SAM3 Object Detection
Detect objects in images using Meta's SAM3 (Segment Anything Model 3) with text prompts. Process HuggingFace datasets with zero-shot object detection using natural language descriptions.
Quick Start
Requires GPU. Use HuggingFace Jobs for cloud execution:
hf jobs uv run --flavor a100-large \
-s HF_TOKEN=HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
input-dataset \
output-dataset \
--class-name photograph
Example Output
Here's an example of detected objects (photographs in historical newspapers) with bounding boxes and confidence scores:
Photograph detected in a historical newspaper with bounding box and confidence score. Generated from davanstrien/newspapers-image-predictions.
Local Execution
If you have a CUDA GPU locally:
uv run detect-objects.py INPUT OUTPUT --class-name CLASSNAME
Arguments
Required:
input_dataset- Input HF dataset IDoutput_dataset- Output HF dataset ID--class-name- Object class to detect (e.g.,"photograph","animal","table")
Common options:
--confidence-threshold FLOAT- Min confidence (default: 0.5)--batch-size INT- Batch size (default: 4)--max-samples INT- Limit samples for testing--image-column STR- Image column name (default: "image")--private- Make output private
All options
--mask-threshold FLOAT Mask generation threshold (default: 0.5)
--split STR Dataset split (default: "train")
--shuffle Shuffle before processing
--model STR Model ID (default: "facebook/sam3")
--dtype STR Precision: float32|float16|bfloat16
--hf-token STR HF token (or use HF_TOKEN env var)
HuggingFace Jobs Examples
Historical Newspapers
Detect photographs in historical newspaper scans:
hf jobs uv run --flavor a100-large \
-s HF_TOKEN=HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
davanstrien/newspapers-with-images-after-photography \
my-username/newspapers-detected \
--class-name photograph \
--confidence-threshold 0.6 \
--batch-size 8
Document Tables
Extract tables from document scans:
hf jobs uv run --flavor a100-large \
-s HF_TOKEN=HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
my-documents \
documents-with-tables \
--class-name table
Wildlife Camera Traps
Detect animals in camera trap images:
hf jobs uv run --flavor a100-large \
-s HF_TOKEN=HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
wildlife-images \
wildlife-detections \
--class-name animal \
--confidence-threshold 0.5
Quick Testing
Test on a small subset before full run:
hf jobs uv run --flavor a100-large \
-s HF_TOKEN=HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
large-dataset \
test-output \
--class-name object \
--max-samples 20
Using Different GPU Flavors
# L4 (cost-effective)
--flavor l4x1
# A100 (fastest)
--flavor a100
See HF Jobs pricing.
Output Format
Adds objects column with ClassLabel-based detections:
{
"objects": [
{
"bbox": [x, y, width, height],
"category": 0, # Always 0 for single class
"score": 0.87
}
]
}
Load and use:
from datasets import load_dataset
ds = load_dataset("username/output", split="train")
# ClassLabel feature preserves your class name
class_name = ds.features["objects"].feature["category"].names[0]
print(f"Detected class: {class_name}")
for sample in ds:
for obj in sample["objects"]:
print(f"{class_name}: {obj['score']:.2f} at {obj['bbox']}")
Detecting Multiple Object Types
To detect multiple object types, run the script multiple times with different --class-name values:
# Detect photographs
hf jobs uv run ... --class-name photograph
# Detect illustrations
hf jobs uv run ... --class-name illustration
# Merge results as needed
Performance
| GPU | Batch Size | ~Images/sec |
|---|---|---|
| L4 | 4-8 | 2-4 |
| A10 | 8-16 | 4-6 |
Varies by image size and detection complexity
Common Use Cases
- Documents:
--class-name tableor--class-name figure - Newspapers:
--class-name photographor--class-name illustration - Wildlife:
--class-name animalor--class-name bird - Products:
--class-name productor--class-name label
Troubleshooting
- No CUDA: Use HF Jobs (see examples above)
- OOM errors: Reduce
--batch-size - Few detections: Lower
--confidence-thresholdor try different class descriptions - Wrong column: Use
--image-column your_column_name
About SAM3
SAM3 is Meta's zero-shot vision model. Describe any object in natural language and it will detect it—no training required.
Note: This script uses transformers from git (SAM3 not yet in stable release).
See Also
More UV scripts at huggingface.co/uv-scripts:
- dataset-creation - Create HF datasets from files
- vllm - Fast LLM inference
- ocr - Document OCR
License
Apache 2.0
- Downloads last month
- -