openreview-pdfs / README.md
sumuks's picture
Update README.md
e8dd89c verified
---
license: mit
task_categories:
- text-classification
- document-question-answering
language:
- en
tags:
- academic-papers
- openreview
- research
- pdf
- machine-learning
size_categories:
- 1K<n<10K
---
# OpenReview PDFs Dataset
## 🎯 Overview
This dataset contains **7,814 PDF files** from OpenReview, representing a comprehensive collection of machine learning and AI research papers. The papers are organized in clean subdirectories for efficient access and processing.
## πŸ“ Repository Structure
```
data/
β”œβ”€β”€ small_papers/ # 1,872 files (< 500KB each)
β”œβ”€β”€ medium_papers/ # 4,605 files (500KB - 5MB each)
└── large_papers/ # 1,337 files (>= 5MB each)
```
## πŸš€ Quick Start
### Installation
```bash
pip install datasets pdfplumber
```
### Basic Usage
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("sumuks/openreview-pdfs")
# Access a PDF
sample = dataset['train'][0]
pdf_obj = sample['pdf']
# Extract text from first page
if pdf_obj.pages:
text = pdf_obj.pages[0].extract_text()
print(text[:500]) # First 500 characters
```
### Advanced Usage
```python
import pandas as pd
# Extract metadata from all PDFs
pdf_data = []
for i, sample in enumerate(dataset['train']):
pdf_obj = sample['pdf']
# Get metadata
title = "Unknown"
author = "Unknown"
if hasattr(pdf_obj, 'metadata') and pdf_obj.metadata:
title = pdf_obj.metadata.get('Title', 'Unknown')
author = pdf_obj.metadata.get('Author', 'Unknown')
# Extract first page text
first_page_text = ""
if pdf_obj.pages and len(pdf_obj.pages) > 0:
first_page_text = pdf_obj.pages[0].extract_text() or ""
pdf_data.append({
'index': i,
'title': title,
'author': author,
'num_pages': len(pdf_obj.pages) if hasattr(pdf_obj, 'pages') else 0,
'first_page_text': first_page_text
})
# Progress indicator
if i % 100 == 0:
print(f"Processed {i} PDFs...")
# Create DataFrame for analysis
df = pd.DataFrame(pdf_data)
print(f"Dataset summary:\n{df.describe()}")
```
### Filtering by Content Size
```python
# Filter papers by number of pages
short_papers = []
long_papers = []
for sample in dataset['train']:
pdf_obj = sample['pdf']
if hasattr(pdf_obj, 'pages'):
num_pages = len(pdf_obj.pages)
if num_pages <= 10:
short_papers.append(sample)
elif num_pages >= 20:
long_papers.append(sample)
print(f"Short papers (≀10 pages): {len(short_papers)}")
print(f"Long papers (β‰₯20 pages): {len(long_papers)}")
```
## πŸ“Š Dataset Statistics
- **Total PDFs**: 7,814
- **Small Papers**: 1,872 files (< 500KB)
- **Medium Papers**: 4,605 files (500KB - 5MB)
- **Large Papers**: 1,337 files (β‰₯ 5MB)
- **Source**: OpenReview platform
- **Domain**: Machine Learning, AI, Computer Science
## πŸ”¬ Research Applications
### Document Understanding
```python
# Extract paper structure
for sample in dataset['train'][:5]:
pdf_obj = sample['pdf']
print(f"Pages: {len(pdf_obj.pages)}")
# Analyze page structure
for i, page in enumerate(pdf_obj.pages[:3]): # First 3 pages
text = page.extract_text()
if text:
lines = text.split('\n')
print(f"Page {i+1}: {len(lines)} lines")
```
### Academic Text Mining
```python
# Extract research topics and keywords
import re
keywords = {}
for sample in dataset['train'][:100]: # Sample first 100 papers
pdf_obj = sample['pdf']
if pdf_obj.pages:
# Extract abstract (usually on first page)
first_page = pdf_obj.pages[0].extract_text()
# Simple keyword extraction
if 'abstract' in first_page.lower():
# Extract common ML terms
ml_terms = ['neural', 'learning', 'algorithm', 'model', 'training',
'optimization', 'deep', 'network', 'classification', 'regression']
for term in ml_terms:
if term in first_page.lower():
keywords[term] = keywords.get(term, 0) + 1
print("Most common ML terms:")
for term, count in sorted(keywords.items(), key=lambda x: x[1], reverse=True):
print(f"{term}: {count}")
```
### Citation Analysis
```python
# Extract citation patterns
import re
citation_patterns = []
for sample in dataset['train'][:50]:
pdf_obj = sample['pdf']
if pdf_obj.pages:
# Look for references section
for page in pdf_obj.pages:
text = page.extract_text()
if text and 'references' in text.lower():
# Simple citation extraction
citations = re.findall(r'\[\d+\]', text)
citation_patterns.extend(citations)
print(f"Found {len(citation_patterns)} citation references")
```
## πŸ› οΈ Technical Details
### PDF Processing
- **Library**: Uses `pdfplumber` for PDF processing
- **Text Extraction**: Full-text extraction with layout preservation
- **Metadata Access**: Original document metadata when available
- **Image Support**: Can extract images and figures (see pdfplumber docs)
### Performance Tips
```python
# For large-scale processing, use streaming
dataset_stream = load_dataset("sumuks/openreview-pdfs", streaming=True)
# Process in batches
batch_size = 10
batch = []
for sample in dataset_stream['train']:
batch.append(sample)
if len(batch) >= batch_size:
# Process batch
for item in batch:
pdf_obj = item['pdf']
# Your processing here
batch = [] # Reset batch
```
### Memory Management
```python
# For memory-efficient processing
def process_pdf_efficiently(sample):
pdf_obj = sample['pdf']
# Extract only what you need
metadata = {
'num_pages': len(pdf_obj.pages) if hasattr(pdf_obj, 'pages') else 0,
'title': pdf_obj.metadata.get('Title', '') if hasattr(pdf_obj, 'metadata') and pdf_obj.metadata else ''
}
# Extract text page by page to avoid loading entire document
first_page_text = ""
if pdf_obj.pages:
first_page_text = pdf_obj.pages[0].extract_text() or ""
return metadata, first_page_text
# Use generator for memory efficiency
def pdf_generator():
for sample in dataset['train']:
yield process_pdf_efficiently(sample)
```
## πŸ“ˆ Use Cases
1. **Large Language Model Training**: Academic domain-specific text
2. **Information Retrieval**: Document search and recommendation
3. **Research Analytics**: Trend analysis and impact prediction
4. **Document Classification**: Paper categorization by topic/methodology
5. **Citation Networks**: Academic relationship mapping
6. **Text Summarization**: Abstract and conclusion extraction
7. **Knowledge Extraction**: Methodology and result mining
## πŸ” Quality Notes
- All PDFs are verified and accessible
- Original filenames and metadata preserved where possible
- Organized structure for efficient browsing and filtering
- Compatible with standard PDF processing libraries
## πŸ“ Citation
If you use this dataset in your research, please cite:
```bibtex
@misc{sanyal2025sparkscientificallycreativeidea,
title={Spark: A System for Scientifically Creative Idea Generation},
author={Aishik Sanyal and Samuel Schapiro and Sumuk Shashidhar and Royce Moon and Lav R. Varshney and Dilek Hakkani-Tur},
year={2025},
eprint={2504.20090},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2504.20090},
}
```
## πŸ“„ License
MIT License - Please respect the original licensing and copyright of individual papers. This dataset is provided for research and educational purposes.
## πŸ™ Acknowledgments
- **OpenReview**: For hosting and providing access to academic research
- **Research Community**: For contributing valuable academic content
- **HuggingFace**: For providing the datasets infrastructure
- **PDF Processing Libraries**: pdfplumber and related tools
## πŸ› Issues & Support
If you encounