62 |
+
for vid in self.videos:
|
63 |
+
vid_meta = subset_metas_by_video[vid]
|
64 |
+
vid_data = subset_expressions_by_video[vid]
|
65 |
+
vid_frames = sorted(vid_data['frames'])
|
66 |
+
vid_len = len(vid_frames)
|
67 |
+
|
68 |
+
if vid_len < 11:
|
69 |
+
#print(f"Too short video: {vid} with frame length {vid_len}")
|
70 |
+
skip_vid_count += 1
|
71 |
+
continue
|
72 |
+
|
73 |
+
|
74 |
+
# Exclude start_idx (0, 1) and end_idx (vid_len-1, vid_len-2)
|
75 |
+
start_idx , end_idx = 2, vid_len-2
|
76 |
+
bin_size = (end_idx - start_idx) // 4
|
77 |
+
|
78 |
+
bins = []
|
79 |
+
for i in range(4):
|
80 |
+
bin_start = start_idx + i * bin_size
|
81 |
+
bin_end = bin_start + bin_size if i < 3 else end_idx
|
82 |
+
|
83 |
+
bins.append((bin_start, bin_end))
|
84 |
+
|
85 |
+
# Random sample one frame from each bin
|
86 |
+
sample_indx = []
|
87 |
+
for start_idx, end_idx in bins:
|
88 |
+
sample_indx.append(random.randint(start_idx, end_idx - 1))
|
89 |
+
sample_indx.sort() # Ensure indices are in order
|
90 |
+
|
91 |
+
|
92 |
+
meta = {
|
93 |
+
'video':vid,
|
94 |
+
'sample_indx':sample_indx,
|
95 |
+
'bins':bins,
|
96 |
+
'frames':vid_frames
|
97 |
+
}
|
98 |
+
obj_id_cat = {}
|
99 |
+
for exp_id, exp_dict in vid_data['expressions'].items():
|
100 |
+
obj_id = exp_dict['obj_id']
|
101 |
+
if obj_id not in obj_id_cat:
|
102 |
+
obj_id_cat[obj_id] = vid_meta['objects'][obj_id]['category']
|
103 |
+
meta['obj_id_cat'] = obj_id_cat
|
104 |
+
self.metas.append(meta)
|
105 |
+
|
106 |
+
print(f"skipped {skip_vid_count} short videos")
|
107 |
+
|
108 |
+
|
109 |
+
@staticmethod
|
110 |
+
def bounding_box(img):
|
111 |
+
rows = np.any(img, axis=1)
|
112 |
+
cols = np.any(img, axis=0)
|
113 |
+
rmin, rmax = np.where(rows)[0][[0, -1]]
|
114 |
+
cmin, cmax = np.where(cols)[0][[0, -1]]
|
115 |
+
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
|
116 |
+
|
117 |
+
def __len__(self):
|
118 |
+
return len(self.metas)
|
119 |
+
|
120 |
+
def __getitem__(self, idx):
|
121 |
+
meta = self.metas[idx] # dict
|
122 |
+
|
123 |
+
video, sample_indx, bins, frames, obj_id_cat = \
|
124 |
+
meta['video'], meta['sample_indx'], meta['bins'], meta['frames'], meta['obj_id_cat']
|
125 |
+
|
126 |
+
# read frames and masks
|
127 |
+
imgs, labels, boxes, masks, valid = [], [], [], [], []
|
128 |
+
for frame_indx in sample_indx:
|
129 |
+
frame_name = frames[frame_indx]
|
130 |
+
img_path = os.path.join(str(self.img_folder), 'JPEGImages', video, frame_name + '.jpg')
|
131 |
+
mask_path = os.path.join(str(self.img_folder), 'Annotations', video, frame_name + '.png')
|
132 |
+
img = Image.open(img_path).convert('RGB')
|
133 |
+
imgs.append(img)
|
134 |
+
|
135 |
+
mask = Image.open(mask_path).convert('P')
|
136 |
+
mask = np.array(mask)
|
137 |
+
|
138 |
+
# create the target
|
139 |
+
for obj_id in list(obj_id_cat.keys()):
|
140 |
+
obj_mask = (mask==int(obj_id)).astype(np.float32) # 0,1 binary
|
141 |
+
if (obj_mask > 0).any():
|
142 |
+
y1, y2, x1, x2 = self.bounding_box(mask)
|
143 |
+
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
|
144 |
+
valid.append(1)
|
145 |
+
else: # some frame didn't contain the instance
|
146 |
+
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
|
147 |
+
valid.append(0)
|
148 |
+
obj_mask = torch.from_numpy(obj_mask)
|
149 |
+
|
150 |
+
# append
|
151 |
+
masks.append(obj_mask)
|
152 |
+
boxes.append(box)
|
153 |
+
|
154 |
+
|
155 |
+
# transform
|
156 |
+
w, h = img.size
|
157 |
+
boxes = torch.stack(boxes, dim=0)
|
158 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
159 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
160 |
+
masks = torch.stack(masks, dim=0)
|
161 |
+
target = {
|
162 |
+
'frames_idx': sample_indx, # [T,]
|
163 |
+
'boxes': boxes, # [T, 4], xyxy
|
164 |
+
'masks': masks, # [T, H, W]
|
165 |
+
'valid': torch.tensor(valid), # [T,]
|
166 |
+
'obj_ids' : list(obj_id_cat.keys()),
|
167 |
+
'orig_size': torch.as_tensor([int(h), int(w)]),
|
168 |
+
'size': torch.as_tensor([int(h), int(w)])
|
169 |
+
}
|
170 |
+
|
171 |
+
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
|
172 |
+
if self._transforms:
|
173 |
+
imgs, target = self._transforms(imgs, target)
|
174 |
+
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
|
175 |
+
else:
|
176 |
+
imgs = np.array(imgs)
|
177 |
+
imgs = torch.tensor(imgs.transpose(0, 3, 1, 2))
|
178 |
+
|
179 |
+
|
180 |
+
# # FIXME: handle "valid", since some box may be removed due to random crop
|
181 |
+
# if torch.any(target['valid'] == 1): # at leatst one instance
|
182 |
+
# instance_check = True
|
183 |
+
# else:
|
184 |
+
# idx = random.randint(0, self.__len__() - 1)
|
185 |
+
|
186 |
+
return imgs, target
|
187 |
+
|
188 |
+
|
189 |
+
def make_coco_transforms(image_set, max_size=640):
|
190 |
+
normalize = T.Compose([
|
191 |
+
T.ToTensor(),
|
192 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
193 |
+
])
|
194 |
+
|
195 |
+
scales = [288, 320, 352, 392, 416, 448, 480, 512]
|
196 |
+
|
197 |
+
if image_set == 'train':
|
198 |
+
return T.Compose([
|
199 |
+
T.RandomHorizontalFlip(),
|
200 |
+
T.PhotometricDistort(),
|
201 |
+
T.RandomSelect(
|
202 |
+
T.Compose([
|
203 |
+
T.RandomResize(scales, max_size=max_size),
|
204 |
+
T.Check(),
|
205 |
+
]),
|
206 |
+
T.Compose([
|
207 |
+
T.RandomResize([400, 500, 600]),
|
208 |
+
T.RandomSizeCrop(384, 600),
|
209 |
+
T.RandomResize(scales, max_size=max_size),
|
210 |
+
T.Check(),
|
211 |
+
])
|
212 |
+
),
|
213 |
+
normalize,
|
214 |
+
])
|
215 |
+
|
216 |
+
# we do not use the 'val' set since the annotations are inaccessible
|
217 |
+
if image_set == 'val':
|
218 |
+
return T.Compose([
|
219 |
+
T.RandomResize([360], max_size=640),
|
220 |
+
normalize,
|
221 |
+
])
|
222 |
+
|
223 |
+
raise ValueError(f'unknown {image_set}')
|
224 |
+
|
225 |
+
|
226 |
+
def build(image_set, args):
|
227 |
+
root = Path(args.ytvos_path)
|
228 |
+
assert root.exists(), f'provided YTVOS path {root} does not exist'
|
229 |
+
PATHS = {
|
230 |
+
"train": (root / "train", root / "meta_expressions" / "train" / "meta_expressions.json"),
|
231 |
+
"val": (root / "valid", root / "meta_expressions" / "valid" / "meta_expressions.json"), # not used actually
|
232 |
+
}
|
233 |
+
img_folder, ann_file = PATHS[image_set]
|
234 |
+
# dataset = YTVOSDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size), return_masks=args.masks,
|
235 |
+
# num_frames=args.num_frames, max_skip=args.max_skip)
|
236 |
+
dataset = YTVOSDataset(img_folder, ann_file, transforms=None, return_masks=args.masks,
|
237 |
+
num_frames=args.num_frames, max_skip=args.max_skip)
|
238 |
+
return dataset
|
239 |
+
|
.history/mbench/gpt_ref-ytvos-cy_20250121143328.py
ADDED
File without changes
|
.history/mbench/gpt_ref-ytvos-cy_20250121155631.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from os import path as osp
|
3 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
from mbench.ytvos_ref import build as build_ytvos_ref
|
6 |
+
import argparse
|
7 |
+
import opts
|
8 |
+
|
9 |
+
import sys
|
10 |
+
from pathlib import Path
|
11 |
+
import os
|
12 |
+
from os import path as osp
|
13 |
+
import skimage
|
14 |
+
from io import BytesIO
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import pandas as pd
|
18 |
+
import regex as re
|
19 |
+
import json
|
20 |
+
|
21 |
+
import cv2
|
22 |
+
from PIL import Image, ImageDraw
|
23 |
+
import torch
|
24 |
+
from torchvision.transforms import functional as F
|
25 |
+
|
26 |
+
from skimage import measure # (pip install scikit-image)
|
27 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
28 |
+
|
29 |
+
import matplotlib.pyplot as plt
|
30 |
+
import matplotlib.patches as patches
|
31 |
+
from matplotlib.collections import PatchCollection
|
32 |
+
from matplotlib.patches import Rectangle
|
33 |
+
|
34 |
+
|
35 |
+
import ipywidgets as widgets
|
36 |
+
from IPython.display import display, clear_output
|
37 |
+
|
38 |
+
from openai import OpenAI
|
39 |
+
import base64
|
40 |
+
|
41 |
+
# Function to encode the image
|
42 |
+
def encode_image(image_path):
|
43 |
+
with open(image_path, "rb") as image_file:
|
44 |
+
return base64.b64encode(image_file.read()).decode("utf-8")
|
45 |
+
|
46 |
+
# Captioner
|
47 |
+
ytvos_category_valid_list = [
|
48 |
+
'airplane', 'ape', 'bear', 'bike', 'bird', 'boat', 'bus', 'camel', 'cat', 'cow', 'crocodile',
|
49 |
+
'deer', 'dog', 'dolphin', 'duck', 'eagle', 'earless_seal', 'elephant', 'fish', 'fox', 'frog',
|
50 |
+
'giant_panda', 'giraffe', 'hedgehog', 'horse', 'leopard', 'lion', 'lizard',
|
51 |
+
'monkey', 'motorbike', 'mouse', 'owl', 'parrot', 'penguin', 'person',
|
52 |
+
'rabbit', 'raccoon', 'sedan', 'shark', 'sheep', 'snail', 'snake',
|
53 |
+
'squirrel', 'tiger', 'train', 'truck', 'turtle', 'whale', 'zebra'
|
54 |
+
]
|
55 |
+
def getCaption(video_id, json_data):
|
56 |
+
#데이터 가져오기
|
57 |
+
video_data = json_data[video_id]
|
58 |
+
frame_names = video_data['frame_names']
|
59 |
+
video_path = video_data['video_path']
|
60 |
+
|
61 |
+
cat_names = set()
|
62 |
+
all_captions = dict()
|
63 |
+
for obj_id in list(video_data['annotations'][0].keys()):
|
64 |
+
cat_names.add(video_data['annotations'][0][obj_id]['category_name'])
|
65 |
+
|
66 |
+
# cat_names : person, snowboard
|
67 |
+
# 1. gpt에서 직접 action의 대상이 될 수 있는가 물어보기
|
68 |
+
# 2. ref-youtube-vos 에서 제공하는 카테고리 정보에서 우리가 처리하고 싶은 카테고리 이름만 남긴다
|
69 |
+
|
70 |
+
for cat_name in list(cat_names) :
|
71 |
+
image_paths = [os.path.join(video_path, frame_name + '.jpg') for frame_name in frame_names]
|
72 |
+
image_captions = {}
|
73 |
+
|
74 |
+
captioner = OpenAI()
|
75 |
+
|
76 |
+
#0단계: action의 대상이 될 수 있는가?
|
77 |
+
is_movable = False
|
78 |
+
if cat_name in ytvos_category_valid_list :
|
79 |
+
is_movable = True
|
80 |
+
|
81 |
+
# response_check = captioner.chat.completions.create(
|
82 |
+
# model="gpt-4o",
|
83 |
+
# messages=[
|
84 |
+
# {
|
85 |
+
# "role": "user",
|
86 |
+
# "content": f"""
|
87 |
+
# Can a {cat_name} be a subject of distinct actions or movements?
|
88 |
+
# For example, if {cat_name} is a person, animal, or vehicle, it is likely an action-capable subject.
|
89 |
+
# However, if it is an inanimate object like a snowboard, tree, or book, it cannot independently perform actions.
|
90 |
+
# Respond with YES if {cat_name} can perform distinct actions or movements; otherwise, respond with NONE.
|
91 |
+
# Answer only YES or NONE.
|
92 |
+
# """
|
93 |
+
# }
|
94 |
+
# ],
|
95 |
+
# )
|
96 |
+
# response_check_content = response_check.choices[0].message.content.strip().lower()
|
97 |
+
# print(f"Movable Check for {cat_name}: {response_check_content}")
|
98 |
+
|
99 |
+
# if response_check_content == "yes": is_movable = True
|
100 |
+
|
101 |
+
if not is_movable:
|
102 |
+
print(f"Skipping {cat_name}: Determined to be non-movable.")
