thaonguyen217 commited on
Commit
de5cdb0
·
verified ·
1 Parent(s): 0744346

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -50
README.md CHANGED
@@ -1,51 +1,51 @@
1
- ---
2
- license: mit
3
- dataset:
4
- - chembl
5
- - zinc15
6
- ---
7
- ## Overview
8
- This dataset contains Functional Group (FG)-enhanced SMILES designed for molecule representation learning. It consists of approximately **20 million** FG-enhanced SMILES collected from a wide range of chemical suppliers and databases, as detailed below:
9
-
10
- | **Supplier** | **Number of Compounds** | **Source** |
11
- |-------------------------------|-------------------------|----------------------------------------------------------|
12
- | Targetmol | 22,555 | [Targetmol](https://www.targetmol.com/) |
13
- | Chemdiv | 1,741,620 | [Chemdiv](https://www.chemdiv.com/) |
14
- | Enamine | 862,698 | [Enamine](https://enamine.net/) |
15
- | Life Chemical | 347,657 | [Life Chemicals](https://lifechemicals.com/) |
16
- | Chembridge | 1,405,499 | [Chembridge](https://chembridge.com/) |
17
- | Vitas-M | 1,430,135 | [Vitas-M](https://vitasmlab.biz/) |
18
- | InterBioScreen | 560,564 | [InterBioScreen](https://www.ibscreen.com/) |
19
- | Maybridge | 97,367 | [Maybridge](https://chembridge.com/) |
20
- | Asinex | 601,936 | [Asinex](https://www.asinex.com/) |
21
- | Eximed | 61,281 | [Eximed](https://eximedlab.com/) |
22
- | Princeton BioMolecular | 1,647,078 | [Princeton BioMolecular](https://princetonbio.com/) |
23
- | Otava | 9,203,151 | [Otava](https://www.otava.com/) |
24
- | Alinda Chemical | 733,152 | [Alinda Chemical](https://www.alinda.ru/synthes_en.html) |
25
- | ChEMBL 25 | 1,785,415 | [ChEMBL](https://www.ebi.ac.uk/chembl/) |
26
- | ZINC15 | 4,000,000 | [ZINC15](https://zinc15.docking.org/) |
27
- | **Total** | **20,000,000** | |
28
-
29
- ## Dataset Details
30
- This dataset contains **22,364** unique tokens (vocabulary size = 22,364), which is an extension from 93 tokens in the corresponding standard SMILES dataset. This expansion helps bridge the gap between SMILES and natural language, which has a large set of vocabulary to sufficiently express the nuances of language.
31
-
32
- For more details about the method of generating FG-enhanced SMILES, please refer to our paper, [FARM: Functional Group-Aware Representations for Small Molecules](https://arxiv.org/pdf/2410.02082), or visit our [GitHub repository](https://github.com/thaonguyen217/farm_molecular_representation) for implementation details.
33
-
34
- Below is a breakdown of the number of token types that represent different chemical elements:
35
- ![image](output.png)
36
- *Number of functional groups associated with different chemical elements in the FG-enhanced SMILES dataset. The y-axis represents the natural logarithm (log, base e) of the count.*
37
-
38
- ## Examples of FG-enhanced SMILES
39
- Below are some examples of FG-enhanced SMILES from the dataset. Each SMILES string is augmented with functional group annotations (e.g., `C_alkyl`, `O_ether`, `c_6`, `n_tertiary_amine`, etc.) to enhance the representation of molecular structures for machine learning models.
