rootwards
stringlengths 8
109
| direct_child
stringlengths 41
13.4k
|
---|---|
/wiki/Multinomial_logistic_regression | {"inner": "Multinomial logistic regression", "level": 1, "lower": [{"inner": "Background", "level": 2, "lower": []}, {"inner": "Assumptions", "level": 2, "lower": []}, {"inner": "Model", "level": 2, "lower": [{"inner": "Introduction", "level": 3, "lower": []}, {"inner": "Setup", "level": 3, "lower": [{"inner": "Data points", "level": 4, "lower": []}, {"inner": "Linear predictor", "level": 4, "lower": []}]}, {"inner": "As a set of independent binary regressions", "level": 3, "lower": []}, {"inner": "Estimating the coefficients", "level": 3, "lower": []}, {"inner": "As a log-linear model", "level": 3, "lower": []}, {"inner": "As a latent-variable model", "level": 3, "lower": []}]}, {"inner": "Estimation of intercept", "level": 2, "lower": []}, {"inner": "Application in natural language processing", "level": 2, "lower": []}]} |
/wiki/Mixed_logit | {"inner": "Mixed logit", "level": 1, "lower": [{"inner": "Random taste variation", "level": 2, "lower": []}, {"inner": "Unrestricted substitution patterns", "level": 2, "lower": []}, {"inner": "Correlation in unobserved factors over time", "level": 2, "lower": []}, {"inner": "Simulation", "level": 2, "lower": []}]} |
/wiki/Discrete_choice | {"inner": "Discrete choice", "level": 1, "lower": [{"inner": "Applications", "level": 2, "lower": []}, {"inner": "Common features of discrete choice models", "level": 2, "lower": [{"inner": "Choice set", "level": 3, "lower": []}, {"inner": "Defining choice probabilities", "level": 3, "lower": []}, {"inner": "Consumer utility", "level": 3, "lower": []}, {"inner": "Properties of discrete choice models implied by utility theory", "level": 3, "lower": [{"inner": "Only differences matter", "level": 4, "lower": []}, {"inner": "Scale must be normalized", "level": 4, "lower": []}]}]}, {"inner": "Prominent types of discrete choice models", "level": 2, "lower": [{"inner": "Binary choice", "level": 3, "lower": [{"inner": "A. Logit with attributes of the person but no attributes of the alternatives", "level": 4, "lower": []}, {"inner": "B. Probit with attributes of the person but no attributes of the alternatives", "level": 4, "lower": []}, {"inner": "C. Logit with variables that vary over alternatives", "level": 4, "lower": []}, {"inner": "D. Probit with variables that vary over alternatives", "level": 4, "lower": []}]}, {"inner": "Multinomial choice without correlation among alternatives", "level": 3, "lower": [{"inner": "E. Logit with attributes of the person but no attributes of the alternatives", "level": 4, "lower": []}, {"inner": "F. Logit with variables that vary over alternatives (also called conditional logit)", "level": 4, "lower": []}]}, {"inner": "Multinomial choice with correlation among alternatives", "level": 3, "lower": [{"inner": "G. Nested Logit and Generalized Extreme Value (GEV) models", "level": 4, "lower": []}, {"inner": "H. Multinomial probit", "level": 4, "lower": []}, {"inner": "I. Mixed logit", "level": 4, "lower": []}]}, {"inner": "Estimation from choices", "level": 3, "lower": []}, {"inner": "Estimation from rankings", "level": 3, "lower": [{"inner": "J. Exploded logit", "level": 4, "lower": []}]}]}, {"inner": "Ordered models", "level": 2, "lower": [{"inner": "K. Ordered logit", "level": 3, "lower": []}, {"inner": "L. Ordered probit", "level": 3, "lower": []}]}]} |
/wiki/Fixed_effects_model | {"inner": "Fixed effects model", "level": 1, "lower": [{"inner": "Qualitative description", "level": 2, "lower": []}, {"inner": "Formal model and assumptions", "level": 2, "lower": []}, {"inner": "Statistical estimation", "level": 2, "lower": [{"inner": "Fixed effects estimator", "level": 3, "lower": []}, {"inner": "First difference estimator", "level": 3, "lower": [{"inner": "Equality of fixed effects and first difference estimators when T=2", "level": 4, "lower": []}]}, {"inner": "Chamberlain method", "level": 3, "lower": []}, {"inner": "Hausman\u2013Taylor method", "level": 3, "lower": []}, {"inner": "Generalization with input uncertainty", "level": 3, "lower": []}]}, {"inner": "Use to test for consistency", "level": 2, "lower": []}]} |
/wiki/Random_effects_model | {"inner": "Random effects model", "level": 1, "lower": [{"inner": "Qualitative description", "level": 2, "lower": []}, {"inner": "Simple example", "level": 2, "lower": [{"inner": "Variance components", "level": 3, "lower": []}]}, {"inner": "Applications", "level": 2, "lower": []}]} |
/wiki/Ordered_probit | {"inner": "Ordered probit", "level": 1, "lower": [{"inner": "Conceptual underpinnings", "level": 2, "lower": []}, {"inner": "Estimation", "level": 2, "lower": []}, {"inner": "References", "level": 2, "lower": []}, {"inner": "Further reading", "level": 2, "lower": []}]} |
/wiki/Probit_model | {"inner": "Probit model", "level": 1, "lower": [{"inner": "Conceptual framework", "level": 2, "lower": []}, {"inner": "Model estimation", "level": 2, "lower": [{"inner": "Maximum likelihood estimation", "level": 3, "lower": []}, {"inner": "Berkson's minimum chi-square method", "level": 3, "lower": []}, {"inner": "Gibbs sampling", "level": 3, "lower": []}]}, {"inner": "Model evaluation", "level": 2, "lower": []}, {"inner": "Performance under misspecification", "level": 2, "lower": []}, {"inner": "History", "level": 2, "lower": []}]} |
/wiki/Multilevel_model | {"inner": "Multilevel model", "level": 1, "lower": [{"inner": "Level 1 regression equation", "level": 2, "lower": []}, {"inner": "Level 2 regression equation", "level": 2, "lower": []}, {"inner": "Types of models", "level": 2, "lower": [{"inner": "Random intercepts model", "level": 3, "lower": []}, {"inner": "Random slopes model", "level": 3, "lower": []}, {"inner": "Random intercepts and slopes model", "level": 3, "lower": []}, {"inner": "Developing a multilevel model", "level": 3, "lower": []}]}, {"inner": "Assumptions", "level": 2, "lower": []}, {"inner": "Statistical tests", "level": 2, "lower": []}, {"inner": "Statistical power", "level": 2, "lower": []}, {"inner": "Applications", "level": 2, "lower": [{"inner": "Level", "level": 3, "lower": []}, {"inner": "Example", "level": 3, "lower": []}, {"inner": "Uses", "level": 3, "lower": []}, {"inner": "Applications to longitudinal (repeated measures) data", "level": 3, "lower": []}]}, {"inner": "Alternative ways of analyzing hierarchical data", "level": 2, "lower": []}, {"inner": "Error terms", "level": 2, "lower": []}, {"inner": "Bayesian nonlinear mixed-effects model", "level": 2, "lower": []}]} |
/wiki/Poisson_regression | {"inner": "Poisson regression", "level": 1, "lower": [{"inner": "Regression models", "level": 2, "lower": []}, {"inner": "Maximum likelihood-based parameter estimation", "level": 2, "lower": []}, {"inner": "Poisson regression in practice", "level": 2, "lower": [{"inner": "\"Exposure\" and offset", "level": 3, "lower": []}, {"inner": "Overdispersion and zero inflation", "level": 3, "lower": []}, {"inner": "Use in survival analysis", "level": 3, "lower": []}]}, {"inner": "Extensions", "level": 2, "lower": [{"inner": "Regularized Poisson regression", "level": 3, "lower": []}]}]} |
/wiki/Mixed_model | {"inner": "Mixed model", "level": 1, "lower": [{"inner": "History and current status", "level": 2, "lower": []}, {"inner": "Definition", "level": 2, "lower": []}, {"inner": "Estimation", "level": 2, "lower": []}]} |
/wiki/Semiparametric_regression | {"inner": "Semiparametric regression", "level": 1, "lower": [{"inner": "Methods", "level": 2, "lower": [{"inner": "Partially linear models", "level": 3, "lower": []}, {"inner": "Index models", "level": 3, "lower": [{"inner": "Ichimura's method", "level": 4, "lower": []}, {"inner": "Klein and Spady's estimator", "level": 4, "lower": []}]}, {"inner": "Smooth coefficient/varying coefficient models", "level": 3, "lower": []}]}]} |
/wiki/Principal_component_regression | {"inner": "Principal component regression", "level": 1, "lower": [{"inner": "The principle", "level": 2, "lower": []}, {"inner": "Details of the method", "level": 2, "lower": []}, {"inner": "Fundamental characteristics and applications of the PCR estimator", "level": 2, "lower": [{"inner": "Two basic properties", "level": 3, "lower": []}, {"inner": "Variance reduction", "level": 3, "lower": []}, {"inner": "Addressing multicollinearity", "level": 3, "lower": []}, {"inner": "Dimension reduction", "level": 3, "lower": []}, {"inner": "Regularization effect", "level": 3, "lower": []}, {"inner": "Optimality of PCR among a class of regularized estimators", "level": 3, "lower": []}, {"inner": "Efficiency", "level": 3, "lower": []}, {"inner": "Shrinkage effect of PCR", "level": 3, "lower": []}]}, {"inner": "Generalization to kernel settings", "level": 2, "lower": []}]} |
/wiki/Nonparametric_regression | {"inner": "Nonparametric regression", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": []}, {"inner": "List of general-purpose nonparametric regression algorithms", "level": 2, "lower": []}, {"inner": "Examples", "level": 2, "lower": [{"inner": "Gaussian process regression or Kriging", "level": 3, "lower": []}, {"inner": "Kernel regression", "level": 3, "lower": []}, {"inner": "Regression trees", "level": 3, "lower": []}]}]} |
/wiki/Robust_regression | {"inner": "Robust regression", "level": 1, "lower": [{"inner": "Applications", "level": 2, "lower": [{"inner": "Heteroscedastic errors", "level": 3, "lower": []}, {"inner": "Presence of outliers", "level": 3, "lower": []}]}, {"inner": "History and unpopularity of robust regression", "level": 2, "lower": []}, {"inner": "Methods for robust regression", "level": 2, "lower": [{"inner": "Least squares alternatives", "level": 3, "lower": []}, {"inner": "Parametric alternatives", "level": 3, "lower": []}, {"inner": "Unit weights", "level": 3, "lower": []}]}, {"inner": "Example: BUPA liver data", "level": 2, "lower": [{"inner": "Outlier detection", "level": 3, "lower": []}]}]} |