|
103 |
+
continue
|
104 |
+
|
105 |
+
for i in range(len(image_paths)):
|
106 |
+
image_path = image_paths[i]
|
107 |
+
frame_name = frame_names[i]
|
108 |
+
base64_image = encode_image(image_path)
|
109 |
+
|
110 |
+
#1단계: 필터링
|
111 |
+
#print(f"-----------category name: {cat_name}, frame name: {frame_name}")
|
112 |
+
response1 = captioner.chat.completions.create(
|
113 |
+
model="chatgpt-4o-latest",
|
114 |
+
messages=[
|
115 |
+
{
|
116 |
+
"role": "user",
|
117 |
+
"content": [
|
118 |
+
{
|
119 |
+
"type": "text",
|
120 |
+
|
121 |
+
"text": f"""Are there multiple {cat_name}s in the image, each performing distinct and recognizable actions?
|
122 |
+
Focus only on clear and prominent actions, avoiding minor or ambiguous ones.
|
123 |
+
Each action should be unique and clearly associated with a specific object.
|
124 |
+
|
125 |
+
Respond with YES if:
|
126 |
+
- The {cat_name}s are people, animals or vehicles, and their actions are distinct and recognizable.
|
127 |
+
- The {cat_name}s involve clear, distinguishable actions performed independently.
|
128 |
+
|
129 |
+
Respond with NONE if:
|
130 |
+
- The {cat_name}s are objects (e.g., snowboard, tree, books) and do not involve direct interaction with a person.
|
131 |
+
- Actions are ambiguous, minor, or not clearly visible.
|
132 |
+
|
133 |
+
If the {cat_name} is 'snowboard' and it is not actively being used or interacted with by a person, output NONE.
|
134 |
+
If the {cat_name} is 'person' and their actions are distinct and clear, output YES.
|
135 |
+
|
136 |
+
Answer only YES or NONE."""
|
137 |
+
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"type": "image_url",
|
141 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
142 |
+
},
|
143 |
+
],
|
144 |
+
}
|
145 |
+
],
|
146 |
+
)
|
147 |
+
response_content = response1.choices[0].message.content
|
148 |
+
should_caption = True if "yes" in response_content.lower() else False
|
149 |
+
#print(f"are {cat_name}s distinguished by action: {response_content}")
|
150 |
+
|
151 |
+
#2단계: dense caption 만들기
|
152 |
+
if should_caption:
|
153 |
+
response2 = captioner.chat.completions.create(
|
154 |
+
model="chatgpt-4o-latest",
|
155 |
+
messages=[
|
156 |
+
{
|
157 |
+
"role": "user",
|
158 |
+
"content": [
|
159 |
+
{
|
160 |
+
"type": "text",
|
161 |
+
|
162 |
+
"text": f"""
|
163 |
+
Generate a detailed action-centric caption describing the actions of the {cat_name}s in the image.
|
164 |
+
1. Focus only on clear, unique, and prominent actions that distinguish each object.
|
165 |
+
2. Avoid describing actions that are too minor, ambiguous, or not visible from the image.
|
166 |
+
3. Avoid subjective terms such as 'skilled', 'controlled', or 'focused'. Only describe observable actions.
|
167 |
+
4. Do not include common-sense or overly general descriptions like 'the elephant walks'.
|
168 |
+
5. Use dynamic action verbs (e.g., holding, throwing, jumping, inspecting) to describe interactions, poses, or movements.
|
169 |
+
6. Avoid overly detailed or speculative descriptions such as 'slightly moving its mouth' or 'appears to be anticipating'.
|
170 |
+
7. Pretend you are observing the scene directly, avoiding phrases like 'it seems' or 'based on the description'.
|
171 |
+
8. Include interactions with objects or other entities when they are prominent and observable.
|
172 |
+
9. If the image contains multiple {cat_name}s, describe the actions of each individually and ensure the descriptions are non-overlapping and specific.
|
173 |
+
Output only the caption.""",
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"type": "image_url",
|
177 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
178 |
+
},
|
179 |
+
],
|
180 |
+
}
|
181 |
+
],
|
182 |
+
)
|
183 |
+
|
184 |
+
caption = response2.choices[0].message.content
|
185 |
+
#print(f"{image_path} - {frame_name}: {caption}")
|
186 |
+
else:
|
187 |
+
caption = None
|
188 |
+
|
189 |
+
image_captions[frame_name] = caption
|
190 |
+
all_captions[cat_name] = image_captions
|
191 |
+
|
192 |
+
# final : also prepare valid object ids
|
193 |
+
valid_obj_ids = []
|
194 |
+
valid_cat_names = list(all_captions.keys())
|
195 |
+
for obj_id in list(video_data['annotations'][0].keys()):
|
196 |
+
cat = video_data['annotations'][0][obj_id]['category_name']
|
197 |
+
if cat in valid_cat_names : valid_obj_ids.append(obj_id)
|
198 |
+
|
199 |
+
return all_captions, valid_obj_ids
|
200 |
+
|
201 |
+
# Referring expression generator and QA filter
|
202 |
+
def getRefExp(video_id, frame_name, caption, obj_id, json_data):
|
203 |
+
|
204 |
+
# 이미지에 해당 물체 바운딩 박스 그리기
|
205 |
+
video_data = json_data[video_id]
|
206 |
+
frame_names = video_data['frame_names']
|
207 |
+
video_path = video_data['video_path']
|
208 |
+
I = skimage.io.imread(osp.join(video_path, frame_name + '.jpg'))
|
209 |
+
frame_indx = frame_names.index(frame_name)
|
210 |
+
obj_data = video_data['annotations'][frame_indx][obj_id]
|
211 |
+
|
212 |
+
bbox = obj_data['bbox']
|
213 |
+
cat_name = obj_data['category_name']
|
214 |
+
valid = obj_data['valid']
|
215 |
+
|
216 |
+
if valid == 0:
|
217 |
+
print("Object not in this frame!")
|
218 |
+
return {}
|
219 |
+
|
220 |
+
|
221 |
+
x_min, y_min, x_max, y_max = bbox
|
222 |
+
x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), int(y_max)
|
223 |
+
cv2.rectangle(I, (x_min, y_min), (x_max, y_max), (225, 0, 0), 2)
|
224 |
+
plt.figure()
|
225 |
+
plt.imshow(I)
|
226 |
+
plt.axis('off')
|
227 |
+
plt.show()
|
228 |
+
|
229 |
+
#cropped object for visibility check
|
230 |
+
cropped_I = I[y_min:y_max, x_min:x_max]
|
231 |
+
pil_cropped_I = Image.fromarray(cropped_I)
|
232 |
+
buff_crop = BytesIO()
|
233 |
+
pil_cropped_I.save(buff_crop, format='JPEG')
|
234 |
+
base64_cropped_I = base64.b64encode(buff_crop.getvalue()).decode("utf-8")
|
235 |
+
|
236 |
+
#entire image for referring expression generation
|
237 |
+
pil_I = Image.fromarray(I)
|
238 |
+
buff = BytesIO()
|
239 |
+
pil_I.save(buff, format='JPEG')
|
240 |
+
base64_I = base64.b64encode(buff.getvalue()).decode("utf-8")
|
241 |
+
|
242 |
+
# 구분 가능 여부 확인
|
243 |
+
generator = OpenAI()
|
244 |
+
response_check = generator.chat.completions.create(
|
245 |
+
model="chatgpt-4o-latest",
|
246 |
+
messages=[
|
247 |
+
{
|
248 |
+
"role": "user",
|
249 |
+
"content": [
|
250 |
+
{
|
251 |
+
|
252 |
+
"type": "text",
|
253 |
+
"text": f"""Can the {cat_name} in the provided cropped image be clearly identified as belonging to the category {cat_name}?
|
254 |
+
Focus on whether the cropped image provides enough visible features (e.g., ears, head shape, fur texture) to confirm that it is a {cat_name}, even if the full body is not visible.
|
255 |
+
|
256 |
+
Guidelines:
|
257 |
+
- If the visible features (like ears, fur texture or head shape) are sufficient to identify the {cat_name}, respond with YES.
|
258 |
+
- If multiple {cat_name}s are entangled or overlapping, making it difficult to distinguish one from another, respond with NONE.
|
259 |
+
- If the object is clearly visible and identifiable as a {cat_name}, respond with YES.
|
260 |
+
|
261 |
+
Output only either YES or NONE.
|
262 |
+
"""
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"type": "image_url",
|
266 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_cropped_I}"},
|
267 |
+
}
|
268 |
+
]
|
269 |
+
},
|
270 |
+
]
|
271 |
+
)
|
272 |
+
|
273 |
+
response_check_content = response_check.choices[0].message.content.strip().lower()
|
274 |
+
#print(f"is object {obj_id} visible: {response_check_content}")
|
275 |
+
|
276 |
+
if "yes" not in response_check_content:
|
277 |
+
print(f"Referring expression not generated: {cat_name} is ambiguous in this frame.")
|
278 |
+
return {"ref_exp": "NONE", "caption": caption, "cat_name": cat_name, "file_name": frame_name, "isValid" : False}
|
279 |
+
|
280 |
+
# Referring expression 만들기
|
281 |
+
# generator = OpenAI()
|
282 |
+
response = generator.chat.completions.create(
|
283 |
+
model="chatgpt-4o-latest",
|
284 |
+
messages=[
|
285 |
+
{
|
286 |
+
"role": "user",
|
287 |
+
"content": [
|
288 |
+
{
|
289 |
+
"type": "text",
|
290 |
+
|
291 |
+
"text": f"""Based on the dense caption, create a referring expression for the {cat_name} highlighted with the red box, corresponding to Object ID {obj_id}.
|
292 |
+
Guidelines for creating the referring expression:
|
293 |
+
1. The referring expression should describe the prominent actions or poses of the highlighted {cat_name} (Object ID {obj_id}).
|
294 |
+
2. Focus on the behavior or pose described in the caption that is specifically associated with this {cat_name}. Do not include actions or poses of other {cat_name}s.
|
295 |
+
3. If multiple {cat_name}s are present, ensure that the referring expression exclusively describes the {cat_name} corresponding to Object ID {obj_id}.
|
296 |
+
4. Avoid ambiguous or subjective terms. Use specific and clear action verbs to describe the highlighted {cat_name}.
|
297 |
+
5. The referring expression should only describe Object ID {obj_id} and not any other objects or entities.
|
298 |
+
6. Use '{cat_name}' as the noun for the referring expressions.
|
299 |
+
Output only the referring expression for the highlighted {cat_name} (Object ID {obj_id}).
|
300 |
+
|
301 |
+
{caption}
|
302 |
+
"""
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"type": "image_url",
|
306 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
|
307 |
+
},
|
308 |
+
# {
|
309 |
+
# "type": "image_url",
|
310 |
+
# "image_url": {"url": f"data:image/jpeg;base64,{base64_cropped_I}"},
|
311 |
+
# }
|
312 |
+
],
|
313 |
+
}
|
314 |
+
],
|
315 |
+
)
|
316 |
+
|
317 |
+
ref_exp = response.choices[0].message.content.strip()
|
318 |
+
|
319 |
+
#QA filtering
|
320 |
+
#QA1: 원하는 물체를 설명하는지
|
321 |
+
filter = OpenAI()
|
322 |
+
response1 = filter.chat.completions.create(
|
323 |
+
model="chatgpt-4o-latest",
|
324 |
+
messages=[
|
325 |
+
{
|
326 |
+
"role": "user",
|
327 |
+
"content": [
|
328 |
+
{
|
329 |
+
"type": "text",
|
330 |
+
"text": f"""Does the given expression describe the {cat_name} highlighted with the red box? If so, only return YES and if not, NO.
|
331 |
+
{ref_exp}""",
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"type": "image_url",
|
335 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
|
336 |
+
},
|
337 |
+
],
|
338 |
+
}
|
339 |
+
],
|
340 |
+
)
|
341 |
+
|
342 |
+
response1_content = response1.choices[0].message.content
|
343 |
+
describesHighlighted = True if "yes" in response1_content.lower() else False
|
344 |
+
|
345 |
+
#QA2: 원하지 않는 물체를 설명하지 않는지
|
346 |
+
response2 = filter.chat.completions.create(
|
347 |
+
model="chatgpt-4o-latest",
|
348 |
+
messages=[
|
349 |
+
{
|
350 |
+
"role": "user",
|
351 |
+
"content": [
|
352 |
+
{
|
353 |
+
"type": "text",
|
354 |
+
"text": f"""Does the given expression describe the person not highlighted with the red box? If so, only return YES and if not, NO.
