Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Japanese
Size:
10K - 100K
ArXiv:
License:
dataset_info: | |
- config_name: default | |
features: | |
- name: premise | |
dtype: large_string | |
- name: hypothesis | |
dtype: large_string | |
- name: template_num | |
dtype: int64 | |
- name: time_format | |
dtype: large_string | |
- name: time_span | |
dtype: large_string | |
- name: category | |
dtype: large_string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 2424590 | |
num_examples: 9950 | |
- name: test | |
num_bytes: 88516 | |
num_examples: 348 | |
download_size: 594545 | |
dataset_size: 2513106 | |
- config_name: template | |
features: | |
- name: id | |
dtype: int64 | |
- name: premise | |
dtype: large_string | |
- name: hypothesis | |
dtype: large_string | |
- name: entailment | |
dtype: large_string | |
- name: contradiction | |
dtype: large_string | |
- name: ng time unit | |
dtype: large_string | |
- name: test time format | |
dtype: large_string | |
- name: category | |
dtype: large_string | |
splits: | |
- name: train | |
num_bytes: 26196 | |
num_examples: 79 | |
download_size: 9709 | |
dataset_size: 26196 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- split: test | |
path: data/test-* | |
- config_name: template | |
data_files: | |
- split: train | |
path: template/train-* | |
license: cc-by-sa-4.0 | |
task_categories: | |
- text-classification | |
language: | |
- ja | |
tags: | |
- nli | |
- evaluation | |
- benchmark | |
pretty_name: >- | |
Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating | |
Generalization Capacity of Language Models | |
# Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models | |
Jamp([tomo-vv/temporalNLI_dataset](https://github.com/tomo-vv/temporalNLI_dataset)) is the Japanese temporal inference benchmark. | |
This dataset consists of templates, test data, and training data. | |
Template subset containing template, time format, or time span in their names are split based on tense fragment, time format, | |
or time span, respectively. | |
## Dataset Details | |
### Dataset Description | |
- **Created by:** tomo-vv([email protected]) | |
- **Language(s) (NLP):** Japanese | |
- **License:** CC BY-SA 4.0 | |
### Dataset Sources | |
- **Repository:** [tomo-vv/temporalNLI_dataset](https://github.com/tomo-vv/temporalNLI_dataset) | |
- **Paper:** [Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models](https://aclanthology.org/2023.acl-srw.8) (Sugimoto et al., ACL 2023) | |
## Citation | |
**BibTeX:** | |
``` | |
@inproceedings{sugimoto-etal-2023-jamp, | |
title = "Jamp: Controlled {J}apanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models", | |
author = "Sugimoto, Tomoki and | |
Onoe, Yasumasa and | |
Yanaka, Hitomi", | |
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)", | |
month = jul, | |
year = "2023", | |
address = "Toronto, Canada", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2023.acl-srw.8", | |
pages = "57--68", | |
} | |
``` | |
**APA:** | |
Sugimoto, T., Onoe, Y., & Yanaka, H. (2023). Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models. | |
arXiv preprint arXiv:2306.10727. |