id
stringlengths 8
11
| sampling_rate
int32 16k
48k
| noisy_audio
audioduration (s) 5
26.9
|
---|---|---|
fileid_1
| 48,000 | |
fileid_2
| 24,000 | |
fileid_3
| 24,000 | |
fileid_4
| 24,000 | |
fileid_5
| 24,000 | |
fileid_6
| 24,000 | |
fileid_7
| 24,000 | |
fileid_8
| 24,000 | |
fileid_9
| 24,000 | |
fileid_10
| 24,000 | |
fileid_11
| 24,000 | |
fileid_12
| 24,000 | |
fileid_13
| 24,000 | |
fileid_14
| 24,000 | |
fileid_15
| 24,000 | |
fileid_16
| 24,000 | |
fileid_17
| 24,000 | |
fileid_18
| 24,000 | |
fileid_19
| 24,000 | |
fileid_20
| 24,000 | |
fileid_21
| 24,000 | |
fileid_22
| 24,000 | |
fileid_23
| 24,000 | |
fileid_24
| 24,000 | |
fileid_25
| 24,000 | |
fileid_26
| 24,000 | |
fileid_27
| 24,000 | |
fileid_28
| 24,000 | |
fileid_29
| 24,000 | |
fileid_30
| 24,000 | |
fileid_31
| 24,000 | |
fileid_32
| 24,000 | |
fileid_33
| 24,000 | |
fileid_34
| 24,000 | |
fileid_35
| 24,000 | |
fileid_36
| 24,000 | |
fileid_37
| 24,000 | |
fileid_38
| 24,000 | |
fileid_39
| 24,000 | |
fileid_40
| 24,000 | |
fileid_41
| 24,000 | |
fileid_42
| 24,000 | |
fileid_43
| 24,000 | |
fileid_44
| 24,000 | |
fileid_45
| 24,000 | |
fileid_46
| 24,000 | |
fileid_47
| 24,000 | |
fileid_48
| 24,000 | |
fileid_49
| 24,000 | |
fileid_50
| 24,000 | |
fileid_51
| 24,000 | |
fileid_52
| 24,000 | |
fileid_53
| 48,000 | |
fileid_54
| 24,000 | |
fileid_55
| 48,000 | |
fileid_56
| 24,000 | |
fileid_57
| 24,000 | |
fileid_58
| 24,000 | |
fileid_59
| 24,000 | |
fileid_60
| 24,000 | |
fileid_61
| 24,000 | |
fileid_62
| 24,000 | |
fileid_63
| 24,000 | |
fileid_64
| 24,000 | |
fileid_65
| 48,000 | |
fileid_66
| 24,000 | |
fileid_67
| 24,000 | |
fileid_68
| 24,000 | |
fileid_69
| 24,000 | |
fileid_70
| 24,000 | |
fileid_71
| 24,000 | |
fileid_72
| 24,000 | |
fileid_73
| 24,000 | |
fileid_74
| 24,000 | |
fileid_75
| 24,000 | |
fileid_76
| 24,000 | |
fileid_77
| 24,000 | |
fileid_78
| 24,000 | |
fileid_79
| 24,000 | |
fileid_80
| 24,000 | |
fileid_81
| 24,000 | |
fileid_82
| 24,000 | |
fileid_83
| 24,000 | |
fileid_84
| 24,000 | |
fileid_85
| 24,000 | |
fileid_86
| 24,000 | |
fileid_87
| 24,000 | |
fileid_88
| 24,000 | |
fileid_89
| 24,000 | |
fileid_90
| 24,000 | |
fileid_91
| 24,000 | |
fileid_92
| 24,000 | |
fileid_93
| 24,000 | |
fileid_94
| 24,000 | |
fileid_95
| 24,000 | |
fileid_96
| 24,000 | |
fileid_97
| 24,000 | |
fileid_98
| 24,000 | |
fileid_99
| 24,000 | |
fileid_100
| 24,000 |
Dataset Description
This dataset contains the official validation, non-blind test and blind test data used during the 2024 URGENT Speech Enhancement Challenge (https://urgent-challenge.github.io/urgent2024/), an official NeurIPS 2024 Competition. The dataset is designed to evaluate the performance of speech enhancement systems in handling various distortions and input conditions (e.g., varying sampling frequencies and encoding formats such as MP3/FLAC).