40
-
41
- 1. ```C_alkyl O_ether c_6 1 c_6 c_6 c_6 ( - c_5-6 2 n_5-6 c_5-6 3 n_tertiary_amine_5-6 ( C_alkyl c_6 4 c_6 c_6 c_6 c_6 c_6 4 F_fluoro ) c_5-6 ( C_alkyl ) c_5-6 ( - c_5-6 4 c_5-6 c_5-6 c_5-6 5 c_5-6 ( c_5-6 4 ) O_ether_5-6 C_5-6 O_ether_5-6 5 ) c_amide_5-6 ( = O_amide ) n_amide_5-6 3 c_5-6 2 C_alkyl N_tertiary_amine ( C_alkyl ) C_alkyl C_alkyl c_6 2 c_6 c_6 c_6 c_6 c_6 2 ) c_6 c_6 1```
42
-
43
- 2. ```C_alkyl C_tertiary_carbon ( C_alkyl ) C_tertiary_carbon ( C_ester ( = O_ester ) O_ester C_ester c_5-6 1 c_5-6 n_tertiary_amine_5-6 2 c_5-6 c_5-6 c_5-6 c_5-6 c_5-6 2 n_5-6 1 ) C_tertiary_carbon ( C_alkyl ) N_secondary_amine C_ester ( = O_ester ) O_ester C_ester ( C_alkyl ) ( C_alkyl ) C_alkyl```
44
-
45
- 3. ```C_alkyl C_tertiary_carbon_6 1 C_6 N_tertiary_amine_6 ( c_5 2 n_5 n_5 c_5 ( C_tertiary_carbon_3 3 C_3 C_3 3 ) n_tertiary_amine_5 2 C_alkyl C_alkyl N_secondary_amine C_ketone ( = O_ketone ) c_5 2 c_5 c_5 c_5 s_5 2 ) C_6 C_amide_6 ( = O_amide ) N_amide_6 1 C_alkyl```
46
-
47
- 4. ```C_alkyl O_ether C_alkyl C_alkyl n_tertiary_amine_5 1 c_5 ( C_alkyl c_5 2 c_5 c_5 ( C_alkyl ) n_secondary_amine_5 n_5 2 ) n_5 n_5 c_5 1 N_tertiary_amine_7 1 C_7 C_7 C_7 N_amide_7 ( C_amide ( = O_amide ) C_tertiary_carbon ( C_alkyl ) C_alkyl ) C_7 C_7 1```
48
-
49
- 5. ```C_alkyl C_alkyl n_amide_6-6 1 c_amide_6-6 ( = O_amide ) n_6-6 c_6-6 ( O_hydroxyl ) c_6-6 2 c_6-6 ( C_ketone ( = O_ketone ) N_secondary_amine N_tertiary_amine_5 3 C_5 C_5 C_5 C_tertiary_carbon_5 3 C_alkyl O_ether C_alkyl ) c_6-6 c_6-6 ( C_tertiary_carbon ( C_alkyl ) C_alkyl ) n_6-6 c_6-6 1 2```
50
-
51
  6. ```C_alkyl C_tertiary_carbon_3 1 C_3 C_tertiary_carbon_3 1 C_alkyl n_tertiary_amine_5 1 c_5 ( C_alkyl c_6 2 c_6 c_6 n_6 c_6 c_6 2 ) n_5 n_5 c_5 1 N_tertiary_amine_6 1 C_6 C_6 N_tertiary_amine_6 ( C_alkyl C_amide ( = O_amide ) N_amide ( C_alkyl ) C_alkyl ) C_6 C_6 1```
 
1
+ ---
2
+ license: mit
3
+ dataset:
4
+ - chembl
5
+ - zinc15
6
+ ---
7
+ ## Overview
8
+ This dataset contains Functional Group (FG)-enhanced SMILES designed for molecule representation learning. It consists of approximately **20 million** FG-enhanced SMILES collected from a wide range of chemical suppliers and databases, as detailed below:
9
+
10
+ | **Supplier** | **Number of Compounds** | **Source** |
11
+ |-------------------------------|-------------------------|----------------------------------------------------------|
12
+ | Targetmol | 22,555 | [Targetmol](https://www.targetmol.com/) |
13
+ | Chemdiv | 1,741,620 | [Chemdiv](https://www.chemdiv.com/) |
14
+ | Enamine | 862,698 | [Enamine](https://enamine.net/) |
15
+ | Life Chemical | 347,657 | [Life Chemicals](https://lifechemicals.com/) |
16
+ | Chembridge | 1,405,499 | [Chembridge](https://chembridge.com/) |
17
+ | Vitas-M | 1,430,135 | [Vitas-M](https://vitasmlab.biz/) |
18
+ | InterBioScreen | 560,564 | [InterBioScreen](https://www.ibscreen.com/) |
19
+ | Maybridge | 97,367 | [Maybridge](https://chembridge.com/) |
20
+ | Asinex | 601,936 | [Asinex](https://www.asinex.com/) |
21
+ | Eximed | 61,281 | [Eximed](https://eximedlab.com/) |
22
+ | Princeton BioMolecular | 1,647,078 | [Princeton BioMolecular](https://princetonbio.com/) |
23
+ | Otava | 9,203,151 | [Otava](https://www.otava.com/) |
24
+ | Alinda Chemical | 733,152 | [Alinda Chemical](https://www.alinda.ru/synthes_en.html) |
25
+ | ChEMBL 25 | 1,785,415 | [ChEMBL](https://www.ebi.ac.uk/chembl/) |
26
+ | ZINC15 | 4,000,000 | [ZINC15](https://zinc15.docking.org/) |
27
+ | **Total** | **20,000,000** | |
28
+
29
+ ## Dataset Details
30
+ This dataset contains **36,748** unique tokens (vocabulary size = 36,748), which is an extension from 93 tokens in the corresponding standard SMILES dataset. This expansion helps bridge the gap between SMILES and natural language, which has a large set of vocabulary to sufficiently express the nuances of language.