/wiki/Nonlinear_mixed-effects_model | {"inner": "Nonlinear mixed-effects model", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": []}, {"inner": "Estimation", "level": 2, "lower": []}, {"inner": "Applications", "level": 2, "lower": [{"inner": "Example: Disease progression modeling", "level": 3, "lower": []}, {"inner": "Example: Modeling cognitive decline in Alzheimer's disease", "level": 3, "lower": []}, {"inner": "Example: Growth analysis", "level": 3, "lower": []}, {"inner": "Example: Modeling human height", "level": 3, "lower": []}, {"inner": "Example: Population Pharmacokinetic/pharmacodynamic modeling", "level": 3, "lower": []}, {"inner": "Example: COVID-19 epidemiological modeling", "level": 3, "lower": []}, {"inner": "Example: Prediction of oil production curve of shale oil wells at a new location with latent kriging", "level": 3, "lower": []}]}, {"inner": "Bayesian nonlinear mixed-effects model", "level": 2, "lower": []}]} |
/wiki/Nonlinear_regression | {"inner": "Nonlinear regression", "level": 1, "lower": [{"inner": "General", "level": 2, "lower": []}, {"inner": "Regression statistics", "level": 2, "lower": []}, {"inner": "Ordinary and weighted least squares", "level": 2, "lower": []}, {"inner": "Linearization", "level": 2, "lower": [{"inner": "Transformation", "level": 3, "lower": []}, {"inner": "Segmentation", "level": 3, "lower": []}]}]} |
/wiki/Quantile_regression | {"inner": "Quantile regression", "level": 1, "lower": [{"inner": "Advantages and applications", "level": 2, "lower": []}, {"inner": "History", "level": 2, "lower": []}, {"inner": "Quantiles", "level": 2, "lower": [{"inner": "Quantile of a random variable", "level": 3, "lower": [{"inner": "Example", "level": 4, "lower": []}, {"inner": "Intuition", "level": 4, "lower": []}]}, {"inner": "Sample quantile", "level": 3, "lower": []}]}, {"inner": "Conditional quantile and quantile regression", "level": 2, "lower": []}, {"inner": "Computation of estimates for regression parameters", "level": 2, "lower": []}, {"inner": "Asymptotic properties", "level": 2, "lower": []}, {"inner": "Equivariance", "level": 2, "lower": [{"inner": "Scale equivariance", "level": 3, "lower": []}, {"inner": "Shift equivariance", "level": 3, "lower": []}, {"inner": "Equivariance to reparameterization of design", "level": 3, "lower": []}, {"inner": "Invariance to monotone transformations", "level": 3, "lower": []}]}, {"inner": "Bayesian methods for quantile regression", "level": 2, "lower": []}, {"inner": "Machine learning methods for quantile regression", "level": 2, "lower": []}, {"inner": "Censored quantile regression", "level": 2, "lower": []}, {"inner": "Heteroscedastic Errors", "level": 2, "lower": []}, {"inner": "Implementations", "level": 2, "lower": []}]} |
/wiki/Isotonic_regression | {"inner": "Isotonic regression", "level": 1, "lower": [{"inner": "Applications", "level": 2, "lower": []}, {"inner": "Problem statement and algorithms", "level": 2, "lower": []}, {"inner": "Centered isotonic regression", "level": 2, "lower": []}, {"inner": "References", "level": 2, "lower": []}, {"inner": "Further reading", "level": 2, "lower": []}]} |
/wiki/Local_regression | {"inner": "Local regression", "level": 1, "lower": [{"inner": "Model definition", "level": 2, "lower": [{"inner": "Localized subsets of data", "level": 3, "lower": []}, {"inner": "Degree of local polynomials", "level": 3, "lower": []}, {"inner": "Weight function", "level": 3, "lower": []}]}, {"inner": "Advantages", "level": 2, "lower": []}, {"inner": "Disadvantages", "level": 2, "lower": []}]} |
/wiki/Segmented_regression | {"inner": "Segmented regression", "level": 1, "lower": [{"inner": "Segmented linear regression, two segments", "level": 2, "lower": []}, {"inner": "Example", "level": 2, "lower": []}, {"inner": "Test procedures", "level": 2, "lower": []}, {"inner": "No-effect range", "level": 2, "lower": []}]} |
/wiki/Linear_least_squares | {"inner": "Linear least squares", "level": 1, "lower": [{"inner": "Main formulations", "level": 2, "lower": []}, {"inner": "Alternative formulations", "level": 2, "lower": []}, {"inner": "Objective function", "level": 2, "lower": []}, {"inner": "Discussion", "level": 2, "lower": []}, {"inner": "Properties", "level": 2, "lower": [{"inner": "Limitations", "level": 3, "lower": []}]}, {"inner": "Applications", "level": 2, "lower": [{"inner": "Uses in data fitting", "level": 3, "lower": []}]}, {"inner": "Example", "level": 2, "lower": [{"inner": "Fitting a line", "level": 3, "lower": []}, {"inner": "Fitting a parabola", "level": 3, "lower": []}, {"inner": "Fitting other curves and surfaces", "level": 3, "lower": []}]}]} |
/wiki/Non-linear_least_squares | {"inner": "Non-linear least squares", "level": 1, "lower": [{"inner": "Theory", "level": 2, "lower": [{"inner": "Extension by weights", "level": 3, "lower": []}]}, {"inner": "Geometrical interpretation", "level": 2, "lower": []}, {"inner": "Computation", "level": 2, "lower": [{"inner": "Initial parameter estimates", "level": 3, "lower": []}, {"inner": "Solution", "level": 3, "lower": []}, {"inner": "Convergence criteria", "level": 3, "lower": []}, {"inner": "Calculation of the Jacobian by numerical approximation", "level": 3, "lower": []}, {"inner": "Parameter errors, confidence limits, residuals etc.", "level": 3, "lower": []}, {"inner": "Multiple minima", "level": 3, "lower": []}, {"inner": "Transformation to a linear model", "level": 3, "lower": []}]}, {"inner": "Algorithms", "level": 2, "lower": [{"inner": "Gauss\u2013Newton method", "level": 3, "lower": [{"inner": "Shift-cutting", "level": 4, "lower": []}, {"inner": "Marquardt parameter", "level": 4, "lower": []}]}, {"inner": "QR decomposition", "level": 3, "lower": []}, {"inner": "Singular value decomposition", "level": 3, "lower": []}, {"inner": "Gradient methods", "level": 3, "lower": []}, {"inner": "Direct search methods", "level": 3, "lower": []}]}]} |
/wiki/Errors-in-variables_models | {"inner": "Errors-in-variables models", "level": 1, "lower": [{"inner": "Motivating example", "level": 2, "lower": []}, {"inner": "Specification", "level": 2, "lower": [{"inner": "Terminology and assumptions", "level": 3, "lower": []}]}, {"inner": "Linear model", "level": 2, "lower": [{"inner": "Simple linear model", "level": 3, "lower": []}, {"inner": "Multivariable linear model", "level": 3, "lower": []}]}, {"inner": "Non-linear models", "level": 2, "lower": [{"inner": "Instrumental variables methods", "level": 3, "lower": []}, {"inner": "Repeated observations", "level": 3, "lower": []}]}, {"inner": "References", "level": 2, "lower": []}, {"inner": "Further reading", "level": 2, "lower": []}, {"inner": "External links", "level": 2, "lower": []}]} |
/wiki/Ordinary_least_squares | {"inner": "Ordinary least squares", "level": 1, "lower": [{"inner": "Linear model", "level": 2, "lower": [{"inner": "Matrix/vector formulation", "level": 3, "lower": []}]}, {"inner": "Estimation", "level": 2, "lower": [{"inner": "Simple linear regression model", "level": 3, "lower": []}]}, {"inner": "Alternative derivations", "level": 2, "lower": [{"inner": "Projection", "level": 3, "lower": []}, {"inner": "Maximum likelihood", "level": 3, "lower": []}, {"inner": "Generalized method of moments", "level": 3, "lower": []}]}, {"inner": "Properties", "level": 2, "lower": [{"inner": "Assumptions", "level": 3, "lower": [{"inner": "Classical linear regression model", "level": 4, "lower": []}, {"inner": "Independent and identically distributed (iid)", "level": 4, "lower": []}, {"inner": "Time series model", "level": 4, "lower": []}]}, {"inner": "Finite sample properties", "level": 3, "lower": [{"inner": "Assuming normality", "level": 4, "lower": []}, {"inner": "Influential observations", "level": 4, "lower": []}, {"inner": "Partitioned regression", "level": 4, "lower": []}, {"inner": "Constrained estimation", "level": 4, "lower": []}]}, {"inner": "Large sample properties", "level": 3, "lower": [{"inner": "Intervals", "level": 4, "lower": []}, {"inner": "Hypothesis testing", "level": 4, "lower": []}]}]}, {"inner": "Example with real data", "level": 2, "lower": [{"inner": "Sensitivity to rounding", "level": 3, "lower": []}]}, {"inner": "Another example with less real data", "level": 2, "lower": [{"inner": "Problem statement", "level": 3, "lower": []}, {"inner": "Solution", "level": 3, "lower": []}]}]} |
/wiki/Vector_generalized_linear_model | {"inner": "Vector generalized linear model", "level": 1, "lower": [{"inner": "Motivation", "level": 2, "lower": []}, {"inner": "Data and notation", "level": 2, "lower": []}, {"inner": "Model components", "level": 2, "lower": [{"inner": "Linear predictors", "level": 3, "lower": []}, {"inner": "Link functions", "level": 3, "lower": []}, {"inner": "Constraint matrices", "level": 3, "lower": []}, {"inner": "The xij facility", "level": 3, "lower": []}]}, {"inner": "Software", "level": 2, "lower": []}, {"inner": "Fitting", "level": 2, "lower": [{"inner": "Maximum likelihood", "level": 3, "lower": []}, {"inner": "VLM", "level": 3, "lower": []}]}, {"inner": "Examples", "level": 2, "lower": [{"inner": "Generalized linear models", "level": 3, "lower": []}, {"inner": "Ordered categorical response", "level": 3, "lower": []}, {"inner": "Unordered categorical response", "level": 3, "lower": []}, {"inner": "Count data", "level": 3, "lower": []}]}, {"inner": "Extensions", "level": 2, "lower": [{"inner": "Reduced-rank vector generalized linear models", "level": 3, "lower": [{"inner": "Two to one", "level": 4, "lower": []}, {"inner": "RCIMs", "level": 4, "lower": []}]}, {"inner": "Vector generalized additive models", "level": 3, "lower": []}, {"inner": "Quadratic reduced-rank vector generalized linear models", "level": 3, "lower": []}]}]} |
/wiki/Least-angle_regression | {"inner": "Least-angle regression", "level": 1, "lower": [{"inner": "Pros and cons", "level": 2, "lower": []}, {"inner": "Algorithm", "level": 2, "lower": []}, {"inner": "Software implementation", "level": 2, "lower": []}]} |
