metadata
base_model: vinai/bertweet-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bertweetB_10epoch
results: []
bertweetB_10epoch
This model is a fine-tuned version of vinai/bertweet-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1462
- Accuracy: 0.7821
- Precision: 0.2467
- Recall: 0.3063
- F1: 0.2720
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 217 | 0.1311 | 0.8571 | 0.0 | 0.0 | 0.0 |
No log | 2.0 | 434 | 0.1296 | 0.8571 | 0.0 | 0.0 | 0.0 |
0.1928 | 3.0 | 651 | 0.1278 | 0.8571 | 0.0 | 0.0 | 0.0 |
0.1928 | 4.0 | 868 | 0.1248 | 0.8571 | 0.0 | 0.0 | 0.0 |
0.1547 | 5.0 | 1085 | 0.1353 | 0.8593 | 0.3747 | 0.0812 | 0.1334 |
0.1547 | 6.0 | 1302 | 0.1184 | 0.8464 | 0.3093 | 0.1550 | 0.2065 |
0.1191 | 7.0 | 1519 | 0.1224 | 0.8271 | 0.2845 | 0.2841 | 0.2834 |
0.1191 | 8.0 | 1736 | 0.1335 | 0.7936 | 0.2411 | 0.3358 | 0.2806 |
0.1191 | 9.0 | 1953 | 0.1376 | 0.8021 | 0.2630 | 0.2952 | 0.2765 |
0.0734 | 10.0 | 2170 | 0.1462 | 0.7821 | 0.2467 | 0.3063 | 0.2720 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1