The Dataset Viewer has been disabled on this dataset.

SAM3 Object Detection

Detect objects in images using Meta's SAM3 (Segment Anything Model 3) with text prompts. Process HuggingFace datasets with zero-shot object detection using natural language descriptions.

Quick Start

Requires GPU. Use HuggingFace Jobs for cloud execution:

hf jobs uv run --flavor a100-large \
    -s HF_TOKEN=HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
    input-dataset \
    output-dataset \
    --class-name photograph

Example Output

Here's an example of detected objects (photographs in historical newspapers) with bounding boxes and confidence scores:

Example Detection

Photograph detected in a historical newspaper with bounding box and confidence score. Generated from davanstrien/newspapers-image-predictions.

Local Execution

If you have a CUDA GPU locally:

uv run detect-objects.py INPUT OUTPUT --class-name CLASSNAME

Arguments

Required:

  • input_dataset - Input HF dataset ID
  • output_dataset - Output HF dataset ID
  • --class-name - Object class to detect (e.g., "photograph", "animal", "table")

Common options:

  • --confidence-threshold FLOAT - Min confidence (default: 0.5)
  • --batch-size INT - Batch size (default: 4)
  • --max-samples INT - Limit samples for testing
  • --image-column STR - Image column name (default: "image")
  • --private - Make output private
All options
--mask-threshold FLOAT       Mask generation threshold (default: 0.5)
--split STR                  Dataset split (default: "train")
--shuffle                    Shuffle before processing
--model STR                  Model ID (default: "facebook/sam3")
--dtype STR                  Precision: float32|float16|bfloat16
--hf-token STR               HF token (or use HF_TOKEN env var)

HuggingFace Jobs Examples

Historical Newspapers

Detect photographs in historical newspaper scans:

hf jobs uv run --flavor a100-large \
    -s HF_TOKEN=HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
    davanstrien/newspapers-with-images-after-photography \
    my-username/newspapers-detected \
    --class-name photograph \
    --confidence-threshold 0.6 \
    --batch-size 8

Document Tables

Extract tables from document scans:

hf jobs uv run --flavor a100-large \
    -s HF_TOKEN=HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
    my-documents \
    documents-with-tables \
    --class-name table

Wildlife Camera Traps

Detect animals in camera trap images:

hf jobs uv run --flavor a100-large \
    -s HF_TOKEN=HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
    wildlife-images \
    wildlife-detections \
    --class-name animal \
    --confidence-threshold 0.5

Quick Testing

Test on a small subset before full run:

hf jobs uv run --flavor a100-large \
    -s HF_TOKEN=HF_TOKEN \
    https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
    large-dataset \
    test-output \
    --class-name object \
    --max-samples 20

Using Different GPU Flavors

# L4 (cost-effective)
--flavor l4x1

# A100 (fastest)
--flavor a100

See HF Jobs pricing.

Output Format

Adds objects column with ClassLabel-based detections:

{
    "objects": [
        {
            "bbox": [x, y, width, height],
            "category": 0,  # Always 0 for single class
            "score": 0.87
        }
    ]
}

Load and use:

from datasets import load_dataset

ds = load_dataset("username/output", split="train")

# ClassLabel feature preserves your class name
class_name = ds.features["objects"].feature["category"].names[0]
print(f"Detected class: {class_name}")

for sample in ds:
    for obj in sample["objects"]:
        print(f"{class_name}: {obj['score']:.2f} at {obj['bbox']}")

Detecting Multiple Object Types

To detect multiple object types, run the script multiple times with different --class-name values:

# Detect photographs
hf jobs uv run ... --class-name photograph

# Detect illustrations
hf jobs uv run ... --class-name illustration

# Merge results as needed

Performance

GPU Batch Size ~Images/sec
L4 4-8 2-4
A10 8-16 4-6

Varies by image size and detection complexity

Common Use Cases

  • Documents: --class-name table or --class-name figure
  • Newspapers: --class-name photograph or --class-name illustration
  • Wildlife: --class-name animal or --class-name bird
  • Products: --class-name product or --class-name label

Troubleshooting

  • No CUDA: Use HF Jobs (see examples above)
  • OOM errors: Reduce --batch-size
  • Few detections: Lower --confidence-threshold or try different class descriptions
  • Wrong column: Use --image-column your_column_name

About SAM3

SAM3 is Meta's zero-shot vision model. Describe any object in natural language and it will detect it—no training required.

Note: This script uses transformers from git (SAM3 not yet in stable release).

See Also

More UV scripts at huggingface.co/uv-scripts:

  • dataset-creation - Create HF datasets from files
  • vllm - Fast LLM inference
  • ocr - Document OCR

License

Apache 2.0

Downloads last month
-

Space using uv-scripts/sam3 1