/wiki/Weighted_least_squares | {"inner": "Weighted least squares", "level": 1, "lower": [{"inner": "Introduction", "level": 2, "lower": []}, {"inner": "Motivation", "level": 2, "lower": [{"inner": "Parameter errors and correlation", "level": 3, "lower": []}, {"inner": "Parameter confidence limits", "level": 3, "lower": []}, {"inner": "Residual values and correlation", "level": 3, "lower": []}]}]} |
/wiki/Least_squares | {"inner": "Least squares", "level": 1, "lower": [{"inner": "History", "level": 2, "lower": [{"inner": "Founding", "level": 3, "lower": []}, {"inner": "The method", "level": 3, "lower": []}]}, {"inner": "Problem statement", "level": 2, "lower": []}, {"inner": "Limitations", "level": 2, "lower": []}, {"inner": "Solving the least squares problem", "level": 2, "lower": [{"inner": "Linear least squares", "level": 3, "lower": []}, {"inner": "Non-linear least squares", "level": 3, "lower": []}, {"inner": "Differences between linear and nonlinear least squares", "level": 3, "lower": []}]}, {"inner": "Example", "level": 2, "lower": []}, {"inner": "Uncertainty quantification", "level": 2, "lower": []}, {"inner": "Statistical testing", "level": 2, "lower": []}, {"inner": "Weighted least squares", "level": 2, "lower": []}, {"inner": "Relationship to principal components", "level": 2, "lower": []}, {"inner": "Relationship to measure theory", "level": 2, "lower": []}, {"inner": "Regularization", "level": 2, "lower": [{"inner": "Tikhonov regularization", "level": 3, "lower": []}, {"inner": "Lasso method", "level": 3, "lower": []}]}]} |
/wiki/Ordered_logit | {"inner": "Ordered logit", "level": 1, "lower": [{"inner": "The model and the proportional odds assumption", "level": 2, "lower": []}, {"inner": "Estimation", "level": 2, "lower": []}]} |
/wiki/Deming_regression | {"inner": "Deming regression", "level": 1, "lower": [{"inner": "Specification", "level": 2, "lower": []}, {"inner": "Solution", "level": 2, "lower": []}, {"inner": "Orthogonal regression", "level": 2, "lower": [{"inner": "Application", "level": 3, "lower": []}]}, {"inner": "York regression", "level": 2, "lower": []}]} |
/wiki/Eckart%E2%80%93Young_theorem | {"inner": "Singular value decomposition", "level": 1, "lower": [{"inner": "Intuitive interpretations", "level": 2, "lower": [{"inner": "Rotation, coordinate scaling, and reflection", "level": 3, "lower": []}, {"inner": "Singular values as semiaxes of an ellipse or ellipsoid", "level": 3, "lower": []}, {"inner": "The columns of U and V are orthonormal bases", "level": 3, "lower": []}, {"inner": "Geometric meaning", "level": 3, "lower": []}]}, {"inner": "Example", "level": 2, "lower": []}, {"inner": "SVD and spectral decomposition", "level": 2, "lower": [{"inner": "Singular values, singular vectors, and their relation to the SVD", "level": 3, "lower": []}, {"inner": "Relation to eigenvalue decomposition", "level": 3, "lower": []}]}, {"inner": "Applications of the SVD", "level": 2, "lower": [{"inner": "Pseudoinverse", "level": 3, "lower": []}, {"inner": "Solving homogeneous linear equations", "level": 3, "lower": []}, {"inner": "Total least squares minimization", "level": 3, "lower": []}, {"inner": "Range, null space and rank", "level": 3, "lower": []}, {"inner": "Low-rank matrix approximation", "level": 3, "lower": []}, {"inner": "Separable models", "level": 3, "lower": []}, {"inner": "Nearest orthogonal matrix", "level": 3, "lower": []}, {"inner": "The Kabsch algorithm", "level": 3, "lower": []}, {"inner": "Signal processing", "level": 3, "lower": []}, {"inner": "Astrodynamics", "level": 3, "lower": []}, {"inner": "Other examples", "level": 3, "lower": []}]}, {"inner": "Proof of existence", "level": 2, "lower": [{"inner": "Based on the spectral theorem", "level": 3, "lower": []}, {"inner": "Based on variational characterization", "level": 3, "lower": []}]}, {"inner": "Calculating the SVD", "level": 2, "lower": [{"inner": "Numerical approach", "level": 3, "lower": []}, {"inner": "Analytic result of 2 \u00d7 2 SVD", "level": 3, "lower": []}]}, {"inner": "Reduced SVDs", "level": 2, "lower": [{"inner": "Thin SVD", "level": 3, "lower": []}, {"inner": "Compact SVD", "level": 3, "lower": []}, {"inner": "Truncated SVD", "level": 3, "lower": []}]}, {"inner": "Norms", "level": 2, "lower": [{"inner": "Ky Fan norms", "level": 3, "lower": []}, {"inner": "Hilbert\u2013Schmidt norm", "level": 3, "lower": []}]}, {"inner": "Variations and generalizations", "level": 2, "lower": [{"inner": "Scale-invariant SVD", "level": 3, "lower": []}, {"inner": "Bounded operators on Hilbert spaces", "level": 3, "lower": []}, {"inner": "Singular values and compact operators", "level": 3, "lower": []}]}, {"inner": "History", "level": 2, "lower": []}]} |
/wiki/Scale_invariance | {"inner": "Scale invariance", "level": 1, "lower": [{"inner": "Scale-invariant curves and self-similarity", "level": 2, "lower": [{"inner": "Projective geometry", "level": 3, "lower": []}, {"inner": "Fractals", "level": 3, "lower": []}]}, {"inner": "Scale invariance in stochastic processes", "level": 2, "lower": [{"inner": "Scale invariant Tweedie distributions", "level": 3, "lower": []}, {"inner": "Cosmology", "level": 3, "lower": []}]}, {"inner": "Scale invariance in classical field theory", "level": 2, "lower": [{"inner": "Scale invariance of field configurations", "level": 3, "lower": []}, {"inner": "Classical electromagnetism", "level": 3, "lower": []}, {"inner": "Massless scalar field theory", "level": 3, "lower": [{"inner": "\u03c64 theory", "level": 4, "lower": []}]}]}, {"inner": "Scale invariance in quantum field theory", "level": 2, "lower": [{"inner": "Quantum electrodynamics", "level": 3, "lower": []}, {"inner": "Massless scalar field theory", "level": 3, "lower": []}, {"inner": "Conformal field theory", "level": 3, "lower": []}, {"inner": "Scale and conformal anomalies", "level": 3, "lower": []}]}, {"inner": "Phase transitions", "level": 2, "lower": [{"inner": "The Ising model", "level": 3, "lower": [{"inner": "CFT description", "level": 4, "lower": []}]}, {"inner": "Schramm\u2013Loewner evolution", "level": 3, "lower": []}]}, {"inner": "Universality", "level": 2, "lower": []}, {"inner": "Other examples of scale invariance", "level": 2, "lower": [{"inner": "Newtonian fluid mechanics with no applied forces", "level": 3, "lower": []}, {"inner": "Hidden scale invariance in liquids and solids", "level": 3, "lower": []}, {"inner": "Computer vision", "level": 3, "lower": []}]}]} |
/wiki/Distance_from_a_point_to_a_line | {"inner": "Distance from a point to a line", "level": 1, "lower": [{"inner": "Line defined by an equation", "level": 2, "lower": []}, {"inner": "Line defined by two points", "level": 2, "lower": []}, {"inner": "Line defined by point and angle", "level": 2, "lower": []}, {"inner": "Proofs", "level": 2, "lower": [{"inner": "An algebraic proof", "level": 3, "lower": []}, {"inner": "A geometric proof", "level": 3, "lower": []}, {"inner": "A vector projection proof", "level": 3, "lower": []}]}, {"inner": "Another formula", "level": 2, "lower": []}, {"inner": "Vector formulation", "level": 2, "lower": []}, {"inner": "Another vector formulation", "level": 2, "lower": []}]} |
/wiki/Errors_and_residuals_in_statistics | {"inner": "Errors and residuals", "level": 1, "lower": [{"inner": "Introduction", "level": 2, "lower": []}, {"inner": "In univariate distributions", "level": 2, "lower": [{"inner": "Remark", "level": 3, "lower": []}]}, {"inner": "Regressions", "level": 2, "lower": []}, {"inner": "Other uses of the word \"error\" in statistics", "level": 2, "lower": []}]} |
/wiki/Gauss%E2%80%93Markov_theorem | {"inner": "Gauss\u2013Markov theorem", "level": 1, "lower": [{"inner": "Statement", "level": 2, "lower": [{"inner": "Remark", "level": 3, "lower": []}]}, {"inner": "Proof", "level": 2, "lower": [{"inner": "Remarks on the proof", "level": 3, "lower": []}]}, {"inner": "Generalized least squares estimator", "level": 2, "lower": []}, {"inner": "Gauss\u2013Markov theorem as stated in econometrics", "level": 2, "lower": [{"inner": "Linearity", "level": 3, "lower": []}, {"inner": "Strict exogeneity", "level": 3, "lower": []}, {"inner": "Full rank", "level": 3, "lower": []}, {"inner": "Spherical errors", "level": 3, "lower": []}]}]} |
/wiki/GNU_Octave | {"inner": "GNU Octave", "level": 1, "lower": [{"inner": "History", "level": 2, "lower": []}, {"inner": "Development history", "level": 2, "lower": []}, {"inner": "Developments", "level": 2, "lower": []}, {"inner": "Technical details", "level": 2, "lower": []}, {"inner": "Octave, the language", "level": 2, "lower": []}, {"inner": "Notable features", "level": 2, "lower": [{"inner": "Command and variable name completion", "level": 3, "lower": []}, {"inner": "Command history", "level": 3, "lower": []}, {"inner": "Data structures", "level": 3, "lower": []}, {"inner": "Short-circuit Boolean operators", "level": 3, "lower": []}, {"inner": "Increment and decrement operators", "level": 3, "lower": []}, {"inner": "Unwind-protect", "level": 3, "lower": []}, {"inner": "Variable-length argument lists", "level": 3, "lower": []}, {"inner": "Variable-length return lists", "level": 3, "lower": []}, {"inner": "C++ integration", "level": 3, "lower": []}]}, {"inner": "MATLAB compatibility", "level": 2, "lower": [{"inner": "Syntax compatibility", "level": 3, "lower": []}, {"inner": "Function compatibility", "level": 3, "lower": []}]}, {"inner": "User interfaces", "level": 2, "lower": []}, {"inner": "GUI applications", "level": 2, "lower": []}, {"inner": "Packages", "level": 2, "lower": []}, {"inner": "Comparison with other similar software", "level": 2, "lower": []}]} |
/wiki/Objective_function | {"inner": "Loss function", "level": 1, "lower": [{"inner": "Example", "level": 2, "lower": [{"inner": "Regret", "level": 3, "lower": []}, {"inner": "Quadratic loss function", "level": 3, "lower": []}, {"inner": "0-1 loss function", "level": 3, "lower": []}]}, {"inner": "Constructing loss and objective functions", "level": 2, "lower": []}, {"inner": "Expected loss", "level": 2, "lower": [{"inner": "Statistics", "level": 3, "lower": [{"inner": "Frequentist expected loss", "level": 4, "lower": []}, {"inner": "Bayesian expected loss", "level": 4, "lower": []}, {"inner": "Examples in statistics", "level": 4, "lower": []}]}, {"inner": "Economic choice under uncertainty", "level": 3, "lower": []}]}, {"inner": "Decision rules", "level": 2, "lower": []}, {"inner": "Selecting a loss function", "level": 2, "lower": []}]} |
