File size: 10,579 Bytes
91e3dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
A2D-Sentences data loader
modified from https://github.com/mttr2021/MTTR/blob/main/datasets/a2d_sentences/a2d_sentences_dataset.py
"""
from pathlib import Path

import torch
from torchvision.io import read_video
import torchvision.transforms.functional as F

from torch.utils.data import Dataset
import datasets.transforms_video as T

import os
from PIL import Image
import json
import numpy as np
import random

import h5py
from pycocotools.mask import encode, area


def get_image_id(video_id, frame_idx, ref_instance_a2d_id):
    image_id = f'v_{video_id}_f_{frame_idx}_i_{ref_instance_a2d_id}'
    return image_id

class A2DSentencesDataset(Dataset):
    """
    A Torch dataset for A2D-Sentences.
    For more information check out: https://kgavrilyuk.github.io/publication/actor_action/ or the original paper at:
    https://arxiv.org/abs/1803.07485
    """
    def __init__(self, image_folder: Path, ann_file: Path, transforms, return_masks: bool, 
                 num_frames: int, max_skip: int, subset):
        super(A2DSentencesDataset, self).__init__()
        dataset_path = str(image_folder)
        self.mask_annotations_dir = os.path.join(dataset_path, 'text_annotations/a2d_annotation_with_instances')
        self.videos_dir = os.path.join(dataset_path, 'Release/clips320H')
        self.ann_file = ann_file
        self.text_annotations = self.get_text_annotations()

        self._transforms = transforms    
        self.return_masks = return_masks # not used
        self.num_frames = num_frames     
        self.max_skip = max_skip
        self.subset = subset

        print(f'\n {subset} sample num: ', len(self.text_annotations))  
        print('\n')  

    def get_text_annotations(self):
        with open(str(self.ann_file), 'r') as f:
            text_annotations_by_frame = [tuple(a) for a in json.load(f)]
            return text_annotations_by_frame

    @staticmethod
    def bounding_box(img):
        rows = np.any(img, axis=1)
        cols = np.any(img, axis=0)
        rmin, rmax = np.where(rows)[0][[0, -1]]
        cmin, cmax = np.where(cols)[0][[0, -1]]
        return rmin, rmax, cmin, cmax # y1, y2, x1, x2 

    def __len__(self):
        return len(self.text_annotations)
    
    def __getitem__(self, idx):
        instance_check = False
        while not instance_check:
            text_query, video_id, frame_idx, instance_id = self.text_annotations[idx]

            text_query = " ".join(text_query.lower().split())  # clean up the text query

            # read the source window frames:
            video_frames, _, _ = read_video(os.path.join(self.videos_dir, f'{video_id}.mp4'), pts_unit='sec')  # (T, H, W, C)
            vid_len = len(video_frames)
            # note that the original a2d dataset is 1 indexed, so we have to subtract 1 from frame_idx
            frame_id = frame_idx - 1

            if self.subset == 'train':
                # get a window of window_size frames with frame frame_id in the middle.
                num_frames = self.num_frames
                # random sparse sample
                sample_indx = [frame_id]
                # local sample
                sample_id_before = random.randint(1, 3)
                sample_id_after = random.randint(1, 3)
                local_indx = [max(0, frame_id - sample_id_before), min(vid_len - 1, frame_id + sample_id_after)]
                sample_indx.extend(local_indx)

                # global sampling
                if num_frames > 3:
                    all_inds = list(range(vid_len))
                    global_inds = all_inds[:min(sample_indx)] + all_inds[max(sample_indx):]
                    global_n = num_frames - len(sample_indx)
                    if len(global_inds) > global_n:
                        select_id = random.sample(range(len(global_inds)), global_n)
                        for s_id in select_id:
                            sample_indx.append(global_inds[s_id])
                    elif vid_len >=global_n:  # sample long range global frames
                        select_id = random.sample(range(vid_len), global_n)
                        for s_id in select_id:
                            sample_indx.append(all_inds[s_id])
                    else:
                        select_id = random.sample(range(vid_len), global_n - vid_len) + list(range(vid_len))           
                        for s_id in select_id:                                                                   
                            sample_indx.append(all_inds[s_id])
                sample_indx.sort()
                # find the valid frame index in sampled frame list, there is only one valid frame
                valid_indices = sample_indx.index(frame_id)

            elif self.subset == 'val':
                start_idx, end_idx = frame_id - self.num_frames // 2, frame_id + (self.num_frames + 1) // 2
                sample_indx = []
                for i in range(start_idx, end_idx):
                    i = min(max(i, 0), len(video_frames)-1)  # pad out of range indices with edge frames
                    sample_indx.append(i)
                sample_indx.sort()
                # find the valid frame index in sampled frame list, there is only one valid frame
                valid_indices = sample_indx.index(frame_id)