The dataset is divided into three splits:
- Validation Set: This split is used in the validation phase of the challenge for tuning the models and hyperparameters. It contains 1000 simulated samples (~1.5 hours) with paired clean and noisy speech, along with their meta information such as SNR levels, distortion configurations, transcript, and so on.
- Non-blind Test Set: This split is used in the non-blind phase of the challenge for evaluating the performance of the models. It contains 1000 simulated samples (~2 hours) with paired clean and noisy speech, along with their meta information such as SNR levels, distortion configurations, transcript, and so on.
- Blind Test Set: This split is used for the final blind test phase. It contains 500 samples of simulated samples and 500 real recordings (~2.5 hours in total). In contrast to other splits, no labels or meta information are provided for the blind test set.
All speech samples in this dataset are in English, with a single microphone channel. The dataset is intended to be used for evaluating speech enhancement systems, with a focus on robustness and generalizability across different conditions.
Example Usage
Each split of the dataset can be loaded individually using the datasets
library. Below is an example of how to load the validation set:
from datasets import load_dataset
data = load_dataset("urgent-challenge/urgent2024_official", "validation")
# Load a single sample
sample = data["validation"][100]
print(sample)
# Iterate over all samples
# for idx, sample in enumerate(data["validation"]):
# print(sample)
This will generate the following output:
{
'id': 'fileid_14512',
'sampling_rate': 32000,
'noisy_audio': {
'path': None,
'array': array([0.01727295, 0.01797485, 0.01831055, ..., 0.0032959 , 0.00238037, 0.01062012]),
'sampling_rate': 32000
},
'clean_audio': {
'path': None,
'array': array([ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., -6.10351562e-05, -6.10351562e-05, -6.10351562e-05]),
'sampling_rate': 32000
},
'transcript': 'He burnt out his tires after the drag race.',
'snr_dB': 8.524861335754395,
}
Similarly, you can load the non-blind and blind test sets by changing the split name in the load_dataset
function.
from datasets import load_dataset
data = load_dataset("urgent-challenge/urgent2024_official", "test_nonblind")
# Load a single sample
sample = data["validation"][100]
print(sample)
data = load_dataset("urgent-challenge/urgent2024_official", "test_blind")
# Load a single sample
sample = data["test"][100]
print(sample)
Note that the data structure in the blind test split slightly differs from the other splits, as some of the fields are not available:
{
'id': 'fileid_101',
'sampling_rate': 24000,
'noisy_audio': {'path': None, 'array': array([-0.01263428, -0.01339722, -0.00991821, ..., -0.01495361, -0.00637817, -0.00637817]), 'sampling_rate': 32000},
}
More information and analysis
For more information about the dataset, including the data generation process, evaluation metrics, and analysis of the results, please refer to the official challenge website and our analysis paper (to be released).