|
355 |
+
{ref_exp}""",
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"type": "image_url",
|
359 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
|
360 |
+
},
|
361 |
+
],
|
362 |
+
}
|
363 |
+
],
|
364 |
+
)
|
365 |
+
|
366 |
+
response2_content = response2.choices[0].message.content
|
367 |
+
notDescribesNotHighlighted = False if "yes" in response2_content.lower() else True
|
368 |
+
|
369 |
+
isValid = True if describesHighlighted and notDescribesNotHighlighted else False
|
370 |
+
|
371 |
+
#print(f"describesHighlighted: {describesHighlighted}, notDescribesNotHighlighted: {notDescribesNotHighlighted}")
|
372 |
+
#print(f"ref exp: {ref_exp}")
|
373 |
+
#print("")
|
374 |
+
|
375 |
+
return {"ref_exp": ref_exp, "caption": caption, "cat_name": cat_name, "file_name": frame_name, "isValid" : isValid}
|
376 |
+
|
377 |
+
|
378 |
+
if __name__ == '__main__':
|
379 |
+
with open('mbench/sampled_frame3.json', 'r') as file:
|
380 |
+
data = json.load(file)
|
381 |
+
|
382 |
+
vid_ids = list(data.keys())
|
383 |
+
all_ref_exps = {}
|
384 |
+
|
385 |
+
os.environ['OPENAI_API_KEY'] = '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'
|
386 |
+
|
387 |
+
# 전체 데이터셋의 vid_id에 대해
|
388 |
+
for i in range(1):
|
389 |
+
vid_id = vid_ids[i]
|
390 |
+
|
391 |
+
#====캡션 만들기====
|
392 |
+
# print("=====================captioner========================")
|
393 |
+
captions, valid_obj_ids = getCaption(vid_id, data)
|
394 |
+
cats_in_vid = list(captions.keys())
|
395 |
+
# print()
|
396 |
+
|
397 |
+
#====referring expression 만들고 QA filtering====
|
398 |
+
# print("=====================referring expression generator & QA filter========================")
|
399 |
+
ref_expressions = {}
|
400 |
+
|
401 |
+
# 각 카테고리별로
|
402 |
+
for cat_name in cats_in_vid:
|
403 |
+
if cat_name not in ref_expressions:
|
404 |
+
ref_expressions[cat_name] = {}
|
405 |
+
# 각 비디오 프레임 별로
|
406 |
+
for frame_name in data[vid_id]['frame_names']:
|
407 |
+
# print(f'--------category: {cat_name}, frame_name: {frame_name}')
|
408 |
+
|
409 |
+
if frame_name not in ref_expressions[cat_name]:
|
410 |
+
ref_expressions[cat_name][frame_name] = {} # Create frame-level dictionary
|
411 |
+
caption = captions[cat_name][frame_name]
|
412 |
+
if not caption : continue
|
413 |
+
else :
|
414 |
+
# 각 obj id별로
|
415 |
+
for obj_id in valid_obj_ids:
|
416 |
+
ref_exp = getRefExp(vid_id, frame_name, caption, obj_id, data)
|
417 |
+
ref_expressions[cat_name][frame_name][obj_id] = ref_exp # Store ref_exp
|
418 |
+
|
419 |
+
all_ref_exps[vid_id] = ref_expressions
|
420 |
+
|
421 |
+
|
422 |
+
with open('mbench/result_revised.json', 'w') as file:
|
423 |
+
json.dump(all_ref_exps, file)
|
424 |
+
|
425 |
+
|
426 |
+
|
427 |
+
|
428 |
+
|
.history/mbench/gpt_ref-ytvos_20250119071933.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from os import path as osp
|
3 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
from datasets import build_dataset
|
6 |
+
import argparse
|
7 |
+
import opts
|
8 |
+
|
9 |
+
from pathlib import Path
|
10 |
+
import os
|
11 |
+
import skimage
|
12 |
+
from io import BytesIO
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import regex as re
|
17 |
+
import json
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
from PIL import Image, ImageDraw
|
21 |
+
import torch
|
22 |
+
from torchvision.transforms import functional as F
|
23 |
+
|
24 |
+
from skimage import measure # (pip install scikit-image)
|
25 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
26 |
+
|
27 |
+
import matplotlib.pyplot as plt
|
28 |
+
import matplotlib.patches as patches
|
29 |
+
from matplotlib.collections import PatchCollection
|
30 |
+
from matplotlib.patches import Rectangle
|
31 |
+
|
32 |
+
|
33 |
+
import ipywidgets as widgets
|
34 |
+
from IPython.display import display, clear_output
|
35 |
+
|
36 |
+
from openai import OpenAI
|
37 |
+
import base64
|
38 |
+
|
39 |
+
os.environ['OPENAI_API_KEY'] = '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'
|
40 |
+
|
41 |
+
# Function to encode the image
|
42 |
+
def encode_image(image_path):
|
43 |
+
with open(image_path, "rb") as image_file:
|
44 |
+
return base64.b64encode(image_file.read()).decode("utf-8")
|
45 |
+
|
46 |
+
def getCaption(video_id, json_data):
|
47 |
+
#데이터 가져오기
|
48 |
+
video_data = json_data[video_id]
|
49 |
+
frame_names = video_data['frame_names']
|
50 |
+
video_path = video_data['video_path']
|
51 |
+
|
52 |
+
cat_names = set()
|
53 |
+
for obj_id in list(video_data['annotations'][0].keys()):
|
54 |
+
cat_names.add(video_data['annotations'][0][obj_id]['category_name'])
|
55 |
+
|
56 |
+
if len(cat_names) == 1:
|
57 |
+
cat_name = next(iter(cat_names))
|
58 |
+
else:
|
59 |
+
print("more than 2 categories")
|
60 |
+
return -1
|
61 |
+
|
62 |
+
image_paths = [os.path.join(video_path, frame_name + '.jpg') for frame_name in frame_names]
|
63 |
+
image_captions = {}
|
64 |
+
|
65 |
+
captioner = OpenAI()
|
66 |
+
for i in range(len(image_paths)):
|
67 |
+
image_path = image_paths[i]
|
68 |
+
frame_name = frame_names[i]
|
69 |
+
base64_image = encode_image(image_path)
|
70 |
+
|
71 |
+
#1단계: 필터링
|
72 |
+
response1 = captioner.chat.completions.create(
|
73 |
+
model="gpt-4o-mini",
|
74 |
+
messages=[
|
75 |
+
{
|
76 |
+
"role": "user",
|
77 |
+
"content": [
|
78 |
+
{
|
79 |
+
"type": "text",
|
80 |
+
"text": f"Are there multiple {cat_name}s that can be distinguished by action? Each action should be prominent and describe the corresponding object only. If so, only output YES. If not, only output None",
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"type": "image_url",
|
84 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
85 |
+
},
|
86 |
+
],
|
87 |
+
}
|
88 |
+
],
|
89 |
+
)
|
90 |
+
response_content = response1.choices[0].message.content
|
91 |
+
should_caption = True if "yes" in response_content.lower() else False
|
92 |
+
|
93 |
+
#2단계: dense caption 만들기
|
94 |
+
if should_caption:
|
95 |
+
response2 = captioner.chat.completions.create(
|
96 |
+
model="gpt-4o-mini",
|
97 |
+
messages=[
|
98 |
+
{
|
99 |
+
"role": "user",
|
100 |
+
"content": [
|
101 |
+
{
|
102 |
+
"type": "text",
|
103 |
+
"text": f"""
|
104 |
+
Describe the image in detail focusing on the {cat_name}s' actions.
|
105 |
+
1. Each action should be prominent, clear and unique, describing the corresponding object only.
|
106 |
+
2. Avoid overly detailed or indeterminate details such as ‘in anticipation’.
|
107 |
+
3. Avoid subjective descriptions such as ‘soft’, ‘controlled’, ‘attentive’, ‘skilled’, ‘casual atmosphere’ and descriptions of the setting.
|
108 |
+
4. Do not include actions that needs to be guessed or suggested.""",
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"type": "image_url",
|
112 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
113 |
+
},
|
114 |
+
],
|
115 |
+
}
|
116 |
+
],
|
117 |
+
)
|
118 |
+
|
119 |
+
caption = response2.choices[0].message.content
|
120 |
+
else:
|
121 |
+
caption = None
|
122 |
+
|
123 |
+
image_captions[frame_name] = caption
|
124 |
+
return image_captions
|
125 |
+
|
126 |
+
def getRefExp(video_id, frame_name, caption, obj_id, json_data):
|
127 |
+
# 이미지에 해당 물체 바운딩 박스 그리기
|
128 |
+
video_data = json_data[video_id]
|
129 |
+
frame_names = video_data['frame_names']
|
130 |
+
video_path = video_data['video_path']
|
131 |
+
I = skimage.io.imread(osp.join(video_path, frame_name + '.jpg'))
|
132 |
+
frame_indx = frame_names.index(frame_name)
|
133 |
+
obj_data = video_data['annotations'][frame_indx][obj_id]
|
134 |
+
|
135 |
+
bbox = obj_data['bbox']
|
136 |
+
cat_name = obj_data['category_name']
|
137 |
+
valid = obj_data['valid']
|
138 |
+
|
139 |
+
if valid == 0:
|
140 |
+
print("Object not in this frame!")
|
141 |
+
return {}
|
142 |
+
|
143 |
+
|
144 |
+
x_min, y_min, x_max, y_max = bbox
|
145 |
+
x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), int(y_max)
|
146 |
+
cv2.rectangle(I, (x_min, y_min), (x_max, y_max), (225, 0, 0), 2)
|
147 |
+
plt.figure()
|
148 |
+
plt.imshow(I)
|
149 |
+
plt.axis('off')
|
150 |
+
plt.show()
|
151 |
+
pil_I = Image.fromarray(I)
|
152 |
+
buff = BytesIO()
|
153 |
+
pil_I.save(buff, format='JPEG')
|
154 |
+
base64_I = base64.b64encode(buff.getvalue()).decode("utf-8")
|
155 |
+
|
156 |
+
#ref expression 만들기
|
157 |
+
generator = OpenAI()
|
158 |
+
response = generator.chat.completions.create(
|
159 |
+
model="gpt-4o-mini",
|
160 |
+
messages=[
|
161 |
+
{
|
162 |
+
"role": "user",
|
163 |
+
"content": [
|
164 |
+
{
|
165 |
+
"type": "text",
|
166 |
+
"text": f"""Based on the dense caption, create a referring expression for the {cat_name} highlighted with the red box.
|
167 |
+
1. The referring expression describes the action and does not contain information about appearance or location in the picture.
|
168 |
+
2. Focus only on prominent actions and avoid overly detailed or indeterminate details.
|
169 |
+
3. Avoid subjective terms describing emotion such as ‘in anticipation’, ‘attentively’ or ‘relaxed’ and professional, difficult words.
|
170 |
+
4. The referring expression should only describe the highlighted {cat_name} and not any other.
|
171 |
+
5. Use '{cat_name}' as the noun for the referring expressions.
|
172 |
+
Output only the referring expression.
|
173 |
+
{caption}""",
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"type": "image_url",
|
177 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
|
178 |
+
},
|
179 |
+
],
|
180 |
+
}
|
181 |
+
],
|
182 |
+
)
|
183 |
+
|
184 |
+
ref_exp = response.choices[0].message.content
|
185 |
+
|
186 |
+
#QA filtering
|
187 |
+
#QA1: 원하는 물체를 설명하는지
|
188 |
+
filter = OpenAI()
|
189 |
+
response1 = filter.chat.completions.create(
|
190 |
+
model="gpt-4o-mini",
|
191 |
+
messages=[
|
192 |
+
{
|
193 |
+
"role": "user",
|
194 |
+
"content": [
|
195 |
+
{
|
196 |
+
"type": "text",
|
197 |
+
"text": f"""Does the given expression describe the {cat_name} highlighted with the red box? If so, only return YES and if not, NO.
|
198 |
+
{ref_exp}""",
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"type": "image_url",
|
202 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
|
203 |
+
},
|
204 |
+
],
|
205 |
+
}
|
206 |
+
],
|
207 |
+
)
|
208 |
+
|
209 |
+
response1_content = response1.choices[0].message.content
|
210 |
+
describesHighlighted = True if "yes" in response1_content.lower() else False
|
211 |
+
|
212 |
+
#QA2: 원하지 않는 물체를 설명하지 않는지
|
213 |
+
response2 = filter.chat.completions.create(
|
214 |
+
model="gpt-4o-mini",
|
215 |
+
messages=[
|
216 |
+
{
|
217 |
+
"role": "user",
|
218 |
+
"content": [
|
219 |
+
{
|
220 |
+
"type": "text",
|
221 |
+
"text": f"""Does the given expression describe the person not highlighted with the red box? If so, only return YES and if not, NO.
