datdo2717's picture
End of training
aa2a045 verified
metadata
library_name: transformers
language:
  - hi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Ori vi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 19.127375087966218

Whisper Small Ori vi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5081
  • Wer: 19.1274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 1100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6002 0.2222 100 0.5593 21.0556
0.4758 0.4444 200 0.5197 20.4011
0.4916 0.6667 300 0.5082 21.7101
0.4612 0.8889 400 0.4973 19.7467
0.2709 1.1111 500 0.4971 20.9500
0.2823 1.3333 600 0.4974 19.4300
0.2819 1.5556 700 0.4943 19.2892
0.2817 1.7778 800 0.4930 19.5496
0.2752 2.0 900 0.4885 19.3878
0.1722 2.2222 1000 0.5053 19.1414
0.1383 2.4444 1100 0.5081 19.1274

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0