Dataset Viewer
Auto-converted to Parquet
id
stringlengths
8
11
sampling_rate
int32
16k
48k
noisy_audio
audioduration (s)
5
26.9
fileid_1
48,000
fileid_2
24,000
fileid_3
24,000
fileid_4
24,000
fileid_5
24,000
fileid_6
24,000
fileid_7
24,000
fileid_8
24,000
fileid_9
24,000
fileid_10
24,000
fileid_11
24,000
fileid_12
24,000
fileid_13
24,000
fileid_14
24,000
fileid_15
24,000
fileid_16
24,000
fileid_17
24,000
fileid_18
24,000
fileid_19
24,000
fileid_20
24,000
fileid_21
24,000
fileid_22
24,000
fileid_23
24,000
fileid_24
24,000
fileid_25
24,000
fileid_26
24,000
fileid_27
24,000
fileid_28
24,000
fileid_29
24,000
fileid_30
24,000
fileid_31
24,000
fileid_32
24,000
fileid_33
24,000
fileid_34
24,000
fileid_35
24,000
fileid_36
24,000
fileid_37
24,000
fileid_38
24,000
fileid_39
24,000
fileid_40
24,000
fileid_41
24,000
fileid_42
24,000
fileid_43
24,000
fileid_44
24,000
fileid_45
24,000
fileid_46
24,000
fileid_47
24,000
fileid_48
24,000
fileid_49
24,000
fileid_50
24,000
fileid_51
24,000
fileid_52
24,000
fileid_53
48,000
fileid_54
24,000
fileid_55
48,000
fileid_56
24,000
fileid_57
24,000
fileid_58
24,000
fileid_59
24,000
fileid_60
24,000
fileid_61
24,000
fileid_62
24,000
fileid_63
24,000
fileid_64
24,000
fileid_65
48,000
fileid_66
24,000
fileid_67
24,000
fileid_68
24,000
fileid_69
24,000
fileid_70
24,000
fileid_71
24,000
fileid_72
24,000
fileid_73
24,000
fileid_74
24,000
fileid_75
24,000
fileid_76
24,000
fileid_77
24,000
fileid_78
24,000
fileid_79
24,000
fileid_80
24,000
fileid_81
24,000
fileid_82
24,000
fileid_83
24,000
fileid_84
24,000
fileid_85
24,000
fileid_86
24,000
fileid_87
24,000
fileid_88
24,000
fileid_89
24,000
fileid_90
24,000
fileid_91
24,000
fileid_92
24,000
fileid_93
24,000
fileid_94
24,000
fileid_95
24,000
fileid_96
24,000
fileid_97
24,000
fileid_98
24,000
fileid_99
24,000
fileid_100
24,000
End of preview. Expand in Data Studio

Dataset Description

This dataset contains the official validation, non-blind test and blind test data used during the 2024 URGENT Speech Enhancement Challenge (https://urgent-challenge.github.io/urgent2024/), an official NeurIPS 2024 Competition. The dataset is designed to evaluate the performance of speech enhancement systems in handling various distortions and input conditions (e.g., varying sampling frequencies and encoding formats such as MP3/FLAC).

The dataset is divided into three splits:

  • Validation Set: This split is used in the validation phase of the challenge for tuning the models and hyperparameters. It contains 1000 simulated samples (~1.5 hours) with paired clean and noisy speech, along with their meta information such as SNR levels, distortion configurations, transcript, and so on.
  • Non-blind Test Set: This split is used in the non-blind phase of the challenge for evaluating the performance of the models. It contains 1000 simulated samples (~2 hours) with paired clean and noisy speech, along with their meta information such as SNR levels, distortion configurations, transcript, and so on.
  • Blind Test Set: This split is used for the final blind test phase. It contains 500 samples of simulated samples and 500 real recordings (~2.5 hours in total). In contrast to other splits, no labels or meta information are provided for the blind test set.

All speech samples in this dataset are in English, with a single microphone channel. The dataset is intended to be used for evaluating speech enhancement systems, with a focus on robustness and generalizability across different conditions.