|
222 |
+
{ref_exp}""",
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"type": "image_url",
|
226 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
|
227 |
+
},
|
228 |
+
],
|
229 |
+
}
|
230 |
+
],
|
231 |
+
)
|
232 |
+
|
233 |
+
response2_content = response2.choices[0].message.content
|
234 |
+
describesNotHighlighted = True if "yes" in response2_content.lower() else False
|
235 |
+
|
236 |
+
isValid = True if describesHighlighted and not describesNotHighlighted else False
|
237 |
+
|
238 |
+
print(f"describesHighlighted: {describesHighlighted}, describesNotHighlighted: {describesNotHighlighted}")
|
239 |
+
|
240 |
+
return {"ref_exp": ref_exp, "caption": caption, "cat_name": cat_name, "file_name": frame_name, "isValid" : isValid}
|
241 |
+
|
242 |
+
def createRefExp(video_id, json_data):
|
243 |
+
video_data = json_data[video_id]
|
244 |
+
obj_ids = list(video_data['annotations'][0].keys())
|
245 |
+
frame_names = video_data['frame_names']
|
246 |
+
|
247 |
+
captions_per_frame = getCaption(video_id, json_data)
|
248 |
+
|
249 |
+
if captions_per_frame == -1:
|
250 |
+
print("There are more than 2 cateories")
|
251 |
+
return
|
252 |
+
|
253 |
+
|
254 |
+
video_ref_exps = {}
|
255 |
+
|
256 |
+
for frame_name in frame_names:
|
257 |
+
frame_caption = captions_per_frame[frame_name]
|
258 |
+
|
259 |
+
if frame_caption == None:
|
260 |
+
video_ref_exps[frame_name] = None
|
261 |
+
|
262 |
+
else:
|
263 |
+
frame_ref_exps = {}
|
264 |
+
for obj_id in obj_ids:
|
265 |
+
exp_per_obj = getRefExp(video_id, frame_name, frame_caption, obj_id, json_data)
|
266 |
+
frame_ref_exps[obj_id] = exp_per_obj
|
267 |
+
video_ref_exps[frame_name] = frame_ref_exps
|
268 |
+
|
269 |
+
return video_ref_exps
|
270 |
+
|
271 |
+
if __name__ == '__main__':
|
272 |
+
with open('mbench/sampled_frame3.json', 'r') as file:
|
273 |
+
data = json.load(file)
|
274 |
+
|
275 |
+
videos = set()
|
276 |
+
with open('make_ref-ytvos/selected_frames.jsonl', 'r') as file:
|
277 |
+
manual_select = list(file)
|
278 |
+
for frame in manual_select:
|
279 |
+
result = json.loads(frame)
|
280 |
+
videos.add(result['video'])
|
281 |
+
videos = list(videos)
|
282 |
+
|
283 |
+
|
284 |
+
all_video_refs = {}
|
285 |
+
for i in range(1):
|
286 |
+
video_id = videos[i]
|
287 |
+
video_ref = createRefExp(video_id, data)
|
288 |
+
all_video_refs[video_id] = video_ref
|
289 |
+
|
290 |
+
json_obj = json.dumps(all_video_refs, indent=4)
|
291 |
+
with open('mbench/result.json', 'w') as file:
|
292 |
+
file.write(json_obj)
|
.history/mbench/gpt_ref-ytvos_20250119072546.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from os import path as osp
|
3 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
from datasets import build_dataset
|
6 |
+
import argparse
|
7 |
+
import opts
|
8 |
+
|
9 |
+
from pathlib import Path
|
10 |
+
import os
|
11 |
+
import skimage
|
12 |
+
from io import BytesIO
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import regex as re
|
17 |
+
import json
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
from PIL import Image, ImageDraw
|
21 |
+
import torch
|
22 |
+
from torchvision.transforms import functional as F
|
23 |
+
|
24 |
+
from skimage import measure # (pip install scikit-image)
|
25 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
26 |
+
|
27 |
+
import matplotlib.pyplot as plt
|
28 |
+
import matplotlib.patches as patches
|
29 |
+
from matplotlib.collections import PatchCollection
|
30 |
+
from matplotlib.patches import Rectangle
|
31 |
+
|
32 |
+
|
33 |
+
import ipywidgets as widgets
|
34 |
+
from IPython.display import display, clear_output
|
35 |
+
|
36 |
+
from openai import OpenAI
|
37 |
+
import base64
|
38 |
+
|
39 |
+
os.environ['OPENAI_API_KEY'] = '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'
|
40 |
+
|
41 |
+
# Function to encode the image
|
42 |
+
def encode_image(image_path):
|
43 |
+
with open(image_path, "rb") as image_file:
|
44 |
+
return base64.b64encode(image_file.read()).decode("utf-8")
|
45 |
+
|
46 |
+
def getCaption(video_id, json_data):
|
47 |
+
#데이터 가져오기
|
48 |
+
video_data = json_data[video_id]
|
49 |
+
frame_names = video_data['frame_names']
|
50 |
+
video_path = video_data['video_path']
|
51 |
+
|
52 |
+
cat_names = set()
|
53 |
+
for obj_id in list(video_data['annotations'][0].keys()):
|
54 |
+
cat_names.add(video_data['annotations'][0][obj_id]['category_name'])
|
55 |
+
|
56 |
+
if len(cat_names) == 1:
|
57 |
+
cat_name = next(iter(cat_names))
|
58 |
+
else:
|
59 |
+
print("more than 2 categories")
|
60 |
+
return -1
|
61 |
+
|
62 |
+
image_paths = [os.path.join(video_path, frame_name + '.jpg') for frame_name in frame_names]
|
63 |
+
image_captions = {}
|
64 |
+
|
65 |
+
captioner = OpenAI()
|
66 |
+
for i in range(len(image_paths)):
|
67 |
+
image_path = image_paths[i]
|
68 |
+
frame_name = frame_names[i]
|
69 |
+
base64_image = encode_image(image_path)
|
70 |
+
|
71 |
+
#1단계: 필터링
|
72 |
+
response1 = captioner.chat.completions.create(
|
73 |
+
model="gpt-4o-mini",
|
74 |
+
messages=[
|
75 |
+
{
|
76 |
+
"role": "user",
|
77 |
+
"content": [
|
78 |
+
{
|
79 |
+
"type": "text",
|
80 |
+
"text": f"Are there multiple {cat_name}s that can be distinguished by action? Each action should be prominent and describe the corresponding object only. If so, only output YES. If not, only output None",
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"type": "image_url",
|
84 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
85 |
+
},
|
86 |
+
],
|
87 |
+
}
|
88 |
+
],
|
89 |
+
)
|
90 |
+
response_content = response1.choices[0].message.content
|
91 |
+
should_caption = True if "yes" in response_content.lower() else False
|
92 |
+
|
93 |
+
#2단계: dense caption 만들기
|
94 |
+
if should_caption:
|
95 |
+
response2 = captioner.chat.completions.create(
|
96 |
+
model="gpt-4o-mini",
|
97 |
+
messages=[
|
98 |
+
{
|
99 |
+
"role": "user",
|
100 |
+
"content": [
|
101 |
+
{
|
102 |
+
"type": "text",
|
103 |
+
"text": f"""
|
104 |
+
Describe the image in detail focusing on the {cat_name}s' actions.
|
105 |
+
1. Each action should be prominent, clear and unique, describing the corresponding object only.
|
106 |
+
2. Avoid overly detailed or indeterminate details such as ‘in anticipation’.
|
107 |
+
3. Avoid subjective descriptions such as ‘soft’, ‘controlled’, ‘attentive’, ‘skilled’, ‘casual atmosphere’ and descriptions of the setting.
|
108 |
+
4. Do not include actions that needs to be guessed or suggested.""",
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"type": "image_url",
|
112 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
113 |
+
},
|
114 |
+
],
|
115 |
+
}
|
116 |
+
],
|
117 |
+
)
|
118 |
+
|
119 |
+
caption = response2.choices[0].message.content
|
120 |
+
else:
|
121 |
+
caption = None
|
122 |
+
|
123 |
+
image_captions[frame_name] = caption
|
124 |
+
return image_captions
|
125 |
+
|
126 |
+
def getRefExp(video_id, frame_name, caption, obj_id, json_data):
|
127 |
+
# 이미지에 해당 물체 바운딩 박스 그리기
|
128 |
+
video_data = json_data[video_id]
|
129 |
+
frame_names = video_data['frame_names']
|
130 |
+
video_path = video_data['video_path']
|
131 |
+
I = skimage.io.imread(osp.join(video_path, frame_name + '.jpg'))
|
132 |
+
frame_indx = frame_names.index(frame_name)
|
133 |
+
obj_data = video_data['annotations'][frame_indx][obj_id]
|
134 |
+
|
135 |
+
bbox = obj_data['bbox']
|
136 |
+
cat_name = obj_data['category_name']
|
137 |
+
valid = obj_data['valid']
|
138 |
+
|
139 |
+
if valid == 0:
|
140 |
+
print("Object not in this frame!")
|
141 |
+
return {}
|
142 |
+
|
143 |
+
|
144 |
+
x_min, y_min, x_max, y_max = bbox
|
145 |
+
x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), int(y_max)
|
146 |
+
cv2.rectangle(I, (x_min, y_min), (x_max, y_max), (225, 0, 0), 2)
|
147 |
+
plt.figure()
|
148 |
+
plt.imshow(I)
|
149 |
+
plt.axis('off')
|
150 |
+
plt.show()
|
151 |
+
pil_I = Image.fromarray(I)
|
152 |
+
buff = BytesIO()
|
153 |
+
pil_I.save(buff, format='JPEG')
|
154 |
+
base64_I = base64.b64encode(buff.getvalue()).decode("utf-8")
|
155 |
+
|
156 |
+
#ref expression 만들기
|
157 |
+
generator = OpenAI()
|
158 |
+
response = generator.chat.completions.create(
|
159 |
+
model="gpt-4o-mini",
|
160 |
+
messages=[
|
161 |
+
{
|
162 |
+
"role": "user",
|
163 |
+
"content": [
|
164 |
+
{
|
165 |
+
"type": "text",
|
166 |
+
"text": f"""Based on the dense caption, create a referring expression for the {cat_name} highlighted with the red box.
|
167 |
+
1. The referring expression describes the action and does not contain information about appearance or location in the picture.
|
168 |
+
2. Focus only on prominent actions and avoid overly detailed or indeterminate details.
|
169 |
+
3. Avoid subjective terms describing emotion such as ‘in anticipation’, ‘attentively’ or ‘relaxed’ and professional, difficult words.
|
170 |
+
4. The referring expression should only describe the highlighted {cat_name} and not any other.
|
171 |
+
5. Use '{cat_name}' as the noun for the referring expressions.
|
172 |
+
Output only the referring expression.
|
173 |
+
{caption}""",
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"type": "image_url",
|
177 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
|
178 |
+
},
|
179 |
+
],
|
180 |
+
}
|
181 |
+
],
|
182 |
+
)
|
183 |
+
|
184 |
+
ref_exp = response.choices[0].message.content
|
185 |
+
|
186 |
+
#QA filtering
|
187 |
+
#QA1: 원하는 물체를 설명하는지
|
188 |
+
filter = OpenAI()
|
189 |
+
response1 = filter.chat.completions.create(
|
190 |
+
model="gpt-4o-mini",
|
191 |
+
messages=[
|
192 |
+
{
|
193 |
+
"role": "user",
|
194 |
+
"content": [
|
195 |
+
{
|
196 |
+
"type": "text",
|
197 |
+
"text": f"""Does the given expression describe the {cat_name} highlighted with the red box? If so, only return YES and if not, NO.
|
198 |
+
{ref_exp}""",
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"type": "image_url",
|
202 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
|
203 |
+
},
|
204 |
+
],
|
205 |
+
}
|
206 |
+
],
|
207 |
+
)
|
208 |
+
|
209 |
+
response1_content = response1.choices[0].message.content
|
210 |
+
describesHighlighted = True if "yes" in response1_content.lower() else False
|
211 |
+
|
212 |
+
#QA2: 원하지 않는 물체를 설명하지 않는지
|
213 |
+
response2 = filter.chat.completions.create(
|
214 |
+
model="gpt-4o-mini",
|
215 |
+
messages=[
|
216 |
+
{
|
217 |
+
"role": "user",
|
218 |
+
"content": [
|
219 |
+
{
|
220 |
+
"type": "text",
|
221 |
+
"text": f"""Does the given expression describe the person not highlighted with the red box? If so, only return YES and if not, NO.
