davanstrien
HF Staff
Add plain text prompt support and sample limiting to generate-responses.py
d034c0d
| viewer: false | |
| tags: [uv-script, vllm, gpu, inference] | |
| # vLLM Inference Scripts | |
| Ready-to-run UV scripts for GPU-accelerated inference using [vLLM](https://github.com/vllm-project/vllm). | |
| These scripts use [UV's inline script metadata](https://docs.astral.sh/uv/guides/scripts/) to automatically manage dependencies - just run with `uv run` and everything installs automatically! | |
| ## π Available Scripts | |
| ### classify-dataset.py | |
| Batch text classification using BERT-style encoder models (e.g., BERT, RoBERTa, DeBERTa, ModernBERT) with vLLM's optimized inference engine. | |
| **Note**: This script is specifically for encoder-only classification models, not generative LLMs. | |
| **Features:** | |
| - π High-throughput batch processing | |
| - π·οΈ Automatic label mapping from model config | |
| - π Confidence scores for predictions | |
| - π€ Direct integration with Hugging Face Hub | |
| **Usage:** | |
| ```bash | |
| # Local execution (requires GPU) | |
| uv run classify-dataset.py \ | |
| davanstrien/ModernBERT-base-is-new-arxiv-dataset \ | |
| username/input-dataset \ | |
| username/output-dataset \ | |
| --inference-column text \ | |
| --batch-size 10000 | |
| ``` | |
| **HF Jobs execution:** | |
| ```bash | |
| hf jobs uv run \ | |
| --flavor l4x1 \ | |
| --image vllm/vllm-openai \ | |
| https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \ | |
| davanstrien/ModernBERT-base-is-new-arxiv-dataset \ | |
| username/input-dataset \ | |
| username/output-dataset \ | |
| --inference-column text \ | |
| --batch-size 100000 | |
| ``` | |
| ### generate-responses.py | |
| Generate responses for prompts using generative LLMs (e.g., Llama, Qwen, Mistral) with vLLM's high-performance inference engine. | |
| **Features:** | |
| - π¬ Automatic chat template application | |
| - π Support for both chat messages and plain text prompts | |
| - π Multi-GPU tensor parallelism support | |
| - π Smart filtering for prompts exceeding context length | |
| - π Comprehensive dataset cards with generation metadata | |
| - β‘ HF Transfer enabled for fast model downloads | |
| - ποΈ Full control over sampling parameters | |
| - π― Sample limiting with `--max-samples` for testing | |
| **Usage:** | |
| ```bash | |
| # With chat-formatted messages (default) | |
| uv run generate-responses.py \ | |
| username/input-dataset \ | |
| username/output-dataset \ | |
| --messages-column messages \ | |
| --max-tokens 1024 | |
| # With plain text prompts (NEW!) | |
| uv run generate-responses.py \ | |
| username/input-dataset \ | |
| username/output-dataset \ | |
| --prompt-column question \ | |
| --max-tokens 1024 \ | |
| --max-samples 100 | |
| # With custom model and parameters | |
| uv run generate-responses.py \ | |
| username/input-dataset \ | |
| username/output-dataset \ | |
| --model-id meta-llama/Llama-3.1-8B-Instruct \ | |
| --prompt-column text \ | |
| --temperature 0.9 \ | |
| --top-p 0.95 \ | |
| --max-model-len 8192 | |
| ``` | |
| **HF Jobs execution (multi-GPU):** | |
| ```bash | |
| hf jobs uv run \ | |
| --flavor l4x4 \ | |
| --image vllm/vllm-openai \ | |
| -e UV_PRERELEASE=if-necessary \ | |
| -s HF_TOKEN=hf_*** \ | |
| https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \ | |
| davanstrien/cards_with_prompts \ | |
| davanstrien/test-generated-responses \ | |
| --model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \ | |
| --gpu-memory-utilization 0.9 \ | |
| --max-tokens 600 \ | |
| --max-model-len 8000 | |
| ``` | |
| ### Multi-GPU Tensor Parallelism | |
| - Auto-detects available GPUs by default | |
| - Use `--tensor-parallel-size` to manually specify | |
| - Required for models larger than single GPU memory (e.g., 30B+ models) | |
| ### Handling Long Contexts | |
| The generate-responses.py script includes smart prompt filtering: | |
| - **Default behavior**: Skips prompts exceeding max_model_len | |
| - **Use `--max-model-len`**: Limit context to reduce memory usage | |
| - **Use `--no-skip-long-prompts`**: Fail on long prompts instead of skipping | |
| - Skipped prompts receive empty responses and are logged | |
| ## π About vLLM | |
| vLLM is a high-throughput inference engine optimized for: | |
| - Fast model serving with PagedAttention | |
| - Efficient batch processing | |
| - Support for various model architectures | |
| - Seamless integration with Hugging Face models | |
| ## π§ Technical Details | |
| ### UV Script Benefits | |
| - **Zero setup**: Dependencies install automatically on first run | |
| - **Reproducible**: Locked dependencies ensure consistent behavior | |
| - **Self-contained**: Everything needed is in the script file | |
| - **Direct execution**: Run from local files or URLs | |
| ### Dependencies | |
| Scripts use UV's inline metadata for automatic dependency management: | |
| ```python | |
| # /// script | |
| # requires-python = ">=3.10" | |
| # dependencies = [ | |
| # "datasets", | |
| # "flashinfer-python", | |
| # "huggingface-hub[hf_transfer]", | |
| # "torch", | |
| # "transformers", | |
| # "vllm", | |
| # ] | |
| # /// | |
| ``` | |
| For bleeding-edge features, use the `UV_PRERELEASE=if-necessary` environment variable to allow pre-release versions when needed. | |
| ### Docker Image | |
| For HF Jobs, we recommend the official vLLM Docker image: `vllm/vllm-openai` | |
| This image includes: | |
| - Pre-installed CUDA libraries | |
| - vLLM and all dependencies | |
| - UV package manager | |
| - Optimized for GPU inference | |
| ### Environment Variables | |
| - `HF_TOKEN`: Your Hugging Face authentication token (auto-detected if logged in) | |
| - `UV_PRERELEASE=if-necessary`: Allow pre-release packages when required | |
| - `HF_HUB_ENABLE_HF_TRANSFER=1`: Automatically enabled for faster downloads | |
| ## π Resources | |
| - [vLLM Documentation](https://docs.vllm.ai/) | |
| - [UV Documentation](https://docs.astral.sh/uv/) | |
| - [UV Scripts Organization](https://huggingface.co/uv-scripts) | |