/wiki/Mahalanobis_distance | {"inner": "Mahalanobis distance", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": []}, {"inner": "Intuitive explanation", "level": 2, "lower": []}, {"inner": "Normal distributions", "level": 2, "lower": []}, {"inner": "Other forms of multivariate location and scatter", "level": 2, "lower": []}, {"inner": "Relationship to normal random variables", "level": 2, "lower": []}, {"inner": "Relationship to leverage", "level": 2, "lower": []}, {"inner": "Applications", "level": 2, "lower": []}, {"inner": "Software implementations", "level": 2, "lower": []}]} |
/wiki/Analysis_of_variance | {"inner": "Analysis of variance", "level": 1, "lower": [{"inner": "History", "level": 2, "lower": []}, {"inner": "Example", "level": 2, "lower": []}, {"inner": "Classes of models", "level": 2, "lower": [{"inner": "Fixed-effects models", "level": 3, "lower": []}, {"inner": "Random-effects models", "level": 3, "lower": []}, {"inner": "Mixed-effects models", "level": 3, "lower": []}, {"inner": "Example", "level": 3, "lower": []}]}, {"inner": "Assumptions", "level": 2, "lower": [{"inner": "Textbook analysis using a normal distribution", "level": 3, "lower": []}, {"inner": "Randomization-based analysis", "level": 3, "lower": [{"inner": "Unit-treatment additivity", "level": 4, "lower": []}, {"inner": "Derived linear model", "level": 4, "lower": []}, {"inner": "Statistical models for observational data", "level": 4, "lower": []}]}, {"inner": "Summary of assumptions", "level": 3, "lower": []}]}, {"inner": "Characteristics", "level": 2, "lower": []}, {"inner": "Algorithm", "level": 2, "lower": [{"inner": "Partitioning of the sum of squares", "level": 3, "lower": []}, {"inner": "The F-test", "level": 3, "lower": []}, {"inner": "Extended algorithm", "level": 3, "lower": []}]}, {"inner": "For a single factor", "level": 2, "lower": []}, {"inner": "For multiple factors", "level": 2, "lower": []}, {"inner": "Associated analysis", "level": 2, "lower": [{"inner": "Preparatory analysis", "level": 3, "lower": [{"inner": "The number of experimental units", "level": 4, "lower": []}, {"inner": "Power analysis", "level": 4, "lower": []}, {"inner": "Effect size", "level": 4, "lower": []}, {"inner": "Model confirmation", "level": 4, "lower": []}, {"inner": "Follow-up tests", "level": 4, "lower": []}]}]}, {"inner": "Study designs", "level": 2, "lower": []}, {"inner": "Cautions", "level": 2, "lower": []}, {"inner": "Generalizations", "level": 2, "lower": [{"inner": "Connection to linear regression", "level": 3, "lower": [{"inner": "Example", "level": 4, "lower": []}]}]}]} |
/wiki/Curve_fitting#Algebraic_fit_versus_geometric_fit_for_curves | {"inner": "Curve fitting", "level": 1, "lower": [{"inner": "Algebraic fitting of functions to data points", "level": 2, "lower": [{"inner": "Fitting lines and polynomial functions to data points", "level": 3, "lower": []}, {"inner": "Fitting other functions to data points", "level": 3, "lower": []}]}, {"inner": "Geometric fitting of plane curves to data points", "level": 2, "lower": [{"inner": "Fitting a circle by geometric fit", "level": 3, "lower": []}, {"inner": "Fitting an ellipse by geometric fit", "level": 3, "lower": []}]}, {"inner": "Fitting surfaces", "level": 2, "lower": []}, {"inner": "Software", "level": 2, "lower": []}]} |
/wiki/Lagrange_multipliers | {"inner": "Lagrange multiplier", "level": 1, "lower": [{"inner": "Statement", "level": 2, "lower": []}, {"inner": "Single constraint", "level": 2, "lower": []}, {"inner": "Multiple constraints", "level": 2, "lower": []}, {"inner": "Modern formulation via differentiable manifolds", "level": 2, "lower": [{"inner": "Single constraint", "level": 3, "lower": []}, {"inner": "Multiple constraints", "level": 3, "lower": []}]}, {"inner": "Interpretation of the Lagrange multipliers", "level": 2, "lower": []}, {"inner": "Sufficient conditions", "level": 2, "lower": []}, {"inner": "Examples", "level": 2, "lower": [{"inner": "Example 1", "level": 3, "lower": []}, {"inner": "Example 2", "level": 3, "lower": []}, {"inner": "Example 3", "level": 3, "lower": []}, {"inner": "Example 4", "level": 3, "lower": []}, {"inner": "Example 5", "level": 3, "lower": []}]}, {"inner": "Applications", "level": 2, "lower": [{"inner": "Control theory", "level": 3, "lower": []}, {"inner": "Nonlinear programming", "level": 3, "lower": []}, {"inner": "Power systems", "level": 3, "lower": []}]}]} |
/wiki/Errors-in-variables_regression | {"inner": "Errors-in-variables models", "level": 1, "lower": [{"inner": "Motivating example", "level": 2, "lower": []}, {"inner": "Specification", "level": 2, "lower": [{"inner": "Terminology and assumptions", "level": 3, "lower": []}]}, {"inner": "Linear model", "level": 2, "lower": [{"inner": "Simple linear model", "level": 3, "lower": []}, {"inner": "Multivariable linear model", "level": 3, "lower": []}]}, {"inner": "Non-linear models", "level": 2, "lower": [{"inner": "Instrumental variables methods", "level": 3, "lower": []}, {"inner": "Repeated observations", "level": 3, "lower": []}]}, {"inner": "References", "level": 2, "lower": []}, {"inner": "Further reading", "level": 2, "lower": []}, {"inner": "External links", "level": 2, "lower": []}]} |
/wiki/Variance-covariance_matrix | {"inner": "Covariance matrix", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": [{"inner": "Conflicting nomenclatures and notations", "level": 3, "lower": []}]}, {"inner": "Properties", "level": 2, "lower": [{"inner": "Relation to the autocorrelation matrix", "level": 3, "lower": []}, {"inner": "Relation to the correlation matrix", "level": 3, "lower": []}, {"inner": "Inverse of the covariance matrix", "level": 3, "lower": []}, {"inner": "Basic properties", "level": 3, "lower": []}, {"inner": "Block matrices", "level": 3, "lower": []}]}, {"inner": "Partial covariance matrix", "level": 2, "lower": []}, {"inner": "Covariance matrix as a parameter of a distribution", "level": 2, "lower": []}, {"inner": "Covariance matrix as a linear operator", "level": 2, "lower": []}, {"inner": "Which matrices are covariance matrices?", "level": 2, "lower": []}, {"inner": "Complex random vectors", "level": 2, "lower": [{"inner": "Pseudo-covariance matrix", "level": 3, "lower": []}]}, {"inner": "Estimation", "level": 2, "lower": []}, {"inner": "Applications", "level": 2, "lower": [{"inner": "Use in optimization", "level": 3, "lower": []}, {"inner": "Covariance mapping", "level": 3, "lower": []}, {"inner": "Two-dimensional infrared spectroscopy", "level": 3, "lower": []}]}]} |
/wiki/Studentized_residual | {"inner": "Studentized residual", "level": 1, "lower": [{"inner": "Motivation", "level": 2, "lower": []}, {"inner": "Background", "level": 2, "lower": []}, {"inner": "Calculation", "level": 2, "lower": []}, {"inner": "Internal and external studentization", "level": 2, "lower": []}, {"inner": "Distribution", "level": 2, "lower": []}, {"inner": "Software implementations", "level": 2, "lower": []}]} |
/wiki/Maximum-likelihood | {"inner": "Maximum likelihood estimation", "level": 1, "lower": [{"inner": "Principles", "level": 2, "lower": [{"inner": "Restricted parameter space", "level": 3, "lower": []}]}, {"inner": "Properties", "level": 2, "lower": [{"inner": "Consistency", "level": 3, "lower": []}, {"inner": "Functional invariance", "level": 3, "lower": []}, {"inner": "Efficiency", "level": 3, "lower": []}, {"inner": "Second-order efficiency after correction for bias", "level": 3, "lower": []}, {"inner": "Relation to Bayesian inference", "level": 3, "lower": [{"inner": "Application of maximum-likelihood estimation in Bayes decision theory", "level": 4, "lower": []}]}, {"inner": "Relation to minimizing Kullback\u2013Leibler divergence and cross entropy", "level": 3, "lower": []}]}, {"inner": "Examples", "level": 2, "lower": [{"inner": "Discrete uniform distribution", "level": 3, "lower": []}, {"inner": "Discrete distribution, finite parameter space", "level": 3, "lower": []}, {"inner": "Discrete distribution, continuous parameter space", "level": 3, "lower": []}, {"inner": "Continuous distribution, continuous parameter space", "level": 3, "lower": []}]}, {"inner": "Non-independent variables", "level": 2, "lower": [{"inner": "Example", "level": 3, "lower": []}]}, {"inner": "Iterative procedures", "level": 2, "lower": [{"inner": "Gradient descent method", "level": 3, "lower": []}, {"inner": "Newton\u2013Raphson method", "level": 3, "lower": []}, {"inner": "Quasi-Newton methods", "level": 3, "lower": [{"inner": "Davidon\u2013Fletcher\u2013Powell formula", "level": 4, "lower": []}, {"inner": "Broyden\u2013Fletcher\u2013Goldfarb\u2013Shanno algorithm", "level": 4, "lower": []}, {"inner": "Fisher's scoring", "level": 4, "lower": []}]}]}, {"inner": "History", "level": 2, "lower": []}]} |
/wiki/Sabine_Van_Huffel | {"inner": "Sabine Van Huffel", "level": 1, "lower": [{"inner": "Education and career", "level": 2, "lower": []}, {"inner": "Book", "level": 2, "lower": []}, {"inner": "Recognition", "level": 2, "lower": []}, {"inner": "References", "level": 2, "lower": []}, {"inner": "External links", "level": 2, "lower": []}]} |