|
222 |
+
{ref_exp}""",
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"type": "image_url",
|
226 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_I}"},
|
227 |
+
},
|
228 |
+
],
|
229 |
+
}
|
230 |
+
],
|
231 |
+
)
|
232 |
+
|
233 |
+
response2_content = response2.choices[0].message.content
|
234 |
+
describesNotHighlighted = True if "yes" in response2_content.lower() else False
|
235 |
+
|
236 |
+
isValid = True if describesHighlighted and not describesNotHighlighted else False
|
237 |
+
|
238 |
+
print(f"describesHighlighted: {describesHighlighted}, describesNotHighlighted: {describesNotHighlighted}")
|
239 |
+
|
240 |
+
return {"ref_exp": ref_exp, "caption": caption, "cat_name": cat_name, "file_name": frame_name, "isValid" : isValid}
|
241 |
+
|
242 |
+
def createRefExp(video_id, json_data):
|
243 |
+
video_data = json_data[video_id]
|
244 |
+
obj_ids = list(video_data['annotations'][0].keys())
|
245 |
+
frame_names = video_data['frame_names']
|
246 |
+
|
247 |
+
captions_per_frame = getCaption(video_id, json_data)
|
248 |
+
|
249 |
+
if captions_per_frame == -1:
|
250 |
+
print("There are more than 2 cateories")
|
251 |
+
return None
|
252 |
+
|
253 |
+
|
254 |
+
video_ref_exps = {}
|
255 |
+
|
256 |
+
for frame_name in frame_names:
|
257 |
+
frame_caption = captions_per_frame[frame_name]
|
258 |
+
|
259 |
+
if frame_caption == None:
|
260 |
+
video_ref_exps[frame_name] = None
|
261 |
+
|
262 |
+
else:
|
263 |
+
frame_ref_exps = {}
|
264 |
+
for obj_id in obj_ids:
|
265 |
+
exp_per_obj = getRefExp(video_id, frame_name, frame_caption, obj_id, json_data)
|
266 |
+
frame_ref_exps[obj_id] = exp_per_obj
|
267 |
+
video_ref_exps[frame_name] = frame_ref_exps
|
268 |
+
|
269 |
+
return video_ref_exps
|
270 |
+
|
271 |
+
if __name__ == '__main__':
|
272 |
+
with open('mbench/sampled_frame3.json', 'r') as file:
|
273 |
+
data = json.load(file)
|
274 |
+
|
275 |
+
videos = set()
|
276 |
+
with open('make_ref-ytvos/selected_frames.jsonl', 'r') as file:
|
277 |
+
manual_select = list(file)
|
278 |
+
for frame in manual_select:
|
279 |
+
result = json.loads(frame)
|
280 |
+
videos.add(result['video'])
|
281 |
+
videos = list(videos)
|
282 |
+
|
283 |
+
|
284 |
+
all_video_refs = {}
|
285 |
+
for i in range(1):
|
286 |
+
video_id = videos[i]
|
287 |
+
video_ref = createRefExp(video_id, data)
|
288 |
+
all_video_refs[video_id] = video_ref
|
289 |
+
|
290 |
+
json_obj = json.dumps(all_video_refs, indent=4)
|
291 |
+
with open('mbench/result.json', 'w') as file:
|
292 |
+
file.write(json_obj)
|
.history/mbench/make_ref-ytvos_json_20250113181932.py
ADDED
File without changes
|
.history/mbench/make_ref-ytvos_json_20250113182455.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import build_dataset
|
2 |
+
import argparse
|
3 |
+
import opts
|
4 |
+
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
+
import os
|
8 |
+
from os import path as osp
|
9 |
+
import io
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import regex as re
|
14 |
+
import json
|
15 |
+
|
16 |
+
import cv2
|
17 |
+
from PIL import Image, ImageDraw
|
18 |
+
import torch
|
19 |
+
from torchvision.transforms import functional as F
|
20 |
+
|
21 |
+
from skimage import measure # (pip install scikit-image)
|
22 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
23 |
+
|
24 |
+
import matplotlib.pyplot as plt
|
25 |
+
import matplotlib.patches as patches
|
26 |
+
from matplotlib.collections import PatchCollection
|
27 |
+
from matplotlib.patches import Rectangle
|
28 |
+
|
29 |
+
|
30 |
+
import ipywidgets as widgets
|
31 |
+
from IPython.display import display, clear_output
|
32 |
+
|
33 |
+
#==================json 만들기===================
|
34 |
+
def createJson(train_dataset, metas):
|
35 |
+
entire_json = {}
|
36 |
+
|
37 |
+
#초기화
|
38 |
+
data_idx = 0
|
39 |
+
|
40 |
+
while data_idx < 10:
|
41 |
+
|
42 |
+
#하나의 비디오에 대해
|
43 |
+
video_data = {}
|
44 |
+
video_id = metas[data_idx]['video']
|
45 |
+
video_data['bins'] = metas[data_idx]['bins']
|
46 |
+
annotation_data = []
|
47 |
+
frame_names = []
|
48 |
+
|
49 |
+
while metas[data_idx]['video'] == video_id:
|
50 |
+
|
51 |
+
obj_id = metas[data_idx]['obj_id']
|
52 |
+
sample_id = metas[data_idx]['sample_id']
|
53 |
+
sample_frames_id = metas[data_idx]['sample_frames_id']
|
54 |
+
sample_frame_idx = sample_frames_id.index(sample_id)
|
55 |
+
|
56 |
+
frames = metas[data_idx]['frames']
|
57 |
+
|
58 |
+
frame_name = frames[sample_id]
|
59 |
+
cat_name = metas[data_idx]['category']
|
60 |
+
|
61 |
+
bbox = train_dataset[data_idx][1]['boxes'][sample_frame_idx, :]
|
62 |
+
|
63 |
+
obj_data = {obj_id: {
|
64 |
+
"category_name" : cat_name,
|
65 |
+
"bbox": bbox
|
66 |
+
}}
|
67 |
+
|
68 |
+
|
69 |
+
annotation_data.append(obj_data)
|
70 |
+
|
71 |
+
frame_names.append(frame_name)
|
72 |
+
|
73 |
+
data_idx += 1
|
74 |
+
|
75 |
+
video_data['annotations'] = annotation_data
|
76 |
+
video_data['frame_names'] = frame_names
|
77 |
+
video_data['video_path'] = os.path.join(str(train_dataset.img_folder), 'JPEGImages', video_id)
|
78 |
+
|
79 |
+
entire_json[video_id] = video_data
|
80 |
+
|
81 |
+
return entire_json
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == '__main__':
|
85 |
+
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
|
86 |
+
args = parser.parse_args()
|
87 |
+
|
88 |
+
#==================데이터 불러오기===================
|
89 |
+
# 전체 데이터셋
|
90 |
+
train_dataset = build_dataset('ytvos_ref', image_set = 'train', args = args)
|
91 |
+
|
92 |
+
# 전체 데이터셋 메타데이터
|
93 |
+
metas = train_dataset.metas
|
94 |
+
|
95 |
+
#==================json 만들기===================
|
96 |
+
entire_json_dict = createJson(train_dataset, metas)
|
97 |
+
entire_json = json.dumps(entire_json_dict, indent=4)
|
98 |
+
|
99 |
+
with open('mbench/sampled_frame.json', mode='w') as file:
|
100 |
+
file.write(entire_json)
|
.history/mbench/make_ref-ytvos_json_20250113182916.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from os import path as osp
|
3 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
from datasets import build_dataset
|
6 |
+
import argparse
|
7 |
+
import opts
|
8 |
+
|
9 |
+
|
10 |
+
from pathlib import Path
|
11 |
+
import io
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import regex as re
|
16 |
+
import json
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
from PIL import Image, ImageDraw
|
20 |
+
import torch
|
21 |
+
from torchvision.transforms import functional as F
|
22 |
+
|
23 |
+
from skimage import measure # (pip install scikit-image)
|
24 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
25 |
+
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
import matplotlib.patches as patches
|
28 |
+
from matplotlib.collections import PatchCollection
|
29 |
+
from matplotlib.patches import Rectangle
|
30 |
+
|
31 |
+
|
32 |
+
import ipywidgets as widgets
|
33 |
+
from IPython.display import display, clear_output
|
34 |
+
|
35 |
+
#==================json 만들기===================
|
36 |
+
def createJson(train_dataset, metas):
|
37 |
+
entire_json = {}
|
38 |
+
|
39 |
+
#초기화
|
40 |
+
data_idx = 0
|
41 |
+
|
42 |
+
while data_idx < 10:
|
43 |
+
|
44 |
+
#하나의 비디오에 대해
|
45 |
+
video_data = {}
|
46 |
+
video_id = metas[data_idx]['video']
|
47 |
+
video_data['bins'] = metas[data_idx]['bins']
|
48 |
+
annotation_data = []
|
49 |
+
frame_names = []
|
50 |
+
|
51 |
+
while metas[data_idx]['video'] == video_id:
|
52 |
+
|
53 |
+
obj_id = metas[data_idx]['obj_id']
|
54 |
+
sample_id = metas[data_idx]['sample_id']
|
55 |
+
sample_frames_id = metas[data_idx]['sample_frames_id']
|
56 |
+
sample_frame_idx = sample_frames_id.index(sample_id)
|
57 |
+
|
58 |
+
frames = metas[data_idx]['frames']
|
59 |
+
|
60 |
+
frame_name = frames[sample_id]
|
61 |
+
cat_name = metas[data_idx]['category']
|
62 |
+
|
63 |
+
bbox = train_dataset[data_idx][1]['boxes'][sample_frame_idx, :]
|
64 |
+
|
65 |
+
obj_data = {obj_id: {
|
66 |
+
"category_name" : cat_name,
|
67 |
+
"bbox": bbox
|
68 |
+
}}
|
69 |
+
|
70 |
+
|
71 |
+
annotation_data.append(obj_data)
|
72 |
+
|
73 |
+
frame_names.append(frame_name)
|
74 |
+
|
75 |
+
data_idx += 1
|
76 |
+
|
77 |
+
video_data['annotations'] = annotation_data
|
78 |
+
video_data['frame_names'] = frame_names
|
79 |
+
video_data['video_path'] = os.path.join(str(train_dataset.img_folder), 'JPEGImages', video_id)
|
80 |
+
|
81 |
+
entire_json[video_id] = video_data
|
82 |
+
|
83 |
+
return entire_json
|
84 |
+
|
85 |
+
|
86 |
+
if __name__ == '__main__':
|
87 |
+
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
|
88 |
+
args = parser.parse_args()
|
89 |
+
|
90 |
+
#==================데이터 불러오기===================
|
91 |
+
# 전체 데이터셋
|
92 |
+
train_dataset = build_dataset('ytvos_ref', image_set = 'train', args = args)
|
93 |
+
|
94 |
+
# 전체 데이터셋 메타데이터
|
95 |
+
metas = train_dataset.metas
|
96 |
+
|
97 |
+
#==================json 만들기===================
|
98 |
+
entire_json_dict = createJson(train_dataset, metas)
|
99 |
+
entire_json = json.dumps(entire_json_dict, indent=4)
|
100 |
+
|
101 |
+
with open('mbench/sampled_frame.json', mode='w') as file:
|
102 |
+
file.write(entire_json)
|
.history/mbench/make_ref-ytvos_json_20250113182917.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from os import path as osp
|
3 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
from datasets import build_dataset
|
6 |
+
import argparse
|
7 |
+
import opts
|
8 |
+
|
9 |
+
|
10 |
+
from pathlib import Path
|
11 |
+
import io
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import regex as re
|
16 |
+
import json
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
from PIL import Image, ImageDraw
|
20 |
+
import torch
|
21 |
+
from torchvision.transforms import functional as F
|
22 |
+
|
23 |
+
from skimage import measure # (pip install scikit-image)
|
24 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
25 |
+
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
import matplotlib.patches as patches
|
28 |
+
from matplotlib.collections import PatchCollection
|
29 |
+
from matplotlib.patches import Rectangle
|
30 |
+
|
31 |
+
|
32 |
+
import ipywidgets as widgets
|
33 |
+
from IPython.display import display, clear_output
|
34 |
+
|
35 |
+
#==================json 만들기===================
|
36 |
+
def createJson(train_dataset, metas):
|
37 |
+
entire_json = {}
|
38 |
+
|
39 |
+
#초기화
|
40 |
+
data_idx = 0
|
41 |
+
|
42 |
+
while data_idx < 10:
|
43 |
+
|
44 |
+
#하나의 비디오에 대해
|
45 |
+
video_data = {}
|
46 |
+
video_id = metas[data_idx]['video']
|
47 |
+
video_data['bins'] = metas[data_idx]['bins']
|
48 |
+
annotation_data = []
|
49 |
+
frame_names = []
|
50 |
+
|
51 |
+
while metas[data_idx]['video'] == video_id:
|
52 |
+
|
53 |
+
obj_id = metas[data_idx]['obj_id']
|
54 |
+
sample_id = metas[data_idx]['sample_id']
|
55 |
+
sample_frames_id = metas[data_idx]['sample_frames_id']
|
56 |
+
sample_frame_idx = sample_frames_id.index(sample_id)
|
57 |
+
|
58 |
+
frames = metas[data_idx]['frames']
|
59 |
+
|
60 |
+
frame_name = frames[sample_id]
