fineweb-fra_latn-quality-transformer

This model is a fine-tuned version of EuroBERT/EuroBERT-210m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5184
  • F1: 0.4882
  • Accuracy: 0.6573
  • Confusion Matrix: 3 10 7 1 94 12 1 30 20
  • High Precision: 0.6
  • High Recall: 0.15
  • High F1: 0.24
  • Low Precision: 0.7015
  • Low Recall: 0.8785
  • Low F1: 0.7801
  • Medium Precision: 0.5128
  • Medium Recall: 0.3922
  • Medium F1: 0.4444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy Confusion Matrix High Precision High Recall High F1 Low Precision Low Recall Low F1 Medium Precision Medium Recall Medium F1
No log 1.0 5 1.4081 0.1518 0.2865 0 0 20
5 0 102
0 0 51 0.0 0.0 0.0 0.0 0.0 0.0 0.2948 1.0 0.4554
1.2754 2.0 10 1.0008 0.2503 0.6011 0 20 0
0 107 0
0 51 0 0.0 0.0 0.0 0.6011 1.0 0.7509 0.0 0.0 0.0
1.2754 3.0 15 0.9946 0.3367 0.4775 0 2 18
0 37 70
0 3 48 0.0 0.0 0.0 0.8810 0.3458 0.4966 0.3529 0.9412 0.5134
0.8128 4.0 20 0.7867 0.4046 0.6404 0 11 9
0 93 14
0 30 21 0.0 0.0 0.0 0.6940 0.8692 0.7718 0.4773 0.4118 0.4421
0.8128 5.0 25 0.7778 0.4324 0.6348 0 4 16
2 80 25
1 17 33 0.0 0.0 0.0 0.7921 0.7477 0.7692 0.4459 0.6471 0.528
0.5766 6.0 30 0.9369 0.4169 0.6292 0 5 15
2 85 20
1 23 27 0.0 0.0 0.0 0.7522 0.7944 0.7727 0.4355 0.5294 0.4779
0.5766 7.0 35 0.8983 0.4443 0.6180 1 4 15
1 78 28
2 18 31 0.25 0.05 0.0833 0.78 0.7290 0.7536 0.4189 0.6078 0.496
0.1777 8.0 40 1.5184 0.4882 0.6573 3 10 7
1 94 12
1 30 20 0.6 0.15 0.24 0.7015 0.8785 0.7801 0.5128 0.3922 0.4444
0.1777 9.0 45 1.7748 0.4364 0.5955 2 7 11
2 80 25
7 20 24 0.1818 0.1 0.1290 0.7477 0.7477 0.7477 0.4 0.4706 0.4324
0.013 10.0 50 2.1900 0.4190 0.6236 0 7 13
3 83 21
2 21 28 0.0 0.0 0.0 0.7477 0.7757 0.7615 0.4516 0.5490 0.4956
0.013 11.0 55 2.6390 0.4348 0.6404 0 6 14
1 81 25
1 17 33 0.0 0.0 0.0 0.7788 0.7570 0.7678 0.4583 0.6471 0.5366
0.0041 12.0 60 2.2662 0.4481 0.5955 4 9 7
6 84 17
8 25 18 0.2222 0.2 0.2105 0.7119 0.7850 0.7467 0.4286 0.3529 0.3871
0.0041 13.0 65 3.0654 0.4064 0.5787 0 4 16
0 64 43
3 9 39 0.0 0.0 0.0 0.8312 0.5981 0.6957 0.3980 0.7647 0.5235
0.0058 14.0 70 2.4618 0.4273 0.5899 3 9 8
2 86 19
5 30 16 0.3 0.15 0.2 0.688 0.8037 0.7414 0.3721 0.3137 0.3404
0.0058 15.0 75 2.7654 0.4147 0.5506 1 3 16
5 61 41
8 7 36 0.0714 0.05 0.0588 0.8592 0.5701 0.6854 0.3871 0.7059 0.5
0.0011 16.0 80 3.1337 0.3696 0.6180 0 15 5
1 96 10
2 35 14 0.0 0.0 0.0 0.6575 0.8972 0.7589 0.4828 0.2745 0.35
0.0011 17.0 85 2.7265 0.4388 0.5618 4 3 13
5 74 28
13 16 22 0.1818 0.2 0.1905 0.7957 0.6916 0.74 0.3492 0.4314 0.3860
0.0007 18.0 90 2.9583 0.4270 0.5843 1 3 16
1 71 35
6 13 32 0.125 0.05 0.0714 0.8161 0.6636 0.7320 0.3855 0.6275 0.4776

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
212M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support model that require custom code execution.

Model tree for davanstrien/fineweb-fra_latn-quality-transformer

Finetuned
(7)
this model