File size: 1,043 Bytes
c8dd61d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from typing import Any, Dict, List

import torch
from transformers import AutoTokenizer, Qwen2ForCausalLM, pipeline

dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16


class EndpointHandler:
    def __init__(self, path=""):
        # load the model
        self.tokenizer = AutoTokenizer.from_pretrained(path)
        model = Qwen2ForCausalLM.from_pretrained(
            path, device_map="auto", torch_dtype=dtype
        )
        # create inference pipeline
        self.pipeline = pipeline("text-generation", model=model, tokenizer=self.tokenizer)

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # pass inputs with all kwargs in data
        if parameters is not None:
            prediction = self.pipeline(inputs, tokenizer=self.tokenizer, **parameters)
        else:
            prediction = self.pipeline(inputs)
        # postprocess the prediction
        return prediction