|
61 |
+
cat_name = metas[data_idx]['category']
|
62 |
+
|
63 |
+
bbox = train_dataset[data_idx][1]['boxes'][sample_frame_idx, :]
|
64 |
+
|
65 |
+
obj_data = {obj_id: {
|
66 |
+
"category_name" : cat_name,
|
67 |
+
"bbox": bbox
|
68 |
+
}}
|
69 |
+
|
70 |
+
|
71 |
+
annotation_data.append(obj_data)
|
72 |
+
|
73 |
+
frame_names.append(frame_name)
|
74 |
+
|
75 |
+
data_idx += 1
|
76 |
+
|
77 |
+
video_data['annotations'] = annotation_data
|
78 |
+
video_data['frame_names'] = frame_names
|
79 |
+
video_data['video_path'] = os.path.join(str(train_dataset.img_folder), 'JPEGImages', video_id)
|
80 |
+
|
81 |
+
entire_json[video_id] = video_data
|
82 |
+
|
83 |
+
return entire_json
|
84 |
+
|
85 |
+
|
86 |
+
if __name__ == '__main__':
|
87 |
+
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
|
88 |
+
args = parser.parse_args()
|
89 |
+
|
90 |
+
#==================데이터 불러오기===================
|
91 |
+
# 전체 데이터셋
|
92 |
+
train_dataset = build_dataset('ytvos_ref', image_set = 'train', args = args)
|
93 |
+
|
94 |
+
# 전체 데이터셋 메타데이터
|
95 |
+
metas = train_dataset.metas
|
96 |
+
|
97 |
+
#==================json 만들기===================
|
98 |
+
entire_json_dict = createJson(train_dataset, metas)
|
99 |
+
entire_json = json.dumps(entire_json_dict, indent=4)
|
100 |
+
|
101 |
+
with open('mbench/sampled_frame.json', mode='w') as file:
|
102 |
+
file.write(entire_json)
|
.history/mbench/make_ref-ytvos_json_20250113183527.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from os import path as osp
|
3 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
from datasets import build_dataset
|
6 |
+
import argparse
|
7 |
+
import opts
|
8 |
+
|
9 |
+
|
10 |
+
from pathlib import Path
|
11 |
+
import io
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import regex as re
|
16 |
+
import json
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
from PIL import Image, ImageDraw
|
20 |
+
import torch
|
21 |
+
from torchvision.transforms import functional as F
|
22 |
+
|
23 |
+
from skimage import measure # (pip install scikit-image)
|
24 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
25 |
+
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
import matplotlib.patches as patches
|
28 |
+
from matplotlib.collections import PatchCollection
|
29 |
+
from matplotlib.patches import Rectangle
|
30 |
+
|
31 |
+
|
32 |
+
import ipywidgets as widgets
|
33 |
+
from IPython.display import display, clear_output
|
34 |
+
|
35 |
+
#==================json 만들기===================
|
36 |
+
def createJson(train_dataset, metas):
|
37 |
+
entire_json = {}
|
38 |
+
|
39 |
+
#초기화
|
40 |
+
data_idx = 0
|
41 |
+
|
42 |
+
while data_idx < len(train_dataset):
|
43 |
+
|
44 |
+
#하나의 비디오에 대해
|
45 |
+
video_data = {}
|
46 |
+
video_id = metas[data_idx]['video']
|
47 |
+
video_data['bins'] = metas[data_idx]['bins']
|
48 |
+
annotation_data = []
|
49 |
+
frame_names = []
|
50 |
+
|
51 |
+
while metas[data_idx]['video'] == video_id:
|
52 |
+
|
53 |
+
obj_id = metas[data_idx]['obj_id']
|
54 |
+
sample_id = metas[data_idx]['sample_id']
|
55 |
+
sample_frames_id = metas[data_idx]['sample_frames_id']
|
56 |
+
sample_frame_idx = sample_frames_id.index(sample_id)
|
57 |
+
|
58 |
+
frames = metas[data_idx]['frames']
|
59 |
+
|
60 |
+
frame_name = frames[sample_id]
|
61 |
+
cat_name = metas[data_idx]['category']
|
62 |
+
|
63 |
+
bbox = train_dataset[data_idx][1]['boxes'][sample_frame_idx, :].tolist()
|
64 |
+
|
65 |
+
obj_data = {obj_id: {
|
66 |
+
"category_name" : cat_name,
|
67 |
+
"bbox": bbox
|
68 |
+
}}
|
69 |
+
|
70 |
+
|
71 |
+
annotation_data.append(obj_data)
|
72 |
+
|
73 |
+
frame_names.append(frame_name)
|
74 |
+
|
75 |
+
data_idx += 1
|
76 |
+
|
77 |
+
video_data['annotations'] = annotation_data
|
78 |
+
video_data['frame_names'] = frame_names
|
79 |
+
video_data['video_path'] = osp.join(str(train_dataset.img_folder), 'JPEGImages', video_id)
|
80 |
+
|
81 |
+
entire_json[video_id] = video_data
|
82 |
+
|
83 |
+
return entire_json
|
84 |
+
|
85 |
+
|
86 |
+
if __name__ == '__main__':
|
87 |
+
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
|
88 |
+
args = parser.parse_args()
|
89 |
+
|
90 |
+
#==================데이터 불러오기===================
|
91 |
+
# 전체 데이터셋
|
92 |
+
train_dataset = build_dataset('ytvos_ref', image_set = 'train', args = args)
|
93 |
+
|
94 |
+
# 전체 데이터셋 메타데이터
|
95 |
+
metas = train_dataset.metas
|
96 |
+
|
97 |
+
#==================json 만들기===================
|
98 |
+
entire_json_dict = createJson(train_dataset, metas)
|
99 |
+
print(type(entire_json_dict))
|
100 |
+
entire_json = json.dumps(entire_json_dict, indent=4)
|
101 |
+
|
102 |
+
with open('mbench/sampled_frame.json', mode='w') as file:
|
103 |
+
file.write(entire_json)
|
.history/mbench/make_ref-ytvos_json_20250113195258.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from os import path as osp
|
3 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
from datasets import build_dataset
|
6 |
+
import argparse
|
7 |
+
import opts
|
8 |
+
|
9 |
+
|
10 |
+
from pathlib import Path
|
11 |
+
import io
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import regex as re
|
16 |
+
import json
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
from PIL import Image, ImageDraw
|
20 |
+
import torch
|
21 |
+
from torchvision.transforms import functional as F
|
22 |
+
|
23 |
+
from skimage import measure # (pip install scikit-image)
|
24 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
25 |
+
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
import matplotlib.patches as patches
|
28 |
+
from matplotlib.collections import PatchCollection
|
29 |
+
from matplotlib.patches import Rectangle
|
30 |
+
|
31 |
+
|
32 |
+
import ipywidgets as widgets
|
33 |
+
from IPython.display import display, clear_output
|
34 |
+
|
35 |
+
#==================json 만들기===================
|
36 |
+
def createJson(train_dataset, metas):
|
37 |
+
entire_json = {}
|
38 |
+
|
39 |
+
#초기화
|
40 |
+
data_idx = 0
|
41 |
+
print(len(train_dataset), len(metas), flush = True)
|
42 |
+
while data_idx < len(train_dataset):
|
43 |
+
|
44 |
+
#하나의 비디오에 대해
|
45 |
+
video_data = {}
|
46 |
+
video_id = metas[data_idx]['video']
|
47 |
+
video_data['bins'] = metas[data_idx]['bins']
|
48 |
+
annotation_data = []
|
49 |
+
frame_names = []
|
50 |
+
|
51 |
+
while metas[data_idx]['video'] == video_id:
|
52 |
+
|
53 |
+
obj_id = metas[data_idx]['obj_id']
|
54 |
+
sample_id = metas[data_idx]['sample_id']
|
55 |
+
sample_frames_id = metas[data_idx]['sample_frames_id']
|
56 |
+
sample_frame_idx = sample_frames_id.index(sample_id)
|
57 |
+
|
58 |
+
frames = metas[data_idx]['frames']
|
59 |
+
|
60 |
+
frame_name = frames[sample_id]
|
61 |
+
cat_name = metas[data_idx]['category']
|
62 |
+
|
63 |
+
bbox = train_dataset[data_idx][1]['boxes'][sample_frame_idx, :].tolist()
|
64 |
+
|
65 |
+
obj_data = {obj_id: {
|
66 |
+
"category_name" : cat_name,
|
67 |
+
"bbox": bbox
|
68 |
+
}}
|
69 |
+
|
70 |
+
|
71 |
+
annotation_data.append(obj_data)
|
72 |
+
|
73 |
+
frame_names.append(frame_name)
|
74 |
+
|
75 |
+
data_idx += 1
|
76 |
+
|
77 |
+
video_data['annotations'] = annotation_data
|
78 |
+
video_data['frame_names'] = frame_names
|
79 |
+
video_data['video_path'] = osp.join(str(train_dataset.img_folder), 'JPEGImages', video_id)
|
80 |
+
|
81 |
+
entire_json[video_id] = video_data
|
82 |
+
|
83 |
+
return entire_json
|
84 |
+
|
85 |
+
|
86 |
+
if __name__ == '__main__':
|
87 |
+
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
|
88 |
+
args = parser.parse_args()
|
89 |
+
|
90 |
+
#==================데이터 불러오기===================
|
91 |
+
# 전체 데이터셋
|
92 |
+
train_dataset = build_dataset('ytvos_ref', image_set = 'train', args = args)
|
93 |
+
|
94 |
+
# 전체 데이터셋 메타데이터
|
95 |
+
metas = train_dataset.metas
|
96 |
+
|
97 |
+
#==================json 만들기===================
|
98 |
+
entire_json_dict = createJson(train_dataset, metas)
|
99 |
+
print(type(entire_json_dict))
|
100 |
+
entire_json = json.dumps(entire_json_dict, indent=4)
|
101 |
+
|
102 |
+
with open('mbench/sampled_frame.json', mode='w') as file:
|
103 |
+
file.write(entire_json)
|
.history/mbench/make_ref-ytvos_json_20250113195443.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from os import path as osp
|
3 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
from datasets import build_dataset
|
6 |
+
import argparse
|
7 |
+
import opts
|
8 |
+
|
9 |
+
|
10 |
+
from pathlib import Path
|
11 |
+
import io
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import regex as re
|
16 |
+
import json
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
from PIL import Image, ImageDraw
|
20 |
+
import torch
|
21 |
+
from torchvision.transforms import functional as F
|
22 |
+
|
23 |
+
from skimage import measure # (pip install scikit-image)
|
24 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
25 |
+
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
import matplotlib.patches as patches
|
28 |
+
from matplotlib.collections import PatchCollection
|
29 |
+
from matplotlib.patches import Rectangle
|
30 |
+
|
31 |
+
|
32 |
+
import ipywidgets as widgets
|
33 |
+
from IPython.display import display, clear_output
|
34 |
+
|
35 |
+
#==================json 만들기===================
|
36 |
+
def createJson(train_dataset, metas):
|
37 |
+
entire_json = {}
|
38 |
+
|
39 |
+
#초기화
|
40 |
+
data_idx = 0
|
41 |
+
|
42 |
+
while data_idx < len(train_dataset):
|
43 |
+
|
44 |
+
#하나의 비디오에 대해
|
45 |
+
video_data = {}
|
46 |
+
video_id = metas[data_idx]['video']
|
47 |
+
video_data['bins'] = metas[data_idx]['bins']
|
48 |
+
annotation_data = []
|
49 |
+
frame_names = []
|
50 |
+
|
51 |
+
while data_idx < len(train_dataset) and metas[data_idx]['video'] == video_id:
|
52 |
+
|
53 |
+
obj_id = metas[data_idx]['obj_id']
|
54 |
+
sample_id = metas[data_idx]['sample_id']
|
55 |
+
sample_frames_id = metas[data_idx]['sample_frames_id']
|
56 |
+
sample_frame_idx = sample_frames_id.index(sample_id)
|
57 |
+
|
58 |
+
frames = metas[data_idx]['frames']
|
59 |
+
|
60 |
+
frame_name = frames[sample_id]
|
61 |
+
cat_name = metas[data_idx]['category']
|
62 |
+
|
63 |
+
bbox = train_dataset[data_idx][1]['boxes'][sample_frame_idx, :].tolist()
|
64 |
+
|
65 |
+
obj_data = {obj_id: {
|
66 |
+
"category_name" : cat_name,
|
67 |
+
"bbox": bbox
|
68 |
+
}}
|
69 |
+
|
70 |
+
|
71 |
+
annotation_data.append(obj_data)
|
72 |
+
|
73 |
+
frame_names.append(frame_name)
|
74 |
+
|
75 |
+
data_idx += 1
|
76 |
+
|
77 |
+
video_data['annotations'] = annotation_data
|
78 |
+
video_data['frame_names'] = frame_names
|
79 |
+
video_data['video_path'] = osp.join(str(train_dataset.img_folder), 'JPEGImages', video_id)
|
80 |
+
|
81 |
+
entire_json[video_id] = video_data
|
82 |
+
|
83 |
+
return entire_json
|
84 |
+
|
85 |
+
|
86 |
+
if __name__ == '__main__':
|
87 |
+
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
|
88 |
+
args = parser.parse_args()
|
89 |
+
|
90 |
+
#==================데이터 불러오기===================
|
91 |
+
# 전체 데이터셋
|
92 |
+
