File size: 8,642 Bytes
2c58401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import sys
import os
import argparse
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import opts
import numpy as np
import cv2
from PIL import Image
import json
from mbench.ytvos_ref import build as build_ytvos_ref
import t2v_metrics
import matplotlib.pyplot as plt
import textwrap
def scoreCaption(idx, all_captions, all_valid_obj_ids, clip_flant5_score, color_mask = False):
vid_meta = metas[idx]
vid_id = vid_meta['video']
frames = vid_meta['frames']
first_cat = list(all_captions[vid_id].keys())[0]
sampled_frames = list(all_captions[vid_id][first_cat].keys())
imgs = []
masks = []
for frame_indx in sampled_frames:
frame_name = frames[int(frame_indx)]
img_path = os.path.join(str(train_dataset.img_folder), 'JPEGImages', vid_id, frame_name + '.jpg')
mask_path = os.path.join(str(train_dataset.img_folder), 'Annotations', vid_id, frame_name + '.png')
img = Image.open(img_path).convert('RGB')
imgs.append(img)
mask = Image.open(mask_path).convert('P')
mask = np.array(mask)
masks.append(mask)
vid_captions = all_captions[vid_id]
cat_names = set(list(vid_captions.keys()))
vid_result = {}
for cat in cat_names:
cat_captions = vid_captions[cat]
cat_result = {}
for i in range(len(imgs)):
frame_name = sampled_frames[i]
frame = np.copy(np.array(imgs[i]))
frame_for_contour = np.copy(np.array(imgs[i]))
mask = masks[i]
all_obj_ids = np.unique(mask).astype(int)
all_obj_ids = [str(obj_id) for obj_id in all_obj_ids if obj_id != 0]
if cat in all_valid_obj_ids[vid_id]:
valid_obj_ids = all_valid_obj_ids[vid_id][cat]
else:
valid_obj_ids = []
for j in range(len(all_obj_ids)):
obj_id = all_obj_ids[j]
obj_mask = (mask == int(obj_id)).astype(np.uint8)
if obj_id in valid_obj_ids:
if color_mask == False:
contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(frame, contours, -1, colors[j], 3)
for i, contour in enumerate(contours):
# ์ค๊ณฝ์ ์ค์ฌ ๊ณ์ฐ
moments = cv2.moments(contour)
if moments["m00"] != 0: # ์ค์ฌ ๊ณ์ฐ ๊ฐ๋ฅ ์ฌ๋ถ ํ์ธ
cx = int(moments["m10"] / moments["m00"])
cy = int(moments["m01"] / moments["m00"])
else:
cx, cy = contour[0][0] # ์ค์ฌ ๊ณ์ฐ ๋ถ๊ฐ์ ๋์ฒด ์ขํ ์ฌ์ฉ
# ํ
์คํธ ๋ฐฐ๊ฒฝ (๊ฒ์์ ๋ฐฐ๊ฒฝ ๋ง๋ค๊ธฐ)
font = cv2.FONT_HERSHEY_SIMPLEX
text = obj_id
text_size = cv2.getTextSize(text, font, 1, 2)[0]
text_w, text_h = text_size
# ํ
์คํธ ๋ฐฐ๊ฒฝ ๊ทธ๋ฆฌ๊ธฐ (๊ฒ์์ ๋ฐฐ๊ฒฝ)
cv2.rectangle(frame, (cx - text_w // 2 - 5, cy - text_h // 2 - 5),
(cx + text_w // 2 + 5, cy + text_h // 2 + 5), (0, 0, 0), -1)
# ํ
์คํธ ๊ทธ๋ฆฌ๊ธฐ (ํฐ์ ํ
์คํธ)
cv2.putText(frame, text, (cx - text_w // 2, cy + text_h // 2),
font, 1, (255, 255, 255), 2)
else:
alpha = 0.08
colored_obj_mask = np.zeros_like(frame)
colored_obj_mask[obj_mask == 1] = colors[j]
frame[obj_mask == 1] = (
(1 - alpha) * frame[obj_mask == 1]
+ alpha * colored_obj_mask[obj_mask == 1]
)
contours, _ = cv2.findContours(obj_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(frame, contours, -1, colors[j], 2)
