Datasets:
datasets:
- sentiment-analysis-dataset
language:
- en
task_categories:
- text-classification
task_ids:
- sentiment-classification
tags:
- sentiment-analysis
- text-classification
- balanced-dataset
- oversampling
- csv
pretty_name: Sentiment Analysis Dataset (Imbalanced)
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_examples: 83989
- name: validation
num_examples: 10499
- name: test
num_examples: 10499
format: csv
Sentiment Analysis Dataset
Overview
This dataset is designed for sentiment analysis tasks, providing labeled examples across three sentiment categories:
- 0: Negative
- 1: Neutral
- 2: Positive
It is suitable for training, validating, and testing text classification models in tasks such as social media sentiment analysis, customer feedback evaluation, and opinion mining.
Dataset Details
Key Features
- Type: CSV
- Language: English
- Labels:
0
: Negative1
: Neutral2
: Positive
- Pre-processing:
- Duplicates removed
- Null values removed
- Cleaned for consistency
Dataset Split
Split | Rows |
---|---|
Train | 83,989 |
Validation | 10,499 |
Test | 10,499 |
Format
Each row in the dataset consists of the following columns:
text
: The input text data (e.g., sentences, comments, or tweets).label
: The corresponding sentiment label (0
,1
, or2
).
Usage
Installation
Download the dataset from the Hugging Face Hub or your preferred storage location.
Loading the Dataset
Using Pandas
import pandas as pd
# Load the train dataset
train_df = pd.read_csv("path_to_train.csv")
print(train_df.head())
# Columns: text, label
Using Hugging Face's datasets
Library
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("your-dataset-path")
# Access splits
train_data = dataset["train"]
validation_data = dataset["validation"]
test_data = dataset["test"]
# Example: Printing a sample
print(train_data[0])
Example Usage
Here’s an example of using the dataset to fine-tune a sentiment analysis model with the Hugging Face Transformers library:
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
# Load dataset
dataset = load_dataset("your-dataset-path")
# Load model and tokenizer
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
# Tokenize dataset
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Prepare training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
load_best_model_at_end=True,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
)
# Train model
trainer.train()
Applications
This dataset can be used for:
- Social Media Sentiment Analysis: Understand the sentiment of posts or tweets.
- Customer Feedback Analysis: Evaluate reviews or feedback.
- Product Sentiment Trends: Monitor public sentiment about products or services.
License
This dataset is released under the [Insert Your Chosen License Here]. Ensure proper attribution if used in academic or commercial projects.
Citation
If you use this dataset, please cite it as follows:
@dataset{your_name_2024,
title = {Sentiment Analysis Dataset},
author = {Syed Khalid Hussain},
year = {2024},
url = {https://huggingface.co/datasets/syedkhalid076/Sentiment-Analysis}
}
Acknowledgments
This dataset was curated and processed by Syed Khalid Hussain. The author takes care to ensure high-quality data, enabling better model performance and reproducibility.
Author: Syed Khalid Hussain