/wiki/Determination_of_equilibrium_constants#Parameter_errors_and_correlation | {"inner": "Determination of equilibrium constants", "level": 1, "lower": [{"inner": "Experimental methods", "level": 2, "lower": [{"inner": "Potentiometric measurements", "level": 3, "lower": [{"inner": "Range and limitations", "level": 4, "lower": []}]}, {"inner": "Spectrophotometric measurements", "level": 3, "lower": [{"inner": "Absorbance", "level": 4, "lower": []}, {"inner": "Fluorescence (luminescence) intensity", "level": 4, "lower": []}]}, {"inner": "NMR chemical shift measurements", "level": 3, "lower": [{"inner": "Range and limitations", "level": 4, "lower": []}]}, {"inner": "Calorimetric measurements", "level": 3, "lower": [{"inner": "Range and limitations", "level": 4, "lower": []}]}, {"inner": "The competition method", "level": 3, "lower": []}]}, {"inner": "Computational methods", "level": 2, "lower": [{"inner": "The chemical model", "level": 3, "lower": []}, {"inner": "Speciation calculations", "level": 3, "lower": []}, {"inner": "Equilibrium constant refinement", "level": 3, "lower": [{"inner": "Parameter errors and correlation", "level": 4, "lower": []}, {"inner": "Derived constants", "level": 4, "lower": []}]}, {"inner": "Model selection", "level": 3, "lower": [{"inner": "The objective function", "level": 4, "lower": []}, {"inner": "Parameter errors", "level": 4, "lower": []}, {"inner": "Distribution of residuals", "level": 4, "lower": []}, {"inner": "Physical constraints", "level": 4, "lower": []}, {"inner": "Chemical constraints", "level": 4, "lower": []}, {"inner": "Other models", "level": 4, "lower": []}]}]}, {"inner": "Implementations", "level": 2, "lower": []}, {"inner": "References", "level": 2, "lower": []}]} |
/wiki/Applied_statistics | {"inner": "Statistics", "level": 1, "lower": [{"inner": "Introduction", "level": 2, "lower": [{"inner": "Mathematical statistics", "level": 3, "lower": []}]}, {"inner": "History", "level": 2, "lower": []}, {"inner": "Statistical data", "level": 2, "lower": [{"inner": "Data collection", "level": 3, "lower": [{"inner": "Sampling", "level": 4, "lower": []}, {"inner": "Experimental and observational studies", "level": 4, "lower": []}]}, {"inner": "Types of data", "level": 3, "lower": []}]}, {"inner": "Methods", "level": 2, "lower": [{"inner": "Descriptive statistics", "level": 3, "lower": []}, {"inner": "Inferential statistics", "level": 3, "lower": [{"inner": "Terminology and theory of inferential statistics", "level": 4, "lower": []}]}, {"inner": "Exploratory data analysis", "level": 3, "lower": []}]}, {"inner": "Misuse", "level": 2, "lower": [{"inner": "Misinterpretation: correlation", "level": 3, "lower": []}]}, {"inner": "Applications", "level": 2, "lower": [{"inner": "Applied statistics, theoretical statistics and mathematical statistics", "level": 3, "lower": []}, {"inner": "Machine learning and data mining", "level": 3, "lower": []}, {"inner": "Statistics in academia", "level": 3, "lower": []}, {"inner": "Statistical computing", "level": 3, "lower": []}, {"inner": "Business statistics", "level": 3, "lower": []}, {"inner": "Statistics applied to mathematics or the arts", "level": 3, "lower": []}]}, {"inner": "Specialized disciplines", "level": 2, "lower": []}]} |
/wiki/Errors-in-variables_model | {"inner": "Errors-in-variables models", "level": 1, "lower": [{"inner": "Motivating example", "level": 2, "lower": []}, {"inner": "Specification", "level": 2, "lower": [{"inner": "Terminology and assumptions", "level": 3, "lower": []}]}, {"inner": "Linear model", "level": 2, "lower": [{"inner": "Simple linear model", "level": 3, "lower": []}, {"inner": "Multivariable linear model", "level": 3, "lower": []}]}, {"inner": "Non-linear models", "level": 2, "lower": [{"inner": "Instrumental variables methods", "level": 3, "lower": []}, {"inner": "Repeated observations", "level": 3, "lower": []}]}, {"inner": "References", "level": 2, "lower": []}, {"inner": "Further reading", "level": 2, "lower": []}, {"inner": "External links", "level": 2, "lower": []}]} |
/wiki/Paul_Samuelson | {"inner": "Paul Samuelson", "level": 1, "lower": [{"inner": "Biography", "level": 2, "lower": [{"inner": "Death", "level": 3, "lower": []}]}, {"inner": "Fields of interest", "level": 2, "lower": []}, {"inner": "Impact", "level": 2, "lower": []}, {"inner": "Aphorisms and quotations", "level": 2, "lower": []}, {"inner": "Publications", "level": 2, "lower": [{"inner": "Foundations of Economic Analysis", "level": 3, "lower": []}, {"inner": "Economics", "level": 3, "lower": []}, {"inner": "Other publications", "level": 3, "lower": []}]}, {"inner": "Criticisms", "level": 2, "lower": [{"inner": "Textbook influences in higher education", "level": 3, "lower": []}, {"inner": "Economic growth of USSR", "level": 3, "lower": []}, {"inner": "Phillips Curve", "level": 3, "lower": []}]}, {"inner": "Memberships", "level": 2, "lower": []}, {"inner": "List of publications", "level": 2, "lower": []}]} |
/wiki/Gene_H._Golub | {"inner": "Gene H. Golub", "level": 1, "lower": [{"inner": "Personal life", "level": 2, "lower": []}, {"inner": "Stanford University", "level": 2, "lower": []}, {"inner": "Recognition", "level": 2, "lower": []}, {"inner": "Selected publications", "level": 2, "lower": [{"inner": "Articles", "level": 3, "lower": []}, {"inner": "Books", "level": 3, "lower": []}]}, {"inner": "References", "level": 2, "lower": []}, {"inner": "External links", "level": 2, "lower": []}]} |
/wiki/S2CID_(identifier) | {"inner": "Semantic Scholar", "level": 1, "lower": [{"inner": "Technology", "level": 2, "lower": []}, {"inner": "Number of users and publications", "level": 2, "lower": []}]} |
/wiki/CiteSeerX_(identifier) | {"inner": "CiteSeerX", "level": 1, "lower": [{"inner": "History", "level": 2, "lower": [{"inner": "CiteSeer and CiteSeer.IST", "level": 3, "lower": []}, {"inner": "CiteSeerX", "level": 3, "lower": []}]}, {"inner": "Current features", "level": 2, "lower": [{"inner": "Automated information extraction", "level": 3, "lower": []}, {"inner": "Focused crawling", "level": 3, "lower": []}, {"inner": "Usage", "level": 3, "lower": []}, {"inner": "Data", "level": 3, "lower": []}]}, {"inner": "Other SeerSuite-based search engines", "level": 2, "lower": []}]} |
/wiki/Computational_statistics | {"inner": "Computational statistics", "level": 1, "lower": [{"inner": "History", "level": 2, "lower": []}, {"inner": "Methods", "level": 2, "lower": [{"inner": "Maximum likelihood estimation", "level": 3, "lower": []}, {"inner": "Monte Carlo method", "level": 3, "lower": []}, {"inner": "Markov chain Monte Carlo", "level": 3, "lower": []}]}, {"inner": "Applications", "level": 2, "lower": []}, {"inner": "Computational statistics journals", "level": 2, "lower": []}, {"inner": "Associations", "level": 2, "lower": []}]} |
/wiki/SSRN_(identifier) | {"inner": "Social Science Research Network", "level": 1, "lower": [{"inner": "History", "level": 2, "lower": []}, {"inner": "Operations", "level": 2, "lower": []}]} |
/wiki/Correlation_and_dependence | {"inner": "Correlation", "level": 1, "lower": [{"inner": "Pearson's product-moment coefficient", "level": 2, "lower": [{"inner": "Correlation and independence", "level": 3, "lower": []}, {"inner": "Sample correlation coefficient", "level": 3, "lower": []}]}, {"inner": "Example", "level": 2, "lower": []}, {"inner": "Rank correlation coefficients", "level": 2, "lower": []}, {"inner": "Other measures of dependence among random variables", "level": 2, "lower": []}, {"inner": "Sensitivity to the data distribution", "level": 2, "lower": []}, {"inner": "Correlation matrices", "level": 2, "lower": [{"inner": "Nearest valid correlation matrix", "level": 3, "lower": []}]}, {"inner": "Uncorrelatedness and independence of stochastic processes", "level": 2, "lower": []}, {"inner": "Common misconceptions", "level": 2, "lower": [{"inner": "Correlation and causality", "level": 3, "lower": []}, {"inner": "Simple linear correlations", "level": 3, "lower": []}]}, {"inner": "Bivariate normal distribution", "level": 2, "lower": []}]} |
/wiki/PMID_(identifier) | {"inner": "PubMed", "level": 1, "lower": [{"inner": "Content", "level": 2, "lower": []}, {"inner": "Characteristics", "level": 2, "lower": [{"inner": "Website design", "level": 3, "lower": [{"inner": "PubMed for handhelds/mobiles", "level": 4, "lower": []}]}, {"inner": "Search", "level": 3, "lower": [{"inner": "Standard search", "level": 4, "lower": []}, {"inner": "Comprehensive search", "level": 4, "lower": []}]}, {"inner": "Journal article parameters", "level": 3, "lower": [{"inner": "Publication Type: Clinical queries/systematic reviews", "level": 4, "lower": []}, {"inner": "Secondary ID", "level": 4, "lower": []}]}]}]} |
/wiki/JSTOR_(identifier) | {"inner": "JSTOR", "level": 1, "lower": [{"inner": "History", "level": 2, "lower": []}, {"inner": "Content", "level": 2, "lower": []}, {"inner": "Access", "level": 2, "lower": [{"inner": "Aaron Swartz incident", "level": 3, "lower": []}, {"inner": "Limitations", "level": 3, "lower": []}, {"inner": "Increasing public access", "level": 3, "lower": []}]}, {"inner": "Usage", "level": 2, "lower": []}]} |
/wiki/Pearson_product-moment_correlation_coefficient | {"inner": "Pearson correlation coefficient", "level": 1, "lower": [{"inner": "Naming and history", "level": 2, "lower": []}, {"inner": "Definition", "level": 2, "lower": [{"inner": "For a population", "level": 3, "lower": []}, {"inner": "For a sample", "level": 3, "lower": []}, {"inner": "Practical issues", "level": 3, "lower": []}]}, {"inner": "Mathematical properties", "level": 2, "lower": []}, {"inner": "Interpretation", "level": 2, "lower": [{"inner": "Geometric interpretation", "level": 3, "lower": []}, {"inner": "Interpretation of the size of a correlation", "level": 3, "lower": []}]}, {"inner": "Inference", "level": 2, "lower": [{"inner": "Using a permutation test", "level": 3, "lower": []}, {"inner": "Using a bootstrap", "level": 3, "lower": []}, {"inner": "Standard error", "level": 3, "lower": []}, {"inner": "Testing using Student's t-distribution", "level": 3, "lower": []}, {"inner": "Using the exact distribution", "level": 3, "lower": [{"inner": "Using the exact confidence distribution", "level": 4, "lower": []}]}, {"inner": "Using the Fisher transformation", "level": 3, "lower": []}]}, {"inner": "In least squares regression analysis", "level": 2, "lower": []}, {"inner": "Sensitivity to the data distribution", "level": 2, "lower": [{"inner": "Existence", "level": 3, "lower": []}, {"inner": "Sample size", "level": 3, "lower": []}, {"inner": "Robustness", "level": 3, "lower": []}]}, {"inner": "Variants", "level": 2, "lower": [{"inner": "Adjusted correlation coefficient", "level": 3, "lower": []}, {"inner": "Weighted correlation coefficient", "level": 3, "lower": []}, {"inner": "Reflective correlation coefficient", "level": 3, "lower": []}, {"inner": "Scaled correlation coefficient", "level": 3, "lower": []}, {"inner": "Pearson's distance", "level": 3, "lower": []}, {"inner": "Circular correlation coefficient", "level": 3, "lower": []}, {"inner": "Partial correlation", "level": 3, "lower": []}]}, {"inner": "Decorrelation of n random variables", "level": 2, "lower": []}, {"inner": "Software implementations", "level": 2, "lower": []}]} |