31
+
32
+ For more details about the method of generating FG-enhanced SMILES, please refer to our paper, [FARM: Functional Group-Aware Representations for Small Molecules](https://arxiv.org/pdf/2410.02082), or visit our [GitHub repository](https://github.com/thaonguyen217/farm_molecular_representation) for implementation details.
33
+
34
+ Below is a breakdown of the number of token types that represent different chemical elements:
35
+ ![image](output.png)
36
+ *Number of functional groups associated with different chemical elements in the FG-enhanced SMILES dataset. The y-axis represents the natural logarithm (log, base e) of the count.*
37
+
38
+ ## Examples of FG-enhanced SMILES
39
+ Below are some examples of FG-enhanced SMILES from the dataset. Each SMILES string is augmented with functional group annotations (e.g., `C_alkyl`, `O_ether`, `c_6`, `n_tertiary_amine`, etc.) to enhance the representation of molecular structures for machine learning models.
40
+
41
+ 1. ```C_alkyl O_ether c_6 1 c_6 c_6 c_6 ( - c_5-6 2 n_5-6 c_5-6 3 n_tertiary_amine_5-6 ( C_alkyl c_6 4 c_6 c_6 c_6 c_6 c_6 4 F_fluoro ) c_5-6 ( C_alkyl ) c_5-6 ( - c_5-6 4 c_5-6 c_5-6 c_5-6 5 c_5-6 ( c_5-6 4 ) O_ether_5-6 C_5-6 O_ether_5-6 5 ) c_amide_5-6 ( = O_amide ) n_amide_5-6 3 c_5-6 2 C_alkyl N_tertiary_amine ( C_alkyl ) C_alkyl C_alkyl c_6 2 c_6 c_6 c_6 c_6 c_6 2 ) c_6 c_6 1```
42
+
43
+ 2. ```C_alkyl C_tertiary_carbon ( C_alkyl ) C_tertiary_carbon ( C_ester ( = O_ester ) O_ester C_ester c_5-6 1 c_5-6 n_tertiary_amine_5-6 2 c_5-6 c_5-6 c_5-6 c_5-6 c_5-6 2 n_5-6 1 ) C_tertiary_carbon ( C_alkyl ) N_secondary_amine C_ester ( = O_ester ) O_ester C_ester ( C_alkyl ) ( C_alkyl ) C_alkyl```
44
+
45
+ 3. ```C_alkyl C_tertiary_carbon_6 1 C_6 N_tertiary_amine_6 ( c_5 2 n_5 n_5 c_5 ( C_tertiary_carbon_3 3 C_3 C_3 3 ) n_tertiary_amine_5 2 C_alkyl C_alkyl N_secondary_amine C_ketone ( = O_ketone ) c_5 2 c_5 c_5 c_5 s_5 2 ) C_6 C_amide_6 ( = O_amide ) N_amide_6 1 C_alkyl```
46
+
47
+ 4. ```C_alkyl O_ether C_alkyl C_alkyl n_tertiary_amine_5 1 c_5 ( C_alkyl c_5 2 c_5 c_5 ( C_alkyl ) n_secondary_amine_5 n_5 2 ) n_5 n_5 c_5 1 N_tertiary_amine_7 1 C_7 C_7 C_7 N_amide_7 ( C_amide ( = O_amide ) C_tertiary_carbon ( C_alkyl ) C_alkyl ) C_7 C_7 1```
48
+
49
+ 5. ```C_alkyl C_alkyl n_amide_6-6 1 c_amide_6-6 ( = O_amide ) n_6-6 c_6-6 ( O_hydroxyl ) c_6-6 2 c_6-6 ( C_ketone ( = O_ketone ) N_secondary_amine N_tertiary_amine_5 3 C_5 C_5 C_5 C_tertiary_carbon_5 3 C_alkyl O_ether C_alkyl ) c_6-6 c_6-6 ( C_tertiary_carbon ( C_alkyl ) C_alkyl ) n_6-6 c_6-6 1 2```
50
+
51
  6. ```C_alkyl C_tertiary_carbon_3 1 C_3 C_tertiary_carbon_3 1 C_alkyl n_tertiary_amine_5 1 c_5 ( C_alkyl c_6 2 c_6 c_6 n_6 c_6 c_6 2 ) n_5 n_5 c_5 1 N_tertiary_amine_6 1 C_6 C_6 N_tertiary_amine_6 ( C_alkyl C_amide ( = O_amide ) N_amide ( C_alkyl ) C_alkyl ) C_6 C_6 1```