train_dataset = build_dataset('ytvos_ref', image_set = 'train', args = args)
|
93 |
+
|
94 |
+
# 전체 데이터셋 메타데이터
|
95 |
+
metas = train_dataset.metas
|
96 |
+
|
97 |
+
#==================json 만들기===================
|
98 |
+
entire_json_dict = createJson(train_dataset, metas)
|
99 |
+
print(type(entire_json_dict))
|
100 |
+
entire_json = json.dumps(entire_json_dict, indent=4)
|
101 |
+
|
102 |
+
with open('mbench/sampled_frame.json', mode='w') as file:
|
103 |
+
file.write(entire_json)
|
.history/mbench/make_ref-ytvos_json_20250116140957.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from os import path as osp
|
3 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
from datasets import build_dataset
|
6 |
+
import argparse
|
7 |
+
import opts
|
8 |
+
|
9 |
+
|
10 |
+
from pathlib import Path
|
11 |
+
import io
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import regex as re
|
16 |
+
import json
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
from PIL import Image, ImageDraw
|
20 |
+
import torch
|
21 |
+
from torchvision.transforms import functional as F
|
22 |
+
|
23 |
+
from skimage import measure # (pip install scikit-image)
|
24 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
25 |
+
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
import matplotlib.patches as patches
|
28 |
+
from matplotlib.collections import PatchCollection
|
29 |
+
from matplotlib.patches import Rectangle
|
30 |
+
|
31 |
+
|
32 |
+
import ipywidgets as widgets
|
33 |
+
from IPython.display import display, clear_output
|
34 |
+
|
35 |
+
#==================json 만들기===================
|
36 |
+
def createJson(train_dataset, metas):
|
37 |
+
entire_json = {}
|
38 |
+
|
39 |
+
#초기화
|
40 |
+
vid_idx = 0
|
41 |
+
|
42 |
+
while vid_idx < 5:
|
43 |
+
|
44 |
+
#하나의 비디오에 대해
|
45 |
+
video_data = {}
|
46 |
+
video_train_frames, video_train_info = train_dataset[vid_idx]
|
47 |
+
video_meta = metas[vid_idx]
|
48 |
+
|
49 |
+
video_id = video_meta['video']
|
50 |
+
video_data['bins'] = video_meta['bins']
|
51 |
+
bin_nums = len(video_meta['bins'])
|
52 |
+
obj_nums = len(list(video_meta['obj_id_cat'].keys()))
|
53 |
+
|
54 |
+
annotation_data = []
|
55 |
+
frame_names = []
|
56 |
+
|
57 |
+
for i in range(bin_nums):
|
58 |
+
bin_data = {}
|
59 |
+
for j in range(obj_nums):
|
60 |
+
obj_id = str(j+1)
|
61 |
+
obj_data = {
|
62 |
+
"category_name":video_meta['obj_id_cat'][obj_id],
|
63 |
+
"bbox":video_train_info['boxes'][i*obj_nums+j, :]
|
64 |
+
}
|
65 |
+
bin_data[obj_id] = obj_data
|
66 |
+
annotation_data.append(bin_data)
|
67 |
+
|
68 |
+
video_data['annotations'] = annotation_data
|
69 |
+
|
70 |
+
|
71 |
+
sample_indx = metas[vid_idx]['sample_indx']
|
72 |
+
frames = metas[vid_idx]['frames']
|
73 |
+
for i in sample_indx:
|
74 |
+
frame_name = frames[i]
|
75 |
+
frame_names.append(frame_name)
|
76 |
+
|
77 |
+
video_data['frame_names'] = frame_names
|
78 |
+
video_data['video_path'] = os.path.join(str(train_dataset.img_folder), 'JPEGImages', video_id)
|
79 |
+
entire_json[video_id] = video_data
|
80 |
+
|
81 |
+
vid_idx += 1
|
82 |
+
|
83 |
+
return entire_json
|
84 |
+
|
85 |
+
|
86 |
+
if __name__ == '__main__':
|
87 |
+
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
|
88 |
+
args = parser.parse_args()
|
89 |
+
|
90 |
+
#==================데이터 불러오기===================
|
91 |
+
# 전체 데이터셋
|
92 |
+
train_dataset = build_dataset('ytvos_ref', image_set = 'train', args = args)
|
93 |
+
|
94 |
+
# 전체 데이터셋 메타데이터
|
95 |
+
metas = train_dataset.metas
|
96 |
+
|
97 |
+
#==================json 만들기===================
|
98 |
+
entire_json_dict = createJson(train_dataset, metas)
|
99 |
+
print(type(entire_json_dict))
|
100 |
+
entire_json = json.dumps(entire_json_dict, indent=4)
|
101 |
+
|
102 |
+
with open('mbench/sampled_frame.json', mode='w') as file:
|
103 |
+
file.write(entire_json)
|
.history/mbench/make_ref-ytvos_json_20250117032934.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
from os import path as osp
|
4 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
5 |
+
|
6 |
+
from datasets import build_dataset
|
7 |
+
import argparse
|
8 |
+
import opts
|
9 |
+
|
10 |
+
|
11 |
+
from pathlib import Path
|
12 |
+
import io
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import regex as re
|
17 |
+
import json
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
from PIL import Image, ImageDraw
|
21 |
+
import torch
|
22 |
+
from torchvision.transforms import functional as F
|
23 |
+
|
24 |
+
from skimage import measure # (pip install scikit-image)
|
25 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
26 |
+
|
27 |
+
import matplotlib.pyplot as plt
|
28 |
+
import matplotlib.patches as patches
|
29 |
+
from matplotlib.collections import PatchCollection
|
30 |
+
from matplotlib.patches import Rectangle
|
31 |
+
|
32 |
+
|
33 |
+
import ipywidgets as widgets
|
34 |
+
from IPython.display import display, clear_output
|
35 |
+
|
36 |
+
#==================json 만들기===================
|
37 |
+
def createJson(train_dataset, metas):
|
38 |
+
entire_json = {}
|
39 |
+
|
40 |
+
#초기화
|
41 |
+
vid_idx = 0
|
42 |
+
|
43 |
+
while vid_idx < len(train_dataset):
|
44 |
+
|
45 |
+
#하나의 비디오에 대해
|
46 |
+
video_data = {}
|
47 |
+
video_train_frames, video_train_info = train_dataset[vid_idx]
|
48 |
+
video_meta = metas[vid_idx]
|
49 |
+
|
50 |
+
video_id = video_meta['video']
|
51 |
+
video_data['bins'] = video_meta['bins']
|
52 |
+
bin_nums = len(video_meta['bins'])
|
53 |
+
obj_nums = len(list(video_meta['obj_id_cat'].keys()))
|
54 |
+
|
55 |
+
annotation_data = []
|
56 |
+
frame_names = []
|
57 |
+
|
58 |
+
for i in range(bin_nums):
|
59 |
+
bin_data = {}
|
60 |
+
for j in range(obj_nums):
|
61 |
+
obj_id = str(j+1)
|
62 |
+
print(video_meta['obj_id_cat'].keys())
|
63 |
+
obj_data = {
|
64 |
+
"category_name":video_meta['obj_id_cat'][obj_id],
|
65 |
+
"bbox":video_train_info['boxes'][i*obj_nums+j, :]
|
66 |
+
}
|
67 |
+
bin_data[obj_id] = obj_data
|
68 |
+
annotation_data.append(bin_data)
|
69 |
+
|
70 |
+
video_data['annotations'] = annotation_data
|
71 |
+
|
72 |
+
|
73 |
+
sample_indx = metas[vid_idx]['sample_indx']
|
74 |
+
frames = metas[vid_idx]['frames']
|
75 |
+
for i in sample_indx:
|
76 |
+
frame_name = frames[i]
|
77 |
+
frame_names.append(frame_name)
|
78 |
+
|
79 |
+
video_data['frame_names'] = frame_names
|
80 |
+
video_data['video_path'] = os.path.join(str(train_dataset.img_folder), 'JPEGImages', video_id)
|
81 |
+
entire_json[video_id] = video_data
|
82 |
+
|
83 |
+
vid_idx += 1
|
84 |
+
|
85 |
+
return entire_json
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == '__main__':
|
89 |
+
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
|
90 |
+
args = parser.parse_args()
|
91 |
+
|
92 |
+
#==================데이터 불러오기===================
|
93 |
+
# 전체 데이터셋
|
94 |
+
train_dataset = build_dataset('ytvos_ref', image_set = 'train', args = args)
|
95 |
+
|
96 |
+
# 전체 데이터셋 메타데이터
|
97 |
+
metas = train_dataset.metas
|
98 |
+
|
99 |
+
#==================json 만들기===================
|
100 |
+
entire_json_dict = createJson(train_dataset, metas)
|
101 |
+
print(type(entire_json_dict))
|
102 |
+
entire_json = json.dumps(entire_json_dict, indent=4)
|
103 |
+
|
104 |
+
with open('mbench/sampled_frame2.json', mode='w') as file:
|
105 |
+
file.write(entire_json)
|
.history/mbench/make_ref-ytvos_json_20250117074200.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
from os import path as osp
|
4 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
5 |
+
|
6 |
+
from datasets import build_dataset
|
7 |
+
import argparse
|
8 |
+
import opts
|
9 |
+
|
10 |
+
|
11 |
+
from pathlib import Path
|
12 |
+
import io
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import regex as re
|
17 |
+
import json
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
from PIL import Image, ImageDraw
|
21 |
+
import torch
|
22 |
+
from torchvision.transforms import functional as F
|
23 |
+
|
24 |
+
from skimage import measure # (pip install scikit-image)
|
25 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
26 |
+
|
27 |
+
import matplotlib.pyplot as plt
|
28 |
+
import matplotlib.patches as patches
|
29 |
+
from matplotlib.collections import PatchCollection
|
30 |
+
from matplotlib.patches import Rectangle
|
31 |
+
|
32 |
+
|
33 |
+
import ipywidgets as widgets
|
34 |
+
from IPython.display import display, clear_output
|
35 |
+
|
36 |
+
#==================json 만들기===================
|
37 |
+
def createJson(train_dataset, metas):
|
38 |
+
entire_json = {}
|
39 |
+
|
40 |
+
#초기화
|
41 |
+
vid_idx = 0
|
42 |
+
|
43 |
+
while vid_idx < 10:
|
44 |
+
|
45 |
+
#하나의 비디오에 대해
|
46 |
+
video_data = {}
|
47 |
+
video_train_frames, video_train_info = train_dataset[vid_idx]
|
48 |
+
video_meta = metas[vid_idx]
|
49 |
+
|
50 |
+
video_id = video_meta['video']
|
51 |
+
video_data['bins'] = video_meta['bins']
|
52 |
+
bin_nums = len(video_meta['bins'])
|
53 |
+
obj_nums = max([int(k) for k in list(video_meta['obj_id_cat'].keys())])
|
54 |
+
|
55 |
+
annotation_data = []
|
56 |
+
frame_names = []
|
57 |
+
|
58 |
+
for i in range(bin_nums):
|
59 |
+
bin_data = {}
|
60 |
+
for j in range(obj_nums):
|
61 |
+
obj_id = str(j+1)
|
62 |
+
try:
|
63 |
+
obj_data = {
|
64 |
+
"category_name":video_meta['obj_id_cat'][obj_id],
|
65 |
+
"bbox":video_train_info['boxes'][i*obj_nums+j, :].tolist()
|
66 |
+
}
|
67 |
+
except:
|
68 |
+
obj_data = {}
|
69 |
+
bin_data[obj_id] = obj_data
|
70 |
+
annotation_data.append(bin_data)
|
71 |
+
|
72 |
+
video_data['annotations'] = annotation_data
|
73 |
+
|
74 |
+
|
75 |
+
sample_indx = metas[vid_idx]['sample_indx']
|
76 |
+
frames = metas[vid_idx]['frames']
|
77 |
+
for i in sample_indx:
|
78 |
+
frame_name = frames[i]
|
79 |
+
frame_names.append(frame_name)
|
80 |
+
|
81 |
+
video_data['frame_names'] = frame_names
|
82 |
+
video_data['video_path'] = os.path.join(str(train_dataset.img_folder), 'JPEGImages', video_id)
|
83 |
+
entire_json[video_id] = video_data
|
84 |
+
|
85 |
+
vid_idx += 1
|
86 |
+
|
87 |
+
return entire_json
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == '__main__':
|
91 |
+
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
|
92 |
+
args = parser.parse_args()
|
93 |
+
|
94 |
+
#==================데이터 불러오기===================
|
95 |
+
# 전체 데이터셋
|
96 |
+
train_dataset = build_dataset('ytvos_ref', image_set = 'train', args = args)
|
97 |
+
|
98 |
+
# 전체 데이터셋 메타데이터
|
99 |
+
metas = train_dataset.metas
|
100 |
+
|
101 |
+
#==================json 만들기===================
|
102 |
+
entire_json_dict = createJson(train_dataset, metas)
|
103 |
+
print(type(entire_json_dict))
|
104 |
+
entire_json = json.dumps(entire_json_dict, indent=4)
|
105 |
+
|
106 |
+
with open('mbench/sampled_frame2.json', mode='w') as file:
|
107 |
+
file.write(entire_json)
|
.history/mbench/make_ref-ytvos_json_20250117074329.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
from os import path as osp
|
4 |
+
sys.path.append(osp.abspath(osp.join(osp.dirname(__file__), '..')))