/wiki/Rank_correlation | {"inner": "Rank correlation", "level": 1, "lower": [{"inner": "Context", "level": 2, "lower": []}, {"inner": "Correlation coefficients", "level": 2, "lower": []}, {"inner": "General correlation coefficient", "level": 2, "lower": [{"inner": "Kendall's \u03c4 as a particular case", "level": 3, "lower": []}, {"inner": "Spearman\u2019s \u03c1 as a particular case", "level": 3, "lower": []}]}, {"inner": "Rank-biserial correlation", "level": 2, "lower": [{"inner": "Kerby simple difference formula", "level": 3, "lower": []}, {"inner": "Example and interpretation", "level": 3, "lower": []}]}, {"inner": "References", "level": 2, "lower": []}, {"inner": "Further reading", "level": 2, "lower": []}, {"inner": "External links", "level": 2, "lower": []}]} |
/wiki/Partial_correlation | {"inner": "Partial correlation", "level": 1, "lower": [{"inner": "Formal definition", "level": 2, "lower": []}, {"inner": "Computation", "level": 2, "lower": [{"inner": "Using linear regression", "level": 3, "lower": [{"inner": "Example", "level": 4, "lower": []}]}, {"inner": "Using recursive formula", "level": 3, "lower": []}, {"inner": "Using matrix inversion", "level": 3, "lower": []}]}, {"inner": "Interpretation", "level": 2, "lower": [{"inner": "Geometrical", "level": 3, "lower": []}, {"inner": "As conditional independence test", "level": 3, "lower": []}]}, {"inner": "Semipartial correlation (part correlation)", "level": 2, "lower": []}, {"inner": "Use in time series analysis", "level": 2, "lower": []}]} |
/wiki/Confounding | {"inner": "Confounding", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": []}, {"inner": "Control", "level": 2, "lower": []}, {"inner": "History", "level": 2, "lower": []}, {"inner": "Types", "level": 2, "lower": []}, {"inner": "Examples", "level": 2, "lower": []}, {"inner": "Decreasing the potential for confounding", "level": 2, "lower": []}, {"inner": "Artifacts", "level": 2, "lower": []}]} |
/wiki/Stepwise_regression | {"inner": "Stepwise regression", "level": 1, "lower": [{"inner": "Main approaches", "level": 2, "lower": []}, {"inner": "Alternatives", "level": 2, "lower": []}, {"inner": "Model accuracy", "level": 2, "lower": []}, {"inner": "Criticism", "level": 2, "lower": []}]} |
/wiki/Analysis_of_covariance | {"inner": "Analysis of covariance", "level": 1, "lower": [{"inner": "Uses", "level": 2, "lower": [{"inner": "Increase power", "level": 3, "lower": []}, {"inner": "Adjusting preexisting differences", "level": 3, "lower": []}]}, {"inner": "Assumptions", "level": 2, "lower": [{"inner": "Assumption 1: linearity of regression", "level": 3, "lower": []}, {"inner": "Assumption 2: homogeneity of error variances", "level": 3, "lower": []}, {"inner": "Assumption 3: independence of error terms", "level": 3, "lower": []}, {"inner": "Assumption 4: normality of error terms", "level": 3, "lower": []}, {"inner": "Assumption 5: homogeneity of regression slopes", "level": 3, "lower": []}]}, {"inner": "Conducting an ANCOVA", "level": 2, "lower": [{"inner": "Test multicollinearity", "level": 3, "lower": []}, {"inner": "Test the homogeneity of variance assumption", "level": 3, "lower": []}, {"inner": "Test the homogeneity of regression slopes assumption", "level": 3, "lower": []}, {"inner": "Run ANCOVA analysis", "level": 3, "lower": []}, {"inner": "Follow-up analyses", "level": 3, "lower": []}]}, {"inner": "Power considerations", "level": 2, "lower": []}]} |
/wiki/Partition_of_sums_of_squares | {"inner": "Partition of sums of squares", "level": 1, "lower": [{"inner": "Background", "level": 2, "lower": []}, {"inner": "Partitioning the sum of squares in linear regression", "level": 2, "lower": [{"inner": "Proof", "level": 3, "lower": []}, {"inner": "Further partitioning", "level": 3, "lower": []}]}]} |
/wiki/Multivariate_analysis_of_variance | {"inner": "Multivariate analysis of variance", "level": 1, "lower": [{"inner": "Relationship with ANOVA", "level": 2, "lower": []}, {"inner": "Correlation of dependent variables", "level": 2, "lower": []}]} |
/wiki/Statistical_model | {"inner": "Statistical model", "level": 1, "lower": [{"inner": "Introduction", "level": 2, "lower": []}, {"inner": "Formal definition", "level": 2, "lower": []}, {"inner": "An example", "level": 2, "lower": []}, {"inner": "General remarks", "level": 2, "lower": []}, {"inner": "Dimension of a model", "level": 2, "lower": []}, {"inner": "Nested models", "level": 2, "lower": []}, {"inner": "Comparing models", "level": 2, "lower": []}]} |
/wiki/Spearman%27s_rank_correlation_coefficient | {"inner": "Spearman's rank correlation coefficient", "level": 1, "lower": [{"inner": "Definition and calculation", "level": 2, "lower": []}, {"inner": "Related quantities", "level": 2, "lower": []}, {"inner": "Interpretation", "level": 2, "lower": []}, {"inner": "Example", "level": 2, "lower": []}, {"inner": "Confidence intervals", "level": 2, "lower": []}, {"inner": "Determining significance", "level": 2, "lower": []}, {"inner": "Correspondence analysis based on Spearman's \u03c1", "level": 2, "lower": []}, {"inner": "Approximating Spearman's \u03c1 from a stream", "level": 2, "lower": []}, {"inner": "Software implementations", "level": 2, "lower": []}]} |
/wiki/Model_specification | {"inner": "Statistical model specification", "level": 1, "lower": [{"inner": "Specification error and bias", "level": 2, "lower": [{"inner": "Detection of misspecification", "level": 3, "lower": []}]}, {"inner": "Model building", "level": 2, "lower": []}]} |
/wiki/Model_selection | {"inner": "Model selection", "level": 1, "lower": [{"inner": "Introduction", "level": 2, "lower": []}, {"inner": "Two directions of model selection", "level": 2, "lower": []}, {"inner": "Methods to assist in choosing the set of candidate models", "level": 2, "lower": []}, {"inner": "Criteria", "level": 2, "lower": []}]} |
/wiki/Mallows%27s_Cp | {"inner": "Mallows's Cp", "level": 1, "lower": [{"inner": "Definition and properties", "level": 2, "lower": []}, {"inner": "Alternative definition", "level": 2, "lower": []}, {"inner": "Limitations", "level": 2, "lower": []}, {"inner": "Practical use", "level": 2, "lower": []}]} |
/wiki/Akaike_information_criterion | {"inner": "Akaike information criterion", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": []}, {"inner": "How to use AIC in practice", "level": 2, "lower": []}, {"inner": "Hypothesis testing", "level": 2, "lower": [{"inner": "Replicating Student's t-test", "level": 3, "lower": []}, {"inner": "Comparing categorical data sets", "level": 3, "lower": []}]}, {"inner": "Foundations of statistics", "level": 2, "lower": []}, {"inner": "Modification for small sample size", "level": 2, "lower": []}, {"inner": "History", "level": 2, "lower": []}, {"inner": "Usage tips", "level": 2, "lower": [{"inner": "Counting parameters", "level": 3, "lower": []}, {"inner": "Transforming data", "level": 3, "lower": []}]}, {"inner": "Comparisons with other model selection methods", "level": 2, "lower": [{"inner": "Comparison with BIC", "level": 3, "lower": []}, {"inner": "Comparison with least squares", "level": 3, "lower": []}, {"inner": "Comparison with cross-validation", "level": 3, "lower": []}, {"inner": "Comparison with Mallows's Cp", "level": 3, "lower": []}]}]} |
/wiki/Bayesian_information_criterion | {"inner": "Bayesian information criterion", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": []}, {"inner": "Derivation", "level": 2, "lower": []}, {"inner": "Usage", "level": 2, "lower": []}, {"inner": "Properties", "level": 2, "lower": []}, {"inner": "Limitations", "level": 2, "lower": []}, {"inner": "Gaussian special case", "level": 2, "lower": []}]} |
/wiki/Moore_matrix | {"inner": "Moore matrix", "level": 1, "lower": []} |
/wiki/Kendall_tau_rank_correlation_coefficient | {"inner": "Kendall rank correlation coefficient", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": [{"inner": "Properties", "level": 3, "lower": []}]}, {"inner": "Hypothesis test", "level": 2, "lower": []}, {"inner": "Accounting for ties", "level": 2, "lower": [{"inner": "Tau-a", "level": 3, "lower": []}, {"inner": "Tau-b", "level": 3, "lower": []}, {"inner": "Tau-c", "level": 3, "lower": []}]}, {"inner": "Significance tests", "level": 2, "lower": []}, {"inner": "Algorithms", "level": 2, "lower": []}, {"inner": "Software Implementations", "level": 2, "lower": []}]} |
/wiki/Charles_F._Van_Loan | {"inner": "Charles F. Van Loan", "level": 1, "lower": [{"inner": "Biography", "level": 2, "lower": []}, {"inner": "Honors and awards", "level": 2, "lower": []}, {"inner": "Books", "level": 2, "lower": []}, {"inner": "References", "level": 2, "lower": []}, {"inner": "External links", "level": 2, "lower": []}]} |
/wiki/Growth_curve_(statistics) | {"inner": "Growth curve (statistics)", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": []}, {"inner": "History", "level": 2, "lower": []}, {"inner": "Applications", "level": 2, "lower": []}, {"inner": "Other uses", "level": 2, "lower": []}, {"inner": "Footnotes", "level": 2, "lower": []}, {"inner": "References", "level": 2, "lower": []}]} |
