dennohpeter's picture
Upload tokenizer
93092f2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-53-sw-ke-tokenizer
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: fleurs
          type: fleurs
          config: sw_ke
          split: test
          args: sw_ke
        metrics:
          - type: wer
            value: 0.6223628691983122
            name: Wer

wav2vec2-large-xlsr-53-sw-ke-tokenizer

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9600
  • Wer: 0.6224

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.8918 4.1667 400 2.8681 1.0
2.8863 8.3333 800 2.8663 1.0
2.8092 12.5 1200 2.5442 1.0
0.8899 16.6667 1600 0.6992 0.6511
0.2577 20.8333 2000 0.8239 0.6385
0.1397 25.0 2400 0.8893 0.6251
0.0971 29.1667 2800 0.9600 0.6224

Framework versions

  • Transformers 4.53.0
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.2