Create handler.py
Browse files- handler.py +29 -0
handler.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, Qwen2ForCausalLM, pipeline
|
5 |
+
|
6 |
+
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
7 |
+
|
8 |
+
|
9 |
+
class EndpointHandler:
|
10 |
+
def __init__(self, path=""):
|
11 |
+
# load the model
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
13 |
+
model = Qwen2ForCausalLM.from_pretrained(
|
14 |
+
path, device_map="auto", torch_dtype=dtype
|
15 |
+
)
|
16 |
+
# create inference pipeline
|
17 |
+
self.pipeline = pipeline("text-generation", model=model, tokenizer=self.tokenizer)
|
18 |
+
|
19 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
20 |
+
inputs = data.pop("inputs", data)
|
21 |
+
parameters = data.pop("parameters", None)
|
22 |
+
|
23 |
+
# pass inputs with all kwargs in data
|
24 |
+
if parameters is not None:
|
25 |
+
prediction = self.pipeline(inputs, tokenizer=self.tokenizer, **parameters)
|
26 |
+
else:
|
27 |
+
prediction = self.pipeline(inputs)
|
28 |
+
# postprocess the prediction
|
29 |
+
return prediction
|