|
|
import numpy as np |
|
|
from tqdm import tqdm |
|
|
|
|
|
from sentence_transformers import SentenceTransformer |
|
|
from cde_benchmark.embedders.base_embedder import Embedder |
|
|
|
|
|
|
|
|
class LateChunkingEmbedder(Embedder): |
|
|
def __init__( |
|
|
self, |
|
|
model: SentenceTransformer = None, |
|
|
batch_size: int = 16, |
|
|
show_progress_bar: bool = True, |
|
|
): |
|
|
super().__init__(is_contextual_model=True) |
|
|
self.model: SentenceTransformer = model |
|
|
self.show_progress_bar = show_progress_bar |
|
|
self.batch_size = batch_size |
|
|
self.sep_token = self.model.tokenizer.sep_token |
|
|
|
|
|
def embed_queries(self, queries): |
|
|
return self.model.encode( |
|
|
queries, |
|
|
show_progress_bar=self.show_progress_bar, |
|
|
batch_size=self.batch_size, |
|
|
) |
|
|
|
|
|
def embed_documents(self, documents): |
|
|
|
|
|
|
|
|
embeddings = [] |
|
|
for document in tqdm(documents): |
|
|
doc = self.sep_token + f"{self.sep_token}".join(document) |
|
|
encodings = self.model.tokenizer( |
|
|
[doc], |
|
|
max_length=8192, |
|
|
truncation=True, |
|
|
padding=True, |
|
|
return_tensors="pt", |
|
|
).to(self.model.device) |
|
|
|
|
|
|
|
|
sep_indices = ( |
|
|
encodings["input_ids"] == self.model.tokenizer.sep_token_id |
|
|
).nonzero(as_tuple=True)[1] |
|
|
|
|
|
|
|
|
assert (sep_indices[-1] == encodings.input_ids.shape[1] - 1).item() |
|
|
if len(document) != len(sep_indices) - 1: |
|
|
print(f"Warning: number of documents ({len(document)}) does not match number of [SEP] tokens - 1 ({len(sep_indices)}), indicating document was too long and was truncated") |
|
|
print(f"The length of the document was {len(doc)} with {len(encodings.input_ids[0])} tokens while model max_length is {8192}") |
|
|
breakpoint() |
|
|
|
|
|
model_outputs = ( |
|
|
self.model._modules["0"].auto_model(**encodings).last_hidden_state |
|
|
) |
|
|
tmp_embeddings = [] |
|
|
for i in range(len(sep_indices) - 1): |
|
|
|
|
|
tmp_embeddings.append( |
|
|
model_outputs[ |
|
|
0, |
|
|
sep_indices[i] + 1 : sep_indices[i + 1], |
|
|
:, |
|
|
] |
|
|
.mean(dim=0) |
|
|
.detach() |
|
|
.cpu() |
|
|
.numpy() |
|
|
) |
|
|
|
|
|
tmp_embeddings = np.array(tmp_embeddings) |
|
|
|
|
|
tmp_embeddings = ( |
|
|
tmp_embeddings / np.linalg.norm(tmp_embeddings, axis=1)[:, None] |
|
|
) |
|
|
|
|
|
embeddings.append(tmp_embeddings) |
|
|
|
|
|
return embeddings |
|
|
|