Acknowledgment and license information
The dataset was created based on the following source speech, noise, and room impulse response (RIR) data, which are publicly available with varying licenses:
Source speech
Source | License |
---|---|
LibriVox in DNS5 Challenge | CC BY 4.0 |
LibriTTS | CC BY 4.0 |
CommonVoice 11.0 (English portion) | CC0 |
VCTK | ODC-BY |
SLR83 | CC BY-SA 4.0 |
CHiME-6 | CC BY-SA 4.0 |
VOiCES | CC BY 4.0 |
EasyCom | CC BY-NC 4.0 |
Audios extracted from Youtube videos | CC BY 4.0 |
Expand to see a full list of Youtube audio data used in this competition
2ziV6vH-5wo, 4SzRZvEvyr8, 7XcyE1Rrp8g, 5ZqqXHz_xyo, 617jBfdO8MQ, AOvV9m7feKo, JDAYv4tv7yk, JQkewbO-qf4, rj27kDNtl2c, uB_ykR_yjnY, 4G1__QdEp0U, AbixsuKqfLQ, G3zK1aB_zU4, LWC3dS8EEDM, LZnNzQse2OA, QCltA8fDdQw, RaQ96aK4f58, WFAf2kEEBaI, c6UOJfoenss, kBJ2yTaq-UU, klvdARnvpjg, kmQBICeWhAQ, mWF5GXvfP-4, q_Tjw0SnRu8, ud0Aqc3lqLU, wr1hs6geXyk, omhUqE0SANk, d5NEhm7ZOyc, xw39PKAXkdE, qQrY8ZjSCnQ, GLeoET3gZWg, i_r3gCZrdSc, omhUqE0SANk, qQrY8ZjSCnQ, COls47WPPNk, qQrY8ZjSCnQ, xw39PKAXkdE, In35ZJEGtu8, bLVLhLMoV70, pkc-AJTfNDY, nIWnC9RMW08, GLeoET3gZWg, qQrY8ZjSCnQ, FtN8XzP8ZWg, 9up7LiqU9u4, i_r3gCZrdSc, omhUqE0SANk, nIWnC9RMW08, zWDJojt_KTU, AAckOJEBODk, VE0v1gsOMlw, kDDEQUfMT_8, d5NEhm7ZOyc, DUAdarwNCRs, qQrY8ZjSCnQ, 9jiyee7zCXo, 9up7LiqU9u4, pauj3PKE6L4, GLeoET3gZWg, 5YrhJMiyaPM, qQrY8ZjSCnQ, 5YrhJMiyaPM, POXAC1WpDBU, FtN8XzP8ZWg, qQrY8ZjSCnQ, DUAdarwNCRs, pauj3PKE6L4, qQrY8ZjSCnQ, 4geYwpsHQd8, 2r2BRN2tAFc, pauj3PKE6L4, xw39PKAXkdE, ZtUv67HHw6g, POXAC1WpDBU, Ab6ryHD_ahQ, zWDJojt_KTU, nIWnC9RMW08, d5NEhm7ZOyc, COls47WPPNk, 9up7LiqU9u4, omhUqE0SANk, 9R4O3bzONQQ, l6L2xaYRm7U, nIWnC9RMW08, qQrY8ZjSCnQ, zWDJojt_KTU, COls47WPPNk, GLeoET3gZWg, nIWnC9RMW08, mL6-d5mTQuM, qQrY8ZjSCnQ, bLVLhLMoV70, qQrY8ZjSCnQ, kDDEQUfMT_8, zY4K3sEL5lU, 9jiyee7zCXo, qQrY8ZjSCnQ, sG548miBvh0, 9up7LiqU9u4, qQrY8ZjSCnQ, GLeoET3gZWg, 2t18v4HnQxY, qQrY8ZjSCnQ, zWDJojt_KTU, Ab6ryHD_ahQ, qQrY8ZjSCnQ, COls47WPPNk, FtN8XzP8ZWg, In35ZJEGtu8, l6L2xaYRm7U, qQrY8ZjSCnQ, 9zy1SdoIpkA, nIWnC9RMW08, l6rHUHZx5Vc, xw39PKAXkdE, qQrY8ZjSCnQ, omhUqE0SANk, R5gE6vK8c7Y, 9jiyee7zCXo, pauj3PKE6L4, 9R4O3bzONQQ, omhUqE0SANk, zY4K3sEL5lU, omhUqE0SANk, 