|
# Datasets for the Direct Preference for Denoising Diffusion Policy Optimization (D3PO) |
|
|
|
**Description**: This repository contains the dataset for the D3PO method in this paper [Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model](https://arxiv.org/abs/2311.13231). The *d3po_dataset* file pertains to the image distortion experiment of the [`anything-v5`](https://huggingface.co/stablediffusionapi/anything-v5) model. |
|
The *text2img_dataset* comprises the images generated from the pretrained, preferred image fine-tuned, reward weighted fine-tuned and D3PO fine-tuned models in the prompt-image alignment experiment. |
|
|
|
**Source Code**: The code used to generate this data can be found [here](https://github.com/yk7333/D3PO/). |
|
|
|
**Directory** |
|
- d3po_dataset |
|
- epoch1 |
|
- all_img |
|
- *.png |
|
- deformed_img |
|
- *.png |
|
- json |
|
- data.json (required for training) |
|
- prompt.json |
|
- sample.pkl(required for training) |
|
- epoch2` |
|
- ... |
|
- epoch5 |
|
|
|
|
|
- text2img_dataset: |
|
- img |
|
- data_*.json |
|
- plot.ipynb |
|
- prompt.txt |
|
|
|
**Citation** |
|
``` |
|
@article{yang2023using, |
|
title={Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model}, |
|
author={Yang, Kai and Tao, Jian and Lyu, Jiafei and Ge, Chunjiang and Chen, Jiaxin and Li, Qimai and Shen, Weihan and Zhu, Xiaolong and Li, Xiu}, |
|
journal={arXiv preprint arXiv:2311.13231}, |
|
year={2023} |
|
} |
|
``` |
|
|