PII-Detection-V2.1
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0331
- Overall Precision: 0.9482
- Overall Recall: 0.9574
- Overall F1: 0.9528
- Overall Accuracy: 0.9926
- Accountname F1: 0.9939
- Accountnumber F1: 0.9879
- Buildingnumber F1: 0.8059
- City F1: 0.9729
- Companyname F1: 0.9773
- County F1: 0.9463
- Creditcardcvv F1: 0.8970
- Creditcardissuer F1: 0.9565
- Creditcardnumber F1: 0.8770
- Email F1: 0.9981
- Firstname F1: 0.9324
- Fullname F1: 0.9851
- Iban F1: 0.9834
- Lastname F1: 0.8744
- Middlename F1: 0.8390
- Name F1: 0.9972
- Number F1: 0.9684
- Phonenumber F1: 0.9788
- Pin F1: 0.9017
- Secondaryaddress F1: 0.9892
- State F1: 0.9421
- Street F1: 0.8617
- Streetaddress F1: 0.7533
- Url F1: 0.9977
- Username F1: 0.9654
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Email F1 | Firstname F1 | Fullname F1 | Iban F1 | Lastname F1 | Middlename F1 | Name F1 | Number F1 | Phonenumber F1 | Pin F1 | Secondaryaddress F1 | State F1 | Street F1 | Streetaddress F1 | Url F1 | Username F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0445 | 1.0 | 2031 | 0.0375 | 0.8924 | 0.9268 | 0.9093 | 0.9885 | 0.9781 | 0.9675 | 0.7260 | 0.9391 | 0.9347 | 0.8747 | 0.8221 | 0.8962 | 0.8239 | 0.9948 | 0.8764 | 0.9804 | 0.9528 | 0.7683 | 0.6548 | 0.9889 | 0.8223 | 0.9277 | 0.7938 | 0.9853 | 0.8633 | 0.7646 | 0.4597 | 0.9937 | 0.9427 |
0.0266 | 2.0 | 4062 | 0.0296 | 0.9245 | 0.9455 | 0.9349 | 0.9908 | 0.9900 | 0.9810 | 0.7546 | 0.9639 | 0.9574 | 0.9085 | 0.8370 | 0.9375 | 0.8809 | 0.9979 | 0.9094 | 0.9824 | 0.9785 | 0.8299 | 0.8111 | 0.9938 | 0.9247 | 0.9523 | 0.8640 | 0.9826 | 0.9163 | 0.7605 | 0.6372 | 0.9977 | 0.9599 |
0.0148 | 3.0 | 6093 | 0.0277 | 0.9414 | 0.9529 | 0.9471 | 0.9921 | 0.9948 | 0.9863 | 0.7876 | 0.9689 | 0.9624 | 0.9324 | 0.8883 | 0.9537 | 0.8795 | 0.9979 | 0.9252 | 0.9849 | 0.9840 | 0.8515 | 0.8310 | 0.9946 | 0.9506 | 0.9675 | 0.8685 | 0.9875 | 0.9325 | 0.8355 | 0.7560 | 0.9973 | 0.9685 |
0.0095 | 4.0 | 8124 | 0.0301 | 0.9438 | 0.9536 | 0.9487 | 0.9921 | 0.9913 | 0.9859 | 0.8018 | 0.9742 | 0.9652 | 0.9443 | 0.8982 | 0.9508 | 0.8784 | 0.9986 | 0.9281 | 0.9842 | 0.9828 | 0.8584 | 0.8294 | 0.9952 | 0.9681 | 0.9629 | 0.8889 | 0.9875 | 0.9374 | 0.8430 | 0.7522 | 0.9980 | 0.9457 |
0.0038 | 5.0 | 10155 | 0.0331 | 0.9482 | 0.9574 | 0.9528 | 0.9926 | 0.9939 | 0.9879 | 0.8059 | 0.9729 | 0.9773 | 0.9463 | 0.8970 | 0.9565 | 0.8770 | 0.9981 | 0.9324 | 0.9851 | 0.9834 | 0.8744 | 0.8390 | 0.9972 | 0.9684 | 0.9788 | 0.9017 | 0.9892 | 0.9421 | 0.8617 | 0.7533 | 0.9977 | 0.9654 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.2.0
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 111
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for deepaksiloka/PII-Detection-V2.1
Base model
distilbert/distilbert-base-uncased