Example Usage

Each split of the dataset can be loaded individually using the datasets library. Below is an example of how to load the validation set:

from datasets import load_dataset

data = load_dataset("urgent-challenge/urgent2024_official", "validation")

# Load a single sample
sample = data["validation"][100]
print(sample)

# Iterate over all samples
# for idx, sample in enumerate(data["validation"]):
#     print(sample)

This will generate the following output:

{
  'id': 'fileid_14512',
  'sampling_rate': 32000,
  'noisy_audio': {
    'path': None,
    'array': array([0.01727295, 0.01797485, 0.01831055, ..., 0.0032959 , 0.00238037, 0.01062012]),
    'sampling_rate': 32000
  },
 'clean_audio': {
    'path': None,
    'array': array([ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00, ..., -6.10351562e-05, -6.10351562e-05, -6.10351562e-05]),
    'sampling_rate': 32000
  },
 'transcript': 'He burnt out his tires after the drag race.',
 'snr_dB': 8.524861335754395,
}

Similarly, you can load the non-blind and blind test sets by changing the split name in the load_dataset function.

from datasets import load_dataset

data = load_dataset("urgent-challenge/urgent2024_official", "test_nonblind")

# Load a single sample
sample = data["validation"][100]
print(sample)

data = load_dataset("urgent-challenge/urgent2024_official", "test_blind")

# Load a single sample
sample = data["test"][100]
print(sample)

Note that the data structure in the blind test split slightly differs from the other splits, as some of the fields are not available:

{
  'id': 'fileid_101',
  'sampling_rate': 24000,
  'noisy_audio': {'path': None, 'array': array([-0.01263428, -0.01339722, -0.00991821, ..., -0.01495361, -0.00637817, -0.00637817]), 'sampling_rate': 32000},
}

More information and analysis

For more information about the dataset, including the data generation process, evaluation metrics, and analysis of the results, please refer to the official challenge website and our analysis paper (to be released).

Acknowledgment and license information

The dataset was created based on the following source speech, noise, and room impulse response (RIR) data, which are publicly available with varying licenses:

Source speech

Expand to see a full list of Youtube audio data used in this competition

2ziV6vH-5wo, 4SzRZvEvyr8, 7XcyE1Rrp8g, 5ZqqXHz_xyo, 617jBfdO8MQ, AOvV9m7feKo, JDAYv4tv7yk, JQkewbO-qf4, rj27kDNtl2c, uB_ykR_yjnY, 4G1__QdEp0U, AbixsuKqfLQ, G3zK1aB_zU4, LWC3dS8EEDM, LZnNzQse2OA, QCltA8fDdQw, RaQ96aK4f58, WFAf2kEEBaI, c6UOJfoenss, kBJ2yTaq-UU, klvdARnvpjg, kmQBICeWhAQ, mWF5GXvfP-4, q_Tjw0SnRu8, ud0Aqc3lqLU, wr1hs6geXyk, omhUqE0SANk, d5NEhm7ZOyc, xw39PKAXkdE, qQrY8ZjSCnQ, GLeoET3gZWg, i_r3gCZrdSc, omhUqE0SANk, qQrY8ZjSCnQ, COls47WPPNk, qQrY8ZjSCnQ, xw39PKAXkdE, In35ZJEGtu8, bLVLhLMoV70, pkc-AJTfNDY, nIWnC9RMW08, GLeoET3gZWg, qQrY8ZjSCnQ, FtN8XzP8ZWg, 9up7LiqU9u4, i_r3gCZrdSc, omhUqE0SANk, nIWnC9RMW08, zWDJojt_KTU, AAckOJEBODk, VE0v1gsOMlw, kDDEQUfMT_8, d5NEhm7ZOyc, DUAdarwNCRs, qQrY8ZjSCnQ, 9jiyee7zCXo, 9up7LiqU9u4, pauj3PKE6L4, GLeoET3gZWg, 5YrhJMiyaPM, qQrY8ZjSCnQ, 5YrhJMiyaPM, POXAC1WpDBU, FtN8XzP8ZWg, qQrY8ZjSCnQ, DUAdarwNCRs, pauj3PKE6L4, qQrY8ZjSCnQ, 4geYwpsHQd8, 2r2BRN2tAFc, pauj3PKE6L4, xw39PKAXkdE, ZtUv67HHw6g, POXAC1WpDBU, Ab6ryHD_ahQ, zWDJojt_KTU, nIWnC9RMW08, d5NEhm7ZOyc, COls47WPPNk, 9up7LiqU9u4, omhUqE0SANk, 9R4O3bzONQQ, l6L2xaYRm7U, nIWnC9RMW08, qQrY8ZjSCnQ, zWDJojt_KTU, COls47WPPNk, GLeoET3gZWg, nIWnC9RMW08, mL6-d5mTQuM, qQrY8ZjSCnQ, bLVLhLMoV70, qQrY8ZjSCnQ, kDDEQUfMT_8, zY4K3sEL5lU, 9jiyee7zCXo, qQrY8ZjSCnQ, sG548miBvh0, 9up7LiqU9u4, qQrY8ZjSCnQ, GLeoET3gZWg, 2t18v4HnQxY, qQrY8ZjSCnQ, zWDJojt_KTU, Ab6ryHD_ahQ, qQrY8ZjSCnQ, COls47WPPNk, FtN8XzP8ZWg, In35ZJEGtu8, l6L2xaYRm7U, qQrY8ZjSCnQ, 9zy1SdoIpkA, nIWnC9RMW08, l6rHUHZx5Vc, xw39PKAXkdE, qQrY8ZjSCnQ, omhUqE0SANk, R5gE6vK8c7Y, 9jiyee7zCXo, pauj3PKE6L4, 9R4O3bzONQQ, omhUqE0SANk, zY4K3sEL5lU, omhUqE0SANk, 6vcXN7ko3Fk, COls47WPPNk, FmtbYlybAlo, zWDJojt_KTU, 9R4O3bzONQQ, 9jiyee7zCXo, i_r3gCZrdSc, qQrY8ZjSCnQ, omhUqE0SANk, qQrY8ZjSCnQ, 541Dq1D1_JY, 9R4O3bzONQQ, 9up7LiqU9u4, l6rHUHZx5Vc, qQrY8ZjSCnQ, sk53YzngvEs, ZtUv67HHw6g, qQrY8ZjSCnQ, l6rHUHZx5Vc, bLVLhLMoV70, COls47WPPNk, 9jiyee7zCXo, omhUqE0SANk, qQrY8ZjSCnQ, POXAC1WpDBU, qQrY8ZjSCnQ, d5NEhm7ZOyc, DUAdarwNCRs, 5YrhJMiyaPM, l6L2xaYRm7U, zWDJojt_KTU, DUAdarwNCRs, pauj3PKE6L4, sk53YzngvEs, omhUqE0SANk, Ab6ryHD_ahQ, OB9GAgiEVqk, xw39PKAXkdE, WyugIciIeq8, s4HerxySu4c, pauj3PKE6L4, 9R4O3bzONQQ, qQrY8ZjSCnQ, omhUqE0SANk, DUAdarwNCRs, 9jiyee7zCXo, qQrY8ZjSCnQ, l6L2xaYRm7U, WyugIciIeq8, GLeoET3gZWg, In35ZJEGtu8, WyugIciIeq8, pkc-AJTfNDY, jzcrUdexbNE, POXAC1WpDBU, i_r3gCZrdSc, POXAC1WpDBU, FtN8XzP8ZWg, Ab6ryHD_ahQ, qQrY8ZjSCnQ, 6vcXN7ko3Fk, VE0v1gsOMlw, GLeoET3gZWg, s4HerxySu4c, omhUqE0SANk, 9R4O3bzONQQ, 2MZR4cT7GbY, nIWnC9RMW08, d5NEhm7ZOyc, xw39PKAXkdE, Yvy_WkwkufU, d5NEhm7ZOyc, s4HerxySu4c, 9up7LiqU9u4, l6rHUHZx5Vc, WyugIciIeq8, 9zy1SdoIpkA, l6L2xaYRm7U, qQrY8ZjSCnQ, xw39PKAXkdE, i_r3gCZrdSc, jzcrUdexbNE, DUAdarwNCRs, d5NEhm7ZOyc, 