import numpy as np from tqdm import tqdm from sentence_transformers import SentenceTransformer from cde_benchmark.embedders.base_embedder import Embedder class LateChunkingEmbedder(Embedder): def __init__( self, model: SentenceTransformer = None, batch_size: int = 16, show_progress_bar: bool = True, ): super().__init__(is_contextual_model=True) self.model: SentenceTransformer = model self.show_progress_bar = show_progress_bar self.batch_size = batch_size self.sep_token = self.model.tokenizer.sep_token def embed_queries(self, queries): return self.model.encode( queries, show_progress_bar=self.show_progress_bar, batch_size=self.batch_size, ) def embed_documents(self, documents): # documents is a list of list of documents # This is just for the demo, but here it's not contextual at all embeddings = [] for document in tqdm(documents): doc = self.sep_token + f"{self.sep_token}".join(document) encodings = self.model.tokenizer( [doc], max_length=8192, truncation=True, padding=True, return_tensors="pt", ).to(self.model.device) # split the model outputs on the [SEP] token sep_indices = ( encodings["input_ids"] == self.model.tokenizer.sep_token_id ).nonzero(as_tuple=True)[1] # assert sep_token is at the end assert (sep_indices[-1] == encodings.input_ids.shape[1] - 1).item() if len(document) != len(sep_indices) - 1: print(f"Warning: number of documents ({len(document)}) does not match number of [SEP] tokens - 1 ({len(sep_indices)}), indicating document was too long and was truncated") print(f"The length of the document was {len(doc)} with {len(encodings.input_ids[0])} tokens while model max_length is {8192}") breakpoint() model_outputs = ( self.model._modules["0"].auto_model(**encodings).last_hidden_state ) tmp_embeddings = [] for i in range(len(sep_indices) - 1): # normalize embeddings tmp_embeddings.append( model_outputs[ 0, sep_indices[i] + 1 : sep_indices[i + 1], :, ] .mean(dim=0) .detach() .cpu() .numpy() ) # concatenate embeddings tmp_embeddings = np.array(tmp_embeddings) # normalize embeddings tmp_embeddings = ( tmp_embeddings / np.linalg.norm(tmp_embeddings, axis=1)[:, None] ) embeddings.append(tmp_embeddings) return embeddings