qwen2-7b-instruct-trl-sft-ChartQA

This model is a fine-tuned version of Qwen/Qwen2-VL-2B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
2.8769 0.1130 10 2.3660
2.0843 0.2260 20 1.5363
1.1442 0.3390 30 0.6542
0.5756 0.4520 40 0.4312
0.4821 0.5650 50 0.4034
0.4743 0.6780 60 0.3902
0.4445 0.7910 70 0.3732
0.4353 0.9040 80 0.3488
0.3692 1.0113 90 0.2830
0.3362 1.1243 100 0.2695
0.3219 1.2373 110 0.2662
0.3257 1.3503 120 0.2613
0.3012 1.4633 130 0.2603
0.3132 1.5763 140 0.2568
0.3054 1.6893 150 0.2548
0.3119 1.8023 160 0.2528
0.2956 1.9153 170 0.2507
0.2989 2.0226 180 0.2500
0.3087 2.1356 190 0.2476
0.2943 2.2486 200 0.2481
0.3064 2.3616 210 0.2453
0.2896 2.4746 220 0.2438
0.2825 2.5876 230 0.2435
0.2817 2.7006 240 0.2400
0.2758 2.8136 250 0.2401
0.2775 2.9266 260 0.2406

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dcaisc/qwen2-7b-instruct-trl-sft-ChartQA

Base model

Qwen/Qwen2-VL-2B
Adapter
(71)
this model