|
5 |
+
|
6 |
+
from datasets import build_dataset
|
7 |
+
import argparse
|
8 |
+
import opts
|
9 |
+
|
10 |
+
|
11 |
+
from pathlib import Path
|
12 |
+
import io
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
import regex as re
|
17 |
+
import json
|
18 |
+
|
19 |
+
import cv2
|
20 |
+
from PIL import Image, ImageDraw
|
21 |
+
import torch
|
22 |
+
from torchvision.transforms import functional as F
|
23 |
+
|
24 |
+
from skimage import measure # (pip install scikit-image)
|
25 |
+
from shapely.geometry import Polygon, MultiPolygon # (pip install Shapely)
|
26 |
+
|
27 |
+
import matplotlib.pyplot as plt
|
28 |
+
import matplotlib.patches as patches
|
29 |
+
from matplotlib.collections import PatchCollection
|
30 |
+
from matplotlib.patches import Rectangle
|
31 |
+
|
32 |
+
|
33 |
+
import ipywidgets as widgets
|
34 |
+
from IPython.display import display, clear_output
|
35 |
+
|
36 |
+
#==================json 만들기===================
|
37 |
+
def createJson(train_dataset, metas):
|
38 |
+
entire_json = {}
|
39 |
+
|
40 |
+
#초기화
|
41 |
+
vid_idx = 0
|
42 |
+
|
43 |
+
while vid_idx < len(train_dataset):
|
44 |
+
|
45 |
+
#하나의 비디오에 대해
|
46 |
+
video_data = {}
|
47 |
+
video_train_frames, video_train_info = train_dataset[vid_idx]
|
48 |
+
video_meta = metas[vid_idx]
|
49 |
+
|
50 |
+
video_id = video_meta['video']
|
51 |
+
video_data['bins'] = video_meta['bins']
|
52 |
+
bin_nums = len(video_meta['bins'])
|
53 |
+
obj_nums = max([int(k) for k in list(video_meta['obj_id_cat'].keys())])
|
54 |
+
|
55 |
+
annotation_data = []
|
56 |
+
frame_names = []
|
57 |
+
|
58 |
+
for i in range(bin_nums):
|
59 |
+
bin_data = {}
|
60 |
+
for j in range(obj_nums):
|
61 |
+
obj_id = str(j+1)
|
62 |
+
try:
|
63 |
+
obj_data = {
|
64 |
+
"category_name":video_meta['obj_id_cat'][obj_id],
|
65 |
+
"bbox":video_train_info['boxes'][i*obj_nums+j, :].tolist()
|
66 |
+
}
|
67 |
+
except:
|
68 |
+
obj_data = {}
|
69 |
+
bin_data[obj_id] = obj_data
|
70 |
+
annotation_data.append(bin_data)
|
71 |
+
|
72 |
+
video_data['annotations'] = annotation_data
|
73 |
+
|
74 |
+
|
75 |
+
sample_indx = metas[vid_idx]['sample_indx']
|
76 |
+
frames = metas[vid_idx]['frames']
|
77 |
+
for i in sample_indx:
|
78 |
+
frame_name = frames[i]
|
79 |
+
frame_names.append(frame_name)
|
80 |
+
|
81 |
+
video_data['frame_names'] = frame_names
|
82 |
+
video_data['video_path'] = os.path.join(str(train_dataset.img_folder), 'JPEGImages', video_id)
|
83 |
+
entire_json[video_id] = video_data
|
84 |
+
|
85 |
+
vid_idx += 1
|
86 |
+
|
87 |
+
return entire_json
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == '__main__':
|
91 |
+
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
|
92 |
+
args = parser.parse_args()
|
93 |
+
|
94 |
+
#==================데이터 불러오기===================
|
95 |
+
# 전체 데이터셋
|
96 |
+
train_dataset = build_dataset('ytvos_ref', image_set = 'train', args = args)
|
97 |
+
|
98 |
+
# 전체 데이터셋 메타데이터
|
99 |
+
metas = train_dataset.metas
|
100 |
+
|
101 |
+
#==================json 만들기===================
|
102 |
+
entire_json_dict = createJson(train_dataset, metas)
|
103 |
+
print(type(entire_json_dict))
|
104 |
+
entire_json = json.dumps(entire_json_dict, indent=4)
|
105 |
+
|
106 |
+
with open('mbench/sampled_frame2.json', mode='w') as file:
|
107 |
+
file.write(entire_json)
|
.history/slurm_script/jupyter_20250106230703.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=jupyter
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=0-06:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/jupyter.out
|
11 |
+
|
12 |
+
ml purge
|
13 |
+
ml load cuda/12.1
|
14 |
+
eval "$(conda shell.bash hook)"
|
15 |
+
conda activate referformer
|
16 |
+
srun jupyter notebook --no-browser --port=7890
|
.history/slurm_script/jupyter_20250113135212.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=jupyter
|
4 |
+
#SBATCH --partition=a5000
|
5 |
+
#SBATCH --nodelist=node04
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=0-06:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/jupyter.out
|
11 |
+
|
12 |
+
ml purge
|
13 |
+
ml load cuda/12.1
|
14 |
+
eval "$(conda shell.bash hook)"
|
15 |
+
conda activate referformer
|
16 |
+
srun jupyter notebook --no-browser --port=7890
|
.history/slurm_script/jupyter_20250117012746.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=jupyter
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=0-06:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/jupyter.out
|
11 |
+
|
12 |
+
ml purge
|
13 |
+
ml load cuda/12.1
|
14 |
+
eval "$(conda shell.bash hook)"
|
15 |
+
conda activate referformer
|
16 |
+
srun jupyter notebook --no-browser --port=7890
|
.history/slurm_script/jupyter_20250117012750.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=jupyter
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=14-00:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/jupyter.out
|
11 |
+
|
12 |
+
ml purge
|
13 |
+
ml load cuda/12.1
|
14 |
+
eval "$(conda shell.bash hook)"
|
15 |
+
conda activate referformer
|
16 |
+
srun jupyter notebook --no-browser --port=7890
|
.history/slurm_script/jupyter_20250117143527.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=jupyter
|
4 |
+
#SBATCH --partition=a5000
|
5 |
+
#SBATCH --nodelist=node04
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=14-00:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/jupyter.out
|
11 |
+
|
12 |
+
ml purge
|
13 |
+
ml load cuda/12.1
|
14 |
+
eval "$(conda shell.bash hook)"
|
15 |
+
conda activate referformer
|
16 |
+
srun jupyter notebook --no-browser --port=7890
|
.history/slurm_script/mbench_gpt_a2d_20250205122407.sh
ADDED
File without changes
|
.history/slurm_script/mbench_gpt_a2d_20250205151525.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=mbench_gpt_a2d
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=14-00:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/mbench_gpt_a2d.out
|
11 |
+
cd /home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer
|
12 |
+
|
13 |
+
ml purge
|
14 |
+
ml load cuda/12.1
|
15 |
+
eval "$(conda shell.bash hook)"
|
16 |
+
conda activate referformer
|
17 |
+
|
18 |
+
python3 mbench_a2d/gpt_a2d_numbered.py \
|
19 |
+
--save_caption_path mbench_a2d/numbered_captions.json
|
.history/slurm_script/mbench_gpt_ref-ytvos-revised_20250121155759.sh
ADDED
File without changes
|
.history/slurm_script/mbench_gpt_ref-ytvos_20250119070901.sh
ADDED
File without changes
|
.history/slurm_script/mbench_gpt_ref-ytvos_20250119070932.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=mbench_gpt_ref-ytvos
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=14-00:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/mbench_gpt_ref-ytvos.out
|
11 |
+
cd /home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer
|
12 |
+
|
13 |
+
ml purge
|
14 |
+
ml load cuda/12.1
|
15 |
+
eval "$(conda shell.bash hook)"
|
16 |
+
conda activate referformer
|
17 |
+
|
18 |
+
python3 mbench/make_ref-ytvos_json.py
|
.history/slurm_script/mbench_gtp_ref-ytvos_numbered_20250130185113.sh
ADDED
File without changes
|
.history/slurm_script/mbench_gtp_ref-ytvos_numbered_20250130220432.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=mbench_gpt_ref-ytvos_numbered
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=14-00:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/mbench_gpt_ref-ytvos_numbered.out
|
11 |
+
cd /home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer
|
12 |
+
|
13 |
+
ml purge
|
14 |
+
ml load cuda/12.1
|
15 |
+
eval "$(conda shell.bash hook)"
|
16 |
+
conda activate referformer
|
17 |
+
|
18 |
+
python3 mbench/gpt_ref-ytvos_numbered_cy.py \
|
19 |
+
--save_caption_path mbench/numbered_captions_gpt-4o-mini.json \
|
20 |
+
--save_valid_obj_ids_path mbench/numbered_valid_obj_idsgpt-4o-mini.json
|
.history/slurm_script/mbench_gtp_ref-ytvos_numbered_20250130220435.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=mbench_gpt_ref-ytvos_numbered
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=14-00:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/mbench_gpt_ref-ytvos_numbered.out
|
11 |
+
cd /home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer
|
12 |
+
|
13 |
+
ml purge
|
14 |
+
ml load cuda/12.1
|
15 |
+
eval "$(conda shell.bash hook)"
|
16 |
+
conda activate referformer
|
17 |
+
|
18 |
+
python3 mbench/gpt_ref-ytvos_numbered_cy.py \
|
19 |
+
--save_caption_path mbench/numbered_captions_gpt-4o-mini.json \
|
20 |
+
--save_valid_obj_ids_path mbench/numbered_valid_obj_ids_gpt-4o-mini.json
|
.history/slurm_script/mbench_gtp_ref-ytvos_numbered_20250207171522.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=mbench_gpt_ref-ytvos_numbered
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=14-00:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/mbench_gpt_ref-ytvos_numbered.out
|
11 |
+
cd /home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer
|
12 |
+
|
13 |
+
ml purge
|
14 |
+
ml load cuda/12.1
|
15 |
+
eval "$(conda shell.bash hook)"
|
16 |
+
conda activate referformer
|
17 |
+
|
18 |
+
python3 mbench/gpt_ref-ytvos_numbered_cy_sanity_2.py \
|
19 |
+
--save_caption_path mbench/numbered_captions_gpt-4o_final.json \
|
20 |
+
--save_valid_obj_ids_path mbench/numbered_valid_obj_ids_gpt-4o_final.json
|
.history/slurm_script/mbench_ref-ytvos_json_20250113182619.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=mbench_ref-ytvos_json
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=0-06:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/mbench_ref-ytvos_json.out
|
11 |
+
cd /home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer
|
12 |
+
|
13 |
+
ml purge
|
14 |
+
ml load cuda/12.1
|
15 |
+
eval "$(conda shell.bash hook)"
|
16 |
+
conda activate referformer
|
17 |
+
|
18 |
+
python3 mbench/make_ref-ytvos_json.py
|
.history/slurm_script/mbench_ref-ytvos_json_20250113182952.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=mbench_ref-ytvos_json
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=14-00:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/mbench_ref-ytvos_json.out
|
11 |
+
cd /home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer
|
12 |
+
|
13 |
+
ml purge
|
14 |
+
ml load cuda/12.1
|
15 |
+
eval "$(conda shell.bash hook)"
|
16 |
+
conda activate referformer
|
17 |
+
|
18 |
+
python3 mbench/make_ref-ytvos_json.py
|
.history/slurm_script/mbench_ref-ytvos_json_20250116141255.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=mbench_ref-ytvos_json
|
4 |
+
#SBATCH --partition=a5000
|
5 |
+
#SBATCH --nodelist=node04
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=14-00:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/mbench_ref-ytvos_json.out
|
11 |
+
cd /home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer
|
12 |
+
|
13 |
+
ml purge
|
14 |
+
ml load cuda/12.1
|
15 |
+
eval "$(conda shell.bash hook)"
|
16 |
+
conda activate referformer
|
17 |
+
|
18 |
+
python3 mbench/make_ref-ytvos_json.py
|
.history/slurm_script/mbench_ref-ytvos_json_20250117072826.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
#SBATCH --job-name=mbench_ref-ytvos_json
|
4 |
+
#SBATCH --partition=a4000
|
5 |
+
#SBATCH --nodelist=node05
|
6 |
+
#SBATCH --gres=gpu:1
|
7 |
+
#SBATCH --time=14-00:00:00
|
8 |
+
#SBATCH --mem=5G
|
9 |
+
#SBATCH --cpus-per-task=4
|
10 |
+
#SBATCH --output=/home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer/slurm_log/mbench_ref-ytvos_json.out
|
11 |
+
cd /home/yejin/data/projects/yejin/VerbCentric_RIS/ReferFormer
|
12 |
+
|
13 |
+
ml purge
|
14 |
+
ml load cuda/12.1
|
15 |
+
eval "$(conda shell.bash hook)"
|
16 |
+
conda activate referformer
|
17 |
+
|
18 |
+
python3 mbench/make_ref-ytvos_json.py
|
davis2017/results.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import sys
|
5 |
+
|
6 |
+
|
7 |
+
class Results(object):
|
8 |
+
def __init__(self, root_dir):
|
9 |
+
self.root_dir = root_dir
|
10 |
+
|
11 |
+
def _read_mask(self, sequence, frame_id):
|
12 |
+
try:
|
13 |
+
mask_path = os.path.join(self.root_dir, sequence, f'{frame_id}.png')
|
14 |
+
return np.array(Image.open(mask_path))
|
15 |
+
except IOError as err:
|
16 |
+
sys.stdout.write(sequence + " frame %s not found!\n" % frame_id)
|
17 |
+
sys.stdout.write("The frames have to be indexed PNG files placed inside the corespondent sequence "
|
18 |
+
"folder.\nThe indexes have to match with the initial frame.\n")
|
19 |
+
sys.stderr.write("IOError: " + err.strerror + "\n")
|
20 |
+
sys.exit()
|
21 |
+
|
22 |
+
def read_masks(self, sequence, masks_id):
|
23 |
+
mask_0 = self._read_mask(sequence, masks_id[0])
|
24 |
+
masks = np.zeros((len(masks_id), *mask_0.shape))
|
25 |
+
for ii, m in enumerate(masks_id):
|
26 |
+
masks[ii, ...] = self._read_mask(sequence, m)
|
27 |
+
num_objects = int(np.max(masks))
|
28 |
+
tmp = np.ones((num_objects, *masks.shape))
|
29 |
+
tmp = tmp * np.arange(1, num_objects + 1)[:, None, None, None]
|
30 |
+
masks = (tmp == masks[None, ...]) > 0
|
31 |
+
return masks
|
hf_cache/.locks/models--zhiqiulin--clip-flant5-xxl/7528dbb1b6ce860d242aff71294a5fef12a41572.lock
ADDED
File without changes
|
hf_cache/.locks/models--zhiqiulin--clip-flant5-xxl/cc6c13cb9acd48b061e2d2664a50963c338b4998.lock
ADDED
File without changes
|
hf_cache/.locks/models--zhiqiulin--clip-flant5-xxl/e7dbc990f8ede75b1ad2fd17028fbd89a950286a.lock
ADDED
File without changes
|
hf_cache/models--zhiqiulin--clip-flant5-xxl/.no_exist/89bad6fffe1126b24d4360c1e1f69145eb6103aa/model.safetensors
ADDED
File without changes
|
hf_cache/models--zhiqiulin--clip-flant5-xxl/.no_exist/89bad6fffe1126b24d4360c1e1f69145eb6103aa/model.safetensors.index.json
ADDED
File without changes
|
hf_cache/models--zhiqiulin--clip-flant5-xxl/blobs/7528dbb1b6ce860d242aff71294a5fef12a41572
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"decoder_start_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.31.0"
|
7 |
+
}
|