6vcXN7ko3Fk, COls47WPPNk, FmtbYlybAlo, zWDJojt_KTU, 9R4O3bzONQQ, 9jiyee7zCXo, i_r3gCZrdSc, qQrY8ZjSCnQ, omhUqE0SANk, qQrY8ZjSCnQ, 541Dq1D1_JY, 9R4O3bzONQQ, 9up7LiqU9u4, l6rHUHZx5Vc, qQrY8ZjSCnQ, sk53YzngvEs, ZtUv67HHw6g, qQrY8ZjSCnQ, l6rHUHZx5Vc, bLVLhLMoV70, COls47WPPNk, 9jiyee7zCXo, omhUqE0SANk, qQrY8ZjSCnQ, POXAC1WpDBU, qQrY8ZjSCnQ, d5NEhm7ZOyc, DUAdarwNCRs, 5YrhJMiyaPM, l6L2xaYRm7U, zWDJojt_KTU, DUAdarwNCRs, pauj3PKE6L4, sk53YzngvEs, omhUqE0SANk, Ab6ryHD_ahQ, OB9GAgiEVqk, xw39PKAXkdE, WyugIciIeq8, s4HerxySu4c, pauj3PKE6L4, 9R4O3bzONQQ, qQrY8ZjSCnQ, omhUqE0SANk, DUAdarwNCRs, 9jiyee7zCXo, qQrY8ZjSCnQ, l6L2xaYRm7U, WyugIciIeq8, GLeoET3gZWg, In35ZJEGtu8, WyugIciIeq8, pkc-AJTfNDY, jzcrUdexbNE, POXAC1WpDBU, i_r3gCZrdSc, POXAC1WpDBU, FtN8XzP8ZWg, Ab6ryHD_ahQ, qQrY8ZjSCnQ, 6vcXN7ko3Fk, VE0v1gsOMlw, GLeoET3gZWg, s4HerxySu4c, omhUqE0SANk, 9R4O3bzONQQ, 2MZR4cT7GbY, nIWnC9RMW08, d5NEhm7ZOyc, xw39PKAXkdE, Yvy_WkwkufU, d5NEhm7ZOyc, s4HerxySu4c, 9up7LiqU9u4, l6rHUHZx5Vc, WyugIciIeq8, 9zy1SdoIpkA, l6L2xaYRm7U, qQrY8ZjSCnQ, xw39PKAXkdE, i_r3gCZrdSc, jzcrUdexbNE, DUAdarwNCRs, d5NEhm7ZOyc, 5YrhJMiyaPM, qQrY8ZjSCnQ, nIWnC9RMW08, Yvy_WkwkufU, 5YrhJMiyaPM, sk53YzngvEs, qQrY8ZjSCnQ, l6L2xaYRm7U, 2t18v4HnQxY, qQrY8ZjSCnQ, l6L2xaYRm7U, DUAdarwNCRs, ZtUv67HHw6g, i_r3gCZrdSc, s4HerxySu4c, COls47WPPNk, zWDJojt_KTU, l6L2xaYRm7U, ZtUv67HHw6g, omhUqE0SANk, nIWnC9RMW08, 9up7LiqU9u4, 5YrhJMiyaPM, qQrY8ZjSCnQ, 9up7LiqU9u4, pauj3PKE6L4, VE0v1gsOMlw, GLeoET3gZWg, VE0v1gsOMlw, Ab6ryHD_ahQ, WyugIciIeq8, qQrY8ZjSCnQ, jzcrUdexbNE, l6L2xaYRm7U, POXAC1WpDBU, WyugIciIeq8, FtN8XzP8ZWg, qQrY8ZjSCnQ, GLeoET3gZWg, In35ZJEGtu8, 6vcXN7ko3Fk, GLeoET3gZWg, pauj3PKE6L4, nIWnC9RMW08, FtN8XzP8ZWg, WyugIciIeq8, DUAdarwNCRs, xw39PKAXkdE, l6L2xaYRm7U, SPxCCLU0cTs, Ab6ryHD_ahQ, xw39PKAXkdE, pauj3PKE6L4, sG548miBvh0, i_r3gCZrdSc, SSNfXY_xwxc, POXAC1WpDBU, WyugIciIeq8, qQrY8ZjSCnQ, s4HerxySu4c, 5YrhJMiyaPM, qQrY8ZjSCnQ, bLVLhLMoV70, 9jiyee7zCXo, qQrY8ZjSCnQ, Yvy_WkwkufU, POXAC1WpDBU, 2t18v4HnQxY, qQrY8ZjSCnQ, zWDJojt_KTU, Ab6ryHD_ahQ, l6L2xaYRm7U, POXAC1WpDBU, l6rHUHZx5Vc, COls47WPPNk, VE0v1gsOMlw, pkc-AJTfNDY, VE0v1gsOMlw, UFADTgwc4ew, COls47WPPNk, s4HerxySu4c, l6L2xaYRm7U, 6vcXN7ko3Fk, l6L2xaYRm7U, omhUqE0SANk, s4HerxySu4c, FmtbYlybAlo, xw39PKAXkdE, GLeoET3gZWg, qQrY8ZjSCnQ, l6L2xaYRm7U, d5NEhm7ZOyc, 