ComOM-VIDeBERTa-3
This model is a fine-tuned version of Fsoft-AIC/videberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0971
- Precision: 0.1319
- Recall: 0.1029
- F1: 0.1156
- Accuracy: 0.6647
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 78 | 1.2306 | 0.0768 | 0.0370 | 0.0499 | 0.6486 |
No log | 2.0 | 156 | 1.1902 | 0.0755 | 0.0609 | 0.0674 | 0.6407 |
No log | 3.0 | 234 | 1.1627 | 0.0923 | 0.0679 | 0.0783 | 0.6499 |
No log | 4.0 | 312 | 1.1489 | 0.1159 | 0.0879 | 0.1000 | 0.6530 |
No log | 5.0 | 390 | 1.1219 | 0.0997 | 0.0749 | 0.0856 | 0.6529 |
No log | 6.0 | 468 | 1.1130 | 0.1245 | 0.0879 | 0.1030 | 0.6589 |
1.0673 | 7.0 | 546 | 1.1095 | 0.1247 | 0.0919 | 0.1058 | 0.6600 |
1.0673 | 8.0 | 624 | 1.0971 | 0.1319 | 0.1029 | 0.1156 | 0.6647 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for datleviet/ComOM-VIDeBERTa-3
Base model
Fsoft-AIC/videberta-base