5YrhJMiyaPM, qQrY8ZjSCnQ, nIWnC9RMW08, Yvy_WkwkufU, 5YrhJMiyaPM, sk53YzngvEs, qQrY8ZjSCnQ, l6L2xaYRm7U, 2t18v4HnQxY, qQrY8ZjSCnQ, l6L2xaYRm7U, DUAdarwNCRs, ZtUv67HHw6g, i_r3gCZrdSc, s4HerxySu4c, COls47WPPNk, zWDJojt_KTU, l6L2xaYRm7U, ZtUv67HHw6g, omhUqE0SANk, nIWnC9RMW08, 9up7LiqU9u4, 5YrhJMiyaPM, qQrY8ZjSCnQ, 9up7LiqU9u4, pauj3PKE6L4, VE0v1gsOMlw, GLeoET3gZWg, VE0v1gsOMlw, Ab6ryHD_ahQ, WyugIciIeq8, qQrY8ZjSCnQ, jzcrUdexbNE, l6L2xaYRm7U, POXAC1WpDBU, WyugIciIeq8, FtN8XzP8ZWg, qQrY8ZjSCnQ, GLeoET3gZWg, In35ZJEGtu8, 6vcXN7ko3Fk, GLeoET3gZWg, pauj3PKE6L4, nIWnC9RMW08, FtN8XzP8ZWg, WyugIciIeq8, DUAdarwNCRs, xw39PKAXkdE, l6L2xaYRm7U, SPxCCLU0cTs, Ab6ryHD_ahQ, xw39PKAXkdE, pauj3PKE6L4, sG548miBvh0, i_r3gCZrdSc, SSNfXY_xwxc, POXAC1WpDBU, WyugIciIeq8, qQrY8ZjSCnQ, s4HerxySu4c, 5YrhJMiyaPM, qQrY8ZjSCnQ, bLVLhLMoV70, 9jiyee7zCXo, qQrY8ZjSCnQ, Yvy_WkwkufU, POXAC1WpDBU, 2t18v4HnQxY, qQrY8ZjSCnQ, zWDJojt_KTU, Ab6ryHD_ahQ, l6L2xaYRm7U, POXAC1WpDBU, l6rHUHZx5Vc, COls47WPPNk, VE0v1gsOMlw, pkc-AJTfNDY, VE0v1gsOMlw, UFADTgwc4ew, COls47WPPNk, s4HerxySu4c, l6L2xaYRm7U, 6vcXN7ko3Fk, l6L2xaYRm7U, omhUqE0SANk, s4HerxySu4c, FmtbYlybAlo, xw39PKAXkdE, GLeoET3gZWg, qQrY8ZjSCnQ, l6L2xaYRm7U, d5NEhm7ZOyc, 9jiyee7zCXo, d5NEhm7ZOyc, qQrY8ZjSCnQ, VE0v1gsOMlw, i_r3gCZrdSc, 9R4O3bzONQQ, d5NEhm7ZOyc, 9R4O3bzONQQ, 9up7LiqU9u4, COls47WPPNk, 9jiyee7zCXo, bLVLhLMoV70, GLeoET3gZWg, zWDJojt_KTU, UFADTgwc4ew, 9up7LiqU9u4, 9R4O3bzONQQ, VE0v1gsOMlw, POXAC1WpDBU, ZtUv67HHw6g, WyugIciIeq8, d5NEhm7ZOyc, qQrY8ZjSCnQ, 9R4O3bzONQQ, s4HerxySu4c, i_r3gCZrdSc, 4geYwpsHQd8, Ab6ryHD_ahQ, omhUqE0SANk, qQrY8ZjSCnQ, l6rHUHZx5Vc, pauj3PKE6L4, omhUqE0SANk, COls47WPPNk, qQrY8ZjSCnQ, 9R4O3bzONQQ, SPxCCLU0cTs, l6rHUHZx5Vc, POXAC1WpDBU, i_r3gCZrdSc, qQrY8ZjSCnQ, SPxCCLU0cTs, l6rHUHZx5Vc, qQrY8ZjSCnQ, sk53YzngvEs, l6rHUHZx5Vc, POXAC1WpDBU, 9jiyee7zCXo, Ab6ryHD_ahQ, WyugIciIeq8, COls47WPPNk, WyugIciIeq8, GLeoET3gZWg, qQrY8ZjSCnQ, VE0v1gsOMlw, 6vcXN7ko3Fk, bLVLhLMoV70, VE0v1gsOMlw, xw39PKAXkdE, UFADTgwc4ew, qQrY8ZjSCnQ, GLeoET3gZWg, l6rHUHZx5Vc, omhUqE0SANk, xw39PKAXkdE, COls47WPPNk, 2t18v4HnQxY, l6L2xaYRm7U, SSNfXY_xwxc, GLeoET3gZWg, WyugIciIeq8, FmtbYlybAlo, qQrY8ZjSCnQ, l6L2xaYRm7U, Ab6ryHD_ahQ, pkc-AJTfNDY, xw39PKAXkdE, mL6-d5mTQuM, l6L2xaYRm7U

Source noise

Source RIRs

Citation:

Please cite this paper if you use this dataset in your research:

@inproceedings{URGENT-Zhang2024,
  title={{URGENT} Challenge: Universality, Robustness, and Generalizability For Speech Enhancement},
  author={Zhang, Wangyou and Scheibler, Robin and Saijo, Kohei and Cornell, Samuele and Li, Chenda and Ni, Zhaoheng and Pirklbauer, Jan and Sach, Marvin and Watanabe, Shinji and Fingscheidt, Tim and Qian, Yanmin},
  booktitle={Proc. Interspeech},
  pages={4868--4872},
  year={2024},
}
Downloads last month
131