9jiyee7zCXo, d5NEhm7ZOyc, qQrY8ZjSCnQ, VE0v1gsOMlw, i_r3gCZrdSc, 9R4O3bzONQQ, d5NEhm7ZOyc, 9R4O3bzONQQ, 9up7LiqU9u4, COls47WPPNk, 9jiyee7zCXo, bLVLhLMoV70, GLeoET3gZWg, zWDJojt_KTU, UFADTgwc4ew, 9up7LiqU9u4, 9R4O3bzONQQ, VE0v1gsOMlw, POXAC1WpDBU, ZtUv67HHw6g, WyugIciIeq8, d5NEhm7ZOyc, qQrY8ZjSCnQ, 9R4O3bzONQQ, s4HerxySu4c, i_r3gCZrdSc, 4geYwpsHQd8, Ab6ryHD_ahQ, omhUqE0SANk, qQrY8ZjSCnQ, l6rHUHZx5Vc, pauj3PKE6L4, omhUqE0SANk, COls47WPPNk, qQrY8ZjSCnQ, 9R4O3bzONQQ, SPxCCLU0cTs, l6rHUHZx5Vc, POXAC1WpDBU, i_r3gCZrdSc, qQrY8ZjSCnQ, SPxCCLU0cTs, l6rHUHZx5Vc, qQrY8ZjSCnQ, sk53YzngvEs, l6rHUHZx5Vc, POXAC1WpDBU, 9jiyee7zCXo, Ab6ryHD_ahQ, WyugIciIeq8, COls47WPPNk, WyugIciIeq8, GLeoET3gZWg, qQrY8ZjSCnQ, VE0v1gsOMlw, 6vcXN7ko3Fk, bLVLhLMoV70, VE0v1gsOMlw, xw39PKAXkdE, UFADTgwc4ew, qQrY8ZjSCnQ, GLeoET3gZWg, l6rHUHZx5Vc, omhUqE0SANk, xw39PKAXkdE, COls47WPPNk, 2t18v4HnQxY, l6L2xaYRm7U, SSNfXY_xwxc, GLeoET3gZWg, WyugIciIeq8, FmtbYlybAlo, qQrY8ZjSCnQ, l6L2xaYRm7U, Ab6ryHD_ahQ, pkc-AJTfNDY, xw39PKAXkdE, mL6-d5mTQuM, l6L2xaYRm7U
Source noise
Source | License |
---|---|
Audioset+FreeSound noise in DNS5 Challenge | CC BY 4.0 |
WHAM! 48kHz noise | CC BY-NC 4.0 |
DEMAND | CC BY-SA 3.0 |
TUT Urban Acoustic Scenes 2018 Mobile, Evaluation dataset | Non-Commercial |
FSD50K | mixed: CC0, CC BY, CC BY-NC, CC Sampling+ |
SoundingEarth | CC BY 4.0 |
additional noise audios from Freesound | CC0 |
Source RIRs
Source | License |
---|---|
Simulated RIRs in DNS5 Challenge | CC BY 4.0 |
SLR28 | Apache 2.0 |
MYRiAD | CC BY-NC-SA 4.0 |
BRAS | CC BY-SA 4.0 |
BUT_ReverbDB | Apache 2.0 |
voiceHome | CC BY-NC-SA 4.0 |
additional RIRs from Freesound | CC0 |
Citation:
Please cite this paper if you use this dataset in your research:
@inproceedings{URGENT-Zhang2024,
title={{URGENT} Challenge: Universality, Robustness, and Generalizability For Speech Enhancement},
author={Zhang, Wangyou and Scheibler, Robin and Saijo, Kohei and Cornell, Samuele and Li, Chenda and Ni, Zhaoheng and Pirklbauer, Jan and Sach, Marvin and Watanabe, Shinji and Fingscheidt, Tim and Qian, Yanmin},
booktitle={Proc. Interspeech},
pages={4868--4872},
year={2024},
}
- Downloads last month
- 131