File size: 4,370 Bytes
2c58401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import json
import os

import cv2
import numpy as np
from tqdm import tqdm

from refer import REFER

parser = argparse.ArgumentParser(description='Data preparation')
parser.add_argument('--data_root', type=str)
parser.add_argument('--output_dir', type=str)
parser.add_argument('--dataset',
                    type=str,
                    choices=['refcoco', 'refcoco+', 'refcocog', 'refclef'],
                    default='refcoco')
parser.add_argument('--split', type=str, default='umd')
parser.add_argument('--generate_mask', action='store_true')
args = parser.parse_args()
img_path = os.path.join(args.data_root, 'images', 'train2014')

h, w = (416, 416)

refer = REFER(args.data_root, args.dataset, args.split)

print('dataset [%s_%s] contains: ' % (args.dataset, args.split))
ref_ids = refer.getRefIds()
image_ids = refer.getImgIds()
print('%s expressions for %s refs in %s images.' %
      (len(refer.Sents), len(ref_ids), len(image_ids)))

print('\nAmong them:')
if args.dataset == 'refclef':
    if args.split == 'unc':
        splits = ['train', 'val', 'testA', 'testB', 'testC']
    else:
        splits = ['train', 'val', 'test']
elif args.dataset == 'refcoco':
    splits = ['train', 'val', 'testA', 'testB']
elif args.dataset == 'refcoco+':
    splits = ['train', 'val', 'testA', 'testB']
elif args.dataset == 'refcocog':
    splits = ['train', 'val',
              'test']  # we don't have test split for refcocog right now.

for split in splits:
    ref_ids = refer.getRefIds(split=split)
    print('%s refs are in split [%s].' % (len(ref_ids), split))


def cat_process(cat):
    if cat >= 1 and cat <= 11:
        cat = cat - 1
    elif cat >= 13 and cat <= 25:
        cat = cat - 2
    elif cat >= 27 and cat <= 28:
        cat = cat - 3
    elif cat >= 31 and cat <= 44:
        cat = cat - 5
    elif cat >= 46 and cat <= 65:
        cat = cat - 6
    elif cat == 67:
        cat = cat - 7
    elif cat == 70:
        cat = cat - 9
    elif cat >= 72 and cat <= 82:
        cat = cat - 10
    elif cat >= 84 and cat <= 90:
        cat = cat - 11
    return cat


def bbox_process(bbox):
    x_min = int(bbox[0])
    y_min = int(bbox[1])
    x_max = x_min + int(bbox[2])
    y_max = y_min + int(bbox[3])
    return list(map(int, [x_min, y_min, x_max, y_max]))


def prepare_dataset(dataset, splits, output_dir, generate_mask=False):
    ann_path = os.path.join(output_dir, 'anns', dataset)
    mask_path = os.path.join(output_dir, 'masks', dataset)
    if not os.path.exists(ann_path):
        os.makedirs(ann_path)
    if not os.path.exists(mask_path):
        os.makedirs(mask_path)

    for split in splits:
        dataset_array = []
        ref_ids = refer.getRefIds(split=split)
        print('Processing split:{} - Len: {}'.format(split, len(ref_ids)))
        for i in tqdm(ref_ids):
            ref_dict = {}

            refs = refer.Refs[i]
            bboxs = refer.getRefBox(i)
            sentences = refs['sentences']
            image_urls = refer.loadImgs(image_ids=refs['image_id'])[0]
            cat = cat_process(refs['category_id'])
            image_urls = image_urls['file_name']
            if dataset == 'refclef' and image_urls in [
                    '19579.jpg', '17975.jpg', '19575.jpg'
            ]:
                continue
            box_info = bbox_process(bboxs)

            ref_dict['bbox'] = box_info
            ref_dict['cat'] = cat
            ref_dict['segment_id'] = i
            ref_dict['img_name'] = image_urls

            if generate_mask:
                cv2.imwrite(os.path.join(mask_path,
                                         str(i) + '.png'),
                            refer.getMask(refs)['mask'] * 255)

            sent_dict = []
            for i, sent in enumerate(sentences):
                sent_dict.append({
                    'idx': i,
                    'sent_id': sent['sent_id'],
                    'sent': sent['sent'].strip()
                })

            ref_dict['sentences'] = sent_dict
            ref_dict['sentences_num'] = len(sent_dict)

            dataset_array.append(ref_dict)
        print('Dumping json file...')
        with open(os.path.join(output_dir, 'anns', dataset, split + '.json'),
                  'w') as f:
            json.dump(dataset_array, f)


prepare_dataset(args.dataset, splits, args.output_dir, args.generate_mask)