cv2.drawContours(frame_for_contour, contours, -1, colors[j], 2)
if len(contours) > 0:
largest_contour = max(contours, key=cv2.contourArea)
M = cv2.moments(largest_contour)
if M["m00"] != 0:
center_x = int(M["m10"] / M["m00"])
center_y = int(M["m01"] / M["m00"])
else:
center_x, center_y = 0, 0
font = cv2.FONT_HERSHEY_SIMPLEX
text = obj_id
font_scale = 0.9
text_size = cv2.getTextSize(text, font, font_scale, 2)[0]
text_x = center_x - text_size[0] // 1 # ํ
์คํธ์ ๊ฐ๋ก ์ค์ฌ
text_y = center_y
# text_y = center_y + text_size[1] // 2 # ํ
์คํธ์ ์ธ๋ก ์ค์ฌ
# ํ
์คํธ ๋ฐฐ๊ฒฝ ์ฌ๊ฐํ ์ขํ ๊ณ์ฐ
rect_start = (text_x - 5, text_y - text_size[1] - 5) # ๋ฐฐ๊ฒฝ ์ฌ๊ฐํ ์ข์๋จ
# rect_end = (text_x + text_size[0] + 5, text_y + 5)
rect_end = (text_x + text_size[0] + 5, text_y)
cv2.rectangle(frame, rect_start, rect_end, (0, 0, 0), -1)
cv2.putText(frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2)
# fig, ax = plt.subplots()
# ax.imshow(frame)
# ax.axis('off')
frame_caption = cat_captions[frame_name]
if frame_caption:
# wrapped_text = "\n".join(textwrap.wrap(frame_caption, width=60))
# ax.text(0.5, -0.3, wrapped_text, ha='center', va='center', fontsize=12, transform=ax.transAxes)
#calculate vqa score
frame = Image.fromarray(frame)
score = clip_flant5_score(images=[frame], texts=[frame_caption])
else:
score = None
# plt.title(f"vid_id: {vid_id}, cat: {cat}, frame: {frame_name}, score: {score}")
# plt.tight_layout()
# plt.show()
cat_result[frame_name] = {
"caption" : frame_caption,
"score" : score
}
vid_result[cat] = cat_result
return vid_id, vid_result
if __name__ == '__main__':
parser = argparse.ArgumentParser('ReferFormer training and evaluation script', parents=[opts.get_args_parser()])
args = parser.parse_args()
#==================๋ฐ์ดํฐ ๋ถ๋ฌ์ค๊ธฐ===================
# ์ ์ฒด ๋ฐ์ดํฐ์
train_dataset = build_ytvos_ref(image_set = 'train', args = args)
# ์ ์ฒด ๋ฐ์ดํฐ์
๋ฉํ๋ฐ์ดํฐ
metas = train_dataset.metas
# caption ๋ฐ์ดํฐ
with open('mbench/numbered_captions_gpt-4o_final.json', 'r') as file:
all_captions = json.load(file)
# valid obj ids ๋ฐ์ดํฐ
with open('mbench/numbered_valid_obj_ids_gpt-4o_final.json', 'r') as file:
all_valid_obj_ids = json.load(file)
# ์์ ํ๋ณด 8๊ฐ (RGB ํ์)
colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255), # Blue
(255, 255, 0), # Yellow
(255, 0, 255), # Magenta
(0, 255, 255), # Cyan
(128, 0, 128), # Purple
(255, 165, 0) # Orange
]
#==================vqa score ๋ชจ๋ธ ๋ถ๋ฌ์ค๊ธฐ===================
clip_flant5_score = t2v_metrics.VQAScore(model='clip-flant5-xxl')
#==================vqa score ์ ์ ๊ณ์ฐํ๊ธฐ===================
all_scores = {}
for i in range(5):
vid_id, vid_result = scoreCaption(i, all_captions, all_valid_obj_ids, clip_flant5_score, False)
all_scores[vid_id] = vid_result
with open('mbench/numbered_captions_gpt-4o_final_scores.json', 'w', encoding='utf-8') as json_file:
json.dump(all_scores, indent=4, ensure_ascii=False)
print("JSON ํ์ผ์ด ์ฑ๊ณต์ ์ผ๋ก ์ ์ฅ๋์์ต๋๋ค!") |