            # read frames 
            imgs, labels, boxes, masks, valid = [], [], [], [], []
            for j in range(self.num_frames):
                frame_indx = sample_indx[j]
                img = F.to_pil_image(video_frames[frame_indx].permute(2, 0, 1))
                imgs.append(img)

            # read the instance mask
            frame_annot_path = os.path.join(self.mask_annotations_dir, video_id, f'{frame_idx:05d}.h5')
            f = h5py.File(frame_annot_path)
            instances = list(f['instance'])
            instance_idx = instances.index(instance_id)  # existence was already validated during init

            instance_masks = np.array(f['reMask'])
            if len(instances) == 1:
                instance_masks = instance_masks[np.newaxis, ...]
            instance_masks = torch.tensor(instance_masks).transpose(1, 2)
            mask_rles = [encode(mask) for mask in instance_masks.numpy()]
            mask_areas = area(mask_rles).astype(float)
            f.close()

            # select the referred mask
            label = torch.tensor(0, dtype=torch.long)
            mask = instance_masks[instance_idx].numpy()
            if (mask > 0).any():
                y1, y2, x1, x2 = self.bounding_box(mask)
                box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
                valid.append(1)
            else: # some frame didn't contain the instance
                box = torch.tensor([0, 0, 0, 0]).to(torch.float) 
                valid.append(0)
            mask = torch.from_numpy(mask)
            labels.append(label)
            boxes.append(box)
            masks.append(mask)

            # transform
            h, w = instance_masks.shape[-2:]
            labels = torch.stack(labels, dim=0) 
            boxes = torch.stack(boxes, dim=0) 
            boxes[:, 0::2].clamp_(min=0, max=w)
            boxes[:, 1::2].clamp_(min=0, max=h)
            masks = torch.stack(masks, dim=0) 
            # there is only one valid frame
            target = {
                'frames_idx': torch.tensor(sample_indx), # [T,]
                'valid_indices': torch.tensor([valid_indices]),
                'labels': labels,                        # [1,]
                'boxes': boxes,                          # [1, 4], xyxy
                'masks': masks,                          # [1, H, W]
                'valid': torch.tensor(valid),            # [1,]
                'caption': text_query,
                'orig_size': torch.as_tensor([int(h), int(w)]), 
                'size': torch.as_tensor([int(h), int(w)]),
                'image_id': get_image_id(video_id,frame_idx, instance_id)
            }

            # "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
            if self._transforms:
                imgs, target = self._transforms(imgs, target)
                imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
            else:
                imgs = np.array(imgs)
                imgs = torch.tensor(imgs.transpose(0, 3, 1, 2))
            
            # FIXME: handle "valid", since some box may be removed due to random crop
            if torch.any(target['valid'] == 1):  # at leatst one instance
                instance_check = True
            else:
                idx = random.randint(0, self.__len__() - 1)

        return imgs, target


def make_coco_transforms(image_set, max_size=640):
    normalize = T.Compose([
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    scales = [288, 320, 352, 392, 416, 448, 480, 512]

    if image_set == 'train':
        return T.Compose([
            T.RandomHorizontalFlip(),
            T.PhotometricDistort(),
            T.RandomSelect(
                T.Compose([
                    T.RandomResize(scales, max_size=max_size),
                    T.Check(),
                ]),
                T.Compose([
                    T.RandomResize([400, 500, 600]),
                    T.RandomSizeCrop(384, 600),
                    T.RandomResize(scales, max_size=max_size),
                    T.Check(),
                ])
            ),
            normalize,
        ])
    
    # we do not use the 'val' set since the annotations are inaccessible
    if image_set == 'val':
        return T.Compose([
            T.RandomResize([360], max_size=640),
            normalize,
        ])

    raise ValueError(f'unknown {image_set}')


def build(image_set, args):
    root = Path(args.a2d_path)
    assert root.exists(), f'provided A2D-Sentences path {root} does not exist'
    PATHS = {
        "train": (root, root / "a2d_sentences_single_frame_train_annotations.json"),
        "val": (root, root / "a2d_sentences_single_frame_test_annotations.json"),   
    }
    img_folder, ann_file = PATHS[image_set]
    #dataset = A2DSentencesDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size), 
    #                            return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
    dataset = A2DSentencesDataset(img_folder, ann_file, transforms=None, 
                                return_masks=args.masks, num_frames=args.num_frames, max_skip=args.max_skip, subset=image_set)
    return dataset