/wiki/Minimum_mean-square_error | {"inner": "Minimum mean square error", "level": 1, "lower": [{"inner": "Motivation", "level": 2, "lower": []}, {"inner": "Definition", "level": 2, "lower": []}, {"inner": "Properties", "level": 2, "lower": []}, {"inner": "Linear MMSE estimator", "level": 2, "lower": [{"inner": "Univariate case", "level": 3, "lower": []}, {"inner": "Computation", "level": 3, "lower": []}]}, {"inner": "Linear MMSE estimator for linear observation process", "level": 2, "lower": [{"inner": "Alternative form", "level": 3, "lower": []}]}, {"inner": "Sequential linear MMSE estimation", "level": 2, "lower": [{"inner": "Special case: scalar observations", "level": 3, "lower": []}, {"inner": "Special Case: vector observation with uncorrelated noise", "level": 3, "lower": []}]}, {"inner": "Examples", "level": 2, "lower": [{"inner": "Example 1", "level": 3, "lower": []}, {"inner": "Example 2", "level": 3, "lower": []}, {"inner": "Example 3", "level": 3, "lower": []}, {"inner": "Example 4", "level": 3, "lower": []}]}]} |
/wiki/Gauss-Helmert_model | {"inner": "Least-squares adjustment", "level": 1, "lower": [{"inner": "Formulation", "level": 2, "lower": []}, {"inner": "Solution", "level": 2, "lower": [{"inner": "Computation", "level": 3, "lower": []}]}, {"inner": "Worked-out examples", "level": 2, "lower": []}, {"inner": "Applications", "level": 2, "lower": []}, {"inner": "Related concepts", "level": 2, "lower": []}, {"inner": "Extensions", "level": 2, "lower": []}, {"inner": "References", "level": 2, "lower": []}, {"inner": "Bibliography", "level": 2, "lower": []}]} |
/wiki/The_Johns_Hopkins_University_Press | {"inner": "Johns Hopkins University Press", "level": 1, "lower": [{"inner": "Overview", "level": 2, "lower": []}, {"inner": "Publications and divisions", "level": 2, "lower": []}]} |
/wiki/Optimal_design | {"inner": "Optimal design", "level": 1, "lower": [{"inner": "Advantages", "level": 2, "lower": []}, {"inner": "Minimizing the variance of estimators", "level": 2, "lower": [{"inner": "Contrasts", "level": 3, "lower": []}]}, {"inner": "Implementation", "level": 2, "lower": []}, {"inner": "Practical considerations", "level": 2, "lower": [{"inner": "Model dependence and robustness", "level": 3, "lower": []}, {"inner": "Choosing an optimality criterion and robustness", "level": 3, "lower": [{"inner": "Flexible optimality criteria and convex analysis", "level": 4, "lower": []}]}, {"inner": "Model uncertainty and Bayesian approaches", "level": 3, "lower": [{"inner": "Model selection", "level": 4, "lower": []}, {"inner": "Bayesian experimental design", "level": 4, "lower": []}]}]}, {"inner": "Iterative experimentation", "level": 2, "lower": [{"inner": "Sequential analysis", "level": 3, "lower": []}, {"inner": "Response-surface methodology", "level": 3, "lower": []}, {"inner": "System identification and stochastic approximation", "level": 3, "lower": []}]}, {"inner": "Specifying the number of experimental runs", "level": 2, "lower": [{"inner": "Using a computer to find a good design", "level": 3, "lower": []}, {"inner": "Discretizing probability-measure designs", "level": 3, "lower": []}]}, {"inner": "History", "level": 2, "lower": []}]} |
/wiki/Numerical_analysis | {"inner": "Numerical analysis", "level": 1, "lower": [{"inner": "General introduction", "level": 2, "lower": [{"inner": "History", "level": 3, "lower": []}, {"inner": "Direct and iterative methods", "level": 3, "lower": [{"inner": "Discretization and numerical integration", "level": 4, "lower": []}]}, {"inner": "Discretization", "level": 3, "lower": []}]}, {"inner": "Generation and propagation of errors", "level": 2, "lower": [{"inner": "Round-off", "level": 3, "lower": []}, {"inner": "Truncation and discretization error", "level": 3, "lower": []}, {"inner": "Numerical stability and well-posed problems", "level": 3, "lower": []}]}, {"inner": "Areas of study", "level": 2, "lower": [{"inner": "Computing values of functions", "level": 3, "lower": []}, {"inner": "Interpolation, extrapolation, and regression", "level": 3, "lower": []}, {"inner": "Solving equations and systems of equations", "level": 3, "lower": []}, {"inner": "Solving eigenvalue or singular value problems", "level": 3, "lower": []}, {"inner": "Optimization", "level": 3, "lower": []}, {"inner": "Evaluating integrals", "level": 3, "lower": []}, {"inner": "Differential equations", "level": 3, "lower": []}]}, {"inner": "Software", "level": 2, "lower": []}]} |
/wiki/Numerical_integration | {"inner": "Numerical integration", "level": 1, "lower": [{"inner": "Reasons for numerical integration", "level": 2, "lower": []}, {"inner": "History", "level": 2, "lower": []}, {"inner": "Methods for one-dimensional integrals", "level": 2, "lower": [{"inner": "Quadrature rules based on interpolating functions", "level": 3, "lower": []}, {"inner": "Generalized midpoint rule formula", "level": 3, "lower": []}, {"inner": "Adaptive algorithms", "level": 3, "lower": []}, {"inner": "Extrapolation methods", "level": 3, "lower": []}, {"inner": "Conservative (a priori) error estimation", "level": 3, "lower": []}, {"inner": "Integrals over infinite intervals", "level": 3, "lower": []}]}, {"inner": "Multidimensional integrals", "level": 2, "lower": [{"inner": "Monte Carlo", "level": 3, "lower": []}, {"inner": "Sparse grids", "level": 3, "lower": []}, {"inner": "Bayesian Quadrature", "level": 3, "lower": []}]}, {"inner": "Connection with differential equations", "level": 2, "lower": []}]} |
/wiki/Gaussian_quadrature | {"inner": "Gaussian quadrature", "level": 1, "lower": [{"inner": "Gauss\u2013Legendre quadrature", "level": 2, "lower": []}, {"inner": "Change of interval", "level": 2, "lower": []}, {"inner": "Example of two-point Gauss quadrature rule", "level": 2, "lower": []}, {"inner": "Other forms", "level": 2, "lower": [{"inner": "Fundamental theorem", "level": 3, "lower": [{"inner": "General formula for the weights", "level": 4, "lower": []}, {"inner": "Proof that the weights are positive", "level": 4, "lower": []}]}, {"inner": "Computation of Gaussian quadrature rules", "level": 3, "lower": [{"inner": "Recurrence relation", "level": 4, "lower": []}, {"inner": "The Golub-Welsch algorithm", "level": 4, "lower": []}]}, {"inner": "Error estimates", "level": 3, "lower": []}, {"inner": "Gauss\u2013Kronrod rules", "level": 3, "lower": []}, {"inner": "Gauss\u2013Lobatto rules", "level": 3, "lower": []}]}, {"inner": "References", "level": 2, "lower": []}, {"inner": "External links", "level": 2, "lower": []}]} |
/wiki/Chebyshev_polynomials | {"inner": "Chebyshev polynomials", "level": 1, "lower": [{"inner": "Definitions", "level": 2, "lower": [{"inner": "Recurrence definition", "level": 3, "lower": []}, {"inner": "Trigonometric definition", "level": 3, "lower": []}, {"inner": "Commuting polynomials definition", "level": 3, "lower": []}, {"inner": "Pell equation definition", "level": 3, "lower": []}]}, {"inner": "Relations between the two kinds of Chebyshev polynomials", "level": 2, "lower": []}, {"inner": "Explicit expressions", "level": 2, "lower": []}, {"inner": "Properties", "level": 2, "lower": [{"inner": "Symmetry", "level": 3, "lower": []}, {"inner": "Roots and extrema", "level": 3, "lower": []}, {"inner": "Differentiation and integration", "level": 3, "lower": []}, {"inner": "Products of Chebyshev polynomials", "level": 3, "lower": []}, {"inner": "Composition and divisibility properties", "level": 3, "lower": []}, {"inner": "Orthogonality", "level": 3, "lower": []}, {"inner": "Minimal \u221e-norm", "level": 3, "lower": [{"inner": "Remark", "level": 4, "lower": []}]}, {"inner": "Chebyshev polynomials as special cases of more general polynomial families", "level": 3, "lower": []}, {"inner": "Other properties", "level": 3, "lower": []}]}, {"inner": "Examples", "level": 2, "lower": [{"inner": "First kind", "level": 3, "lower": []}, {"inner": "Second kind", "level": 3, "lower": []}]}, {"inner": "As a basis set", "level": 2, "lower": [{"inner": "Example 1", "level": 3, "lower": []}, {"inner": "Example 2", "level": 3, "lower": []}, {"inner": "Partial sums", "level": 3, "lower": []}, {"inner": "Polynomial in Chebyshev form", "level": 3, "lower": []}]}, {"inner": "Families of polynomials related to Chebyshev polynomials", "level": 2, "lower": []}]} |
/wiki/Curve_fitting | {"inner": "Curve fitting", "level": 1, "lower": [{"inner": "Algebraic fitting of functions to data points", "level": 2, "lower": [{"inner": "Fitting lines and polynomial functions to data points", "level": 3, "lower": []}, {"inner": "Fitting other functions to data points", "level": 3, "lower": []}]}, {"inner": "Geometric fitting of plane curves to data points", "level": 2, "lower": [{"inner": "Fitting a circle by geometric fit", "level": 3, "lower": []}, {"inner": "Fitting an ellipse by geometric fit", "level": 3, "lower": []}]}, {"inner": "Fitting surfaces", "level": 2, "lower": []}, {"inner": "Software", "level": 2, "lower": []}]} |
/wiki/Chebyshev_nodes | {"inner": "Chebyshev nodes", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": []}, {"inner": "Approximation", "level": 2, "lower": []}, {"inner": "Notes", "level": 2, "lower": []}, {"inner": "References", "level": 2, "lower": []}, {"inner": "Further reading", "level": 2, "lower": []}]} |
/wiki/Moving_least_squares | {"inner": "Moving least squares", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": []}]} |
/wiki/Outline_of_statistics | {"inner": "Outline of statistics", "level": 1, "lower": [{"inner": "Nature of statistics", "level": 2, "lower": []}, {"inner": "History of statistics", "level": 2, "lower": []}, {"inner": "Describing data", "level": 2, "lower": []}, {"inner": "Experiments and surveys", "level": 2, "lower": [{"inner": "Sampling", "level": 3, "lower": []}]}, {"inner": "Analysing data", "level": 2, "lower": []}, {"inner": "Filtering data", "level": 2, "lower": []}, {"inner": "Statistical inference", "level": 2, "lower": []}, {"inner": "Probability distributions", "level": 2, "lower": []}, {"inner": "Random variables", "level": 2, "lower": []}, {"inner": "Probability theory", "level": 2, "lower": []}, {"inner": "Computational statistics", "level": 2, "lower": []}, {"inner": "Statistics software", "level": 2, "lower": []}, {"inner": "Statistics organizations", "level": 2, "lower": []}, {"inner": "Statistics publications", "level": 2, "lower": []}, {"inner": "Persons influential in the field of statistics", "level": 2, "lower": []}]} |
/wiki/Formal_semantics_(logic) | {"inner": "Semantics of logic", "level": 1, "lower": [{"inner": "Overview", "level": 2, "lower": []}]} |
/wiki/List_of_statistics_articles | {"inner": "List of statistics articles", "level": 1, "lower": [{"inner": "0\u20139", "level": 2, "lower": []}, {"inner": "A", "level": 2, "lower": []}, {"inner": "B", "level": 2, "lower": []}, {"inner": "C", "level": 2, "lower": []}, {"inner": "D", "level": 2, "lower": []}, {"inner": "E", "level": 2, "lower": []}, {"inner": "F", "level": 2, "lower": []}, {"inner": "G", "level": 2, "lower": []}, {"inner": "H", "level": 2, "lower": []}, {"inner": "I", "level": 2, "lower": []}, {"inner": "J", "level": 2, "lower": []}, {"inner": "K", "level": 2, "lower": []}, {"inner": "L", "level": 2, "lower": []}, {"inner": "M", "level": 2, "lower": []}, {"inner": "N", "level": 2, "lower": []}, {"inner": "O", "level": 2, "lower": []}, {"inner": "P", "level": 2, "lower": []}, {"inner": "Q", "level": 2, "lower": []}, {"inner": "R", "level": 2, "lower": []}, {"inner": "S", "level": 2, "lower": []}, {"inner": "T", "level": 2, "lower": []}, {"inner": "U", "level": 2, "lower": []}, {"inner": "V", "level": 2, "lower": []}, {"inner": "W", "level": 2, "lower": []}, {"inner": "Y", "level": 2, "lower": []}, {"inner": "Z", "level": 2, "lower": []}]} |
/wiki/Semantics | {"inner": "Semantics", "level": 1, "lower": [{"inner": "History", "level": 2, "lower": []}, {"inner": "Linguistics", "level": 2, "lower": [{"inner": "Disciplines and paradigms in linguistic semantics", "level": 3, "lower": [{"inner": "Formal semantics", "level": 4, "lower": []}, {"inner": "Conceptual semantics", "level": 4, "lower": []}, {"inner": "Cognitive semantics", "level": 4, "lower": []}, {"inner": "Lexical semantics", "level": 4, "lower": []}, {"inner": "Cross-cultural semantics", "level": 4, "lower": []}, {"inner": "Computational semantics", "level": 4, "lower": []}]}]}, {"inner": "Philosophy", "level": 2, "lower": []}, {"inner": "Computer science", "level": 2, "lower": [{"inner": "Programming languages", "level": 3, "lower": []}, {"inner": "Semantic models", "level": 3, "lower": []}]}, {"inner": "Psychology", "level": 2, "lower": [{"inner": "Semantic memory", "level": 3, "lower": []}, {"inner": "Ideasthesia", "level": 3, "lower": []}, {"inner": "Psychosemantics", "level": 3, "lower": []}, {"inner": "Prototype theory", "level": 3, "lower": []}]}]} |
/wiki/Stieltjes_matrix | {"inner": "Stieltjes matrix", "level": 1, "lower": []} |
/wiki/Definite_matrix | {"inner": "Definite matrix", "level": 1, "lower": [{"inner": "Definitions", "level": 2, "lower": [{"inner": "Definitions for real matrices", "level": 3, "lower": []}, {"inner": "Definitions for complex matrices", "level": 3, "lower": []}, {"inner": "Consistency between real and complex definitions", "level": 3, "lower": []}, {"inner": "Notation", "level": 3, "lower": []}]}, {"inner": "Examples", "level": 2, "lower": []}, {"inner": "Eigenvalues", "level": 2, "lower": []}, {"inner": "Decomposition", "level": 2, "lower": [{"inner": "Uniqueness up to unitary transformations", "level": 3, "lower": []}, {"inner": "Square root", "level": 3, "lower": []}, {"inner": "Cholesky decomposition", "level": 3, "lower": []}]}, {"inner": "Other characterizations", "level": 2, "lower": []}, {"inner": "Quadratic forms", "level": 2, "lower": []}, {"inner": "Simultaneous diagonalization", "level": 2, "lower": []}, {"inner": "Properties", "level": 2, "lower": [{"inner": "Induced partial ordering", "level": 3, "lower": []}, {"inner": "Inverse of positive definite matrix", "level": 3, "lower": []}, {"inner": "Scaling", "level": 3, "lower": []}, {"inner": "Addition", "level": 3, "lower": []}, {"inner": "Multiplication", "level": 3, "lower": []}, {"inner": "Trace", "level": 3, "lower": []}, {"inner": "Hadamard product", "level": 3, "lower": []}, {"inner": "Kronecker product", "level": 3, "lower": []}, {"inner": "Frobenius product", "level": 3, "lower": []}, {"inner": "Convexity", "level": 3, "lower": []}, {"inner": "Relation with cosine", "level": 3, "lower": []}, {"inner": "Further properties", "level": 3, "lower": []}, {"inner": "Block matrices and submatrices", "level": 3, "lower": []}, {"inner": "Local extrema", "level": 3, "lower": []}, {"inner": "Covariance", "level": 3, "lower": []}]}, {"inner": "Extension for non-Hermitian square matrices", "level": 2, "lower": []}, {"inner": "Applications", "level": 2, "lower": [{"inner": "Heat conductivity matrix", "level": 3, "lower": []}]}]} |
/wiki/Matrix_congruence | {"inner": "Matrix congruence", "level": 1, "lower": [{"inner": "Congruence over the reals", "level": 2, "lower": []}]} |
/wiki/Nilpotent_matrix | {"inner": "Nilpotent matrix", "level": 1, "lower": [{"inner": "Examples", "level": 2, "lower": [{"inner": "Example 1", "level": 3, "lower": []}, {"inner": "Example 2", "level": 3, "lower": []}, {"inner": "Example 3", "level": 3, "lower": []}, {"inner": "Example 4", "level": 3, "lower": []}, {"inner": "Example 5", "level": 3, "lower": []}, {"inner": "Example 6", "level": 3, "lower": []}]}, {"inner": "Characterization", "level": 2, "lower": []}, {"inner": "Classification", "level": 2, "lower": []}, {"inner": "Flag of subspaces", "level": 2, "lower": []}, {"inner": "Additional properties", "level": 2, "lower": []}, {"inner": "Generalizations", "level": 2, "lower": []}, {"inner": "Notes", "level": 2, "lower": []}, {"inner": "References", "level": 2, "lower": []}, {"inner": "External links", "level": 2, "lower": []}]} |
/wiki/Positive-definite_matrix | {"inner": "Definite matrix", "level": 1, "lower": [{"inner": "Definitions", "level": 2, "lower": [{"inner": "Definitions for real matrices", "level": 3, "lower": []}, {"inner": "Definitions for complex matrices", "level": 3, "lower": []}, {"inner": "Consistency between real and complex definitions", "level": 3, "lower": []}, {"inner": "Notation", "level": 3, "lower": []}]}, {"inner": "Examples", "level": 2, "lower": []}, {"inner": "Eigenvalues", "level": 2, "lower": []}, {"inner": "Decomposition", "level": 2, "lower": [{"inner": "Uniqueness up to unitary transformations", "level": 3, "lower": []}, {"inner": "Square root", "level": 3, "lower": []}, {"inner": "Cholesky decomposition", "level": 3, "lower": []}]}, {"inner": "Other characterizations", "level": 2, "lower": []}, {"inner": "Quadratic forms", "level": 2, "lower": []}, {"inner": "Simultaneous diagonalization", "level": 2, "lower": []}, {"inner": "Properties", "level": 2, "lower": [{"inner": "Induced partial ordering", "level": 3, "lower": []}, {"inner": "Inverse of positive definite matrix", "level": 3, "lower": []}, {"inner": "Scaling", "level": 3, "lower": []}, {"inner": "Addition", "level": 3, "lower": []}, {"inner": "Multiplication", "level": 3, "lower": []}, {"inner": "Trace", "level": 3, "lower": []}, {"inner": "Hadamard product", "level": 3, "lower": []}, {"inner": "Kronecker product", "level": 3, "lower": []}, {"inner": "Frobenius product", "level": 3, "lower": []}, {"inner": "Convexity", "level": 3, "lower": []}, {"inner": "Relation with cosine", "level": 3, "lower": []}, {"inner": "Further properties", "level": 3, "lower": []}, {"inner": "Block matrices and submatrices", "level": 3, "lower": []}, {"inner": "Local extrema", "level": 3, "lower": []}, {"inner": "Covariance", "level": 3, "lower": []}]}, {"inner": "Extension for non-Hermitian square matrices", "level": 2, "lower": []}, {"inner": "Applications", "level": 2, "lower": [{"inner": "Heat conductivity matrix", "level": 3, "lower": []}]}]} |
/wiki/Hurwitz_matrix | {"inner": "Hurwitz matrix", "level": 1, "lower": [{"inner": "Hurwitz matrix and the Hurwitz stability criterion", "level": 2, "lower": []}, {"inner": "Hurwitz stable matrices", "level": 2, "lower": []}]} |
/wiki/Diagonalizable_matrix | {"inner": "Diagonalizable matrix", "level": 1, "lower": [{"inner": "Definition", "level": 2, "lower": []}, {"inner": "Characterization", "level": 2, "lower": []}, {"inner": "Diagonalization", "level": 2, "lower": []}, {"inner": "Simultaneous diagonalization", "level": 2, "lower": []}, {"inner": "Examples", "level": 2, "lower": [{"inner": "Diagonalizable matrices", "level": 3, "lower": []}, {"inner": "Matrices that are not diagonalizable", "level": 3, "lower": []}, {"inner": "How to diagonalize a matrix", "level": 3, "lower": []}]}, {"inner": "Application to matrix functions", "level": 2, "lower": [{"inner": "Particular application", "level": 3, "lower": []}]}, {"inner": "Quantum mechanical application", "level": 2, "lower": []}]} |
/wiki/Projection_(linear_algebra) | {"inner": "Projection (linear algebra)", "level": 1, "lower": [{"inner": "Definitions", "level": 2, "lower": [{"inner": "Projection matrix", "level": 3, "lower": []}]}, {"inner": "Examples", "level": 2, "lower": [{"inner": "Orthogonal projection", "level": 3, "lower": []}, {"inner": "Oblique projection", "level": 3, "lower": []}]}, {"inner": "Properties and classification", "level": 2, "lower": [{"inner": "Idempotence", "level": 3, "lower": []}, {"inner": "Open map", "level": 3, "lower": []}, {"inner": "Complementarity of image and kernel", "level": 3, "lower": []}, {"inner": "Spectrum", "level": 3, "lower": []}, {"inner": "Product of projections", "level": 3, "lower": []}, {"inner": "Orthogonal projections", "level": 3, "lower": [{"inner": "Properties and special cases", "level": 4, "lower": []}]}, {"inner": "Oblique projections", "level": 3, "lower": [{"inner": "A matrix representation formula for a nonzero projection operator", "level": 4, "lower": []}, {"inner": "Singular values", "level": 4, "lower": []}]}, {"inner": "Finding projection with an inner product", "level": 3, "lower": []}]}, {"inner": "Canonical forms", "level": 2, "lower": []}, {"inner": "Projections on normed vector spaces", "level": 2, "lower": []}, {"inner": "Applications and further considerations", "level": 2, "lower": []}, {"inner": "Generalizations", "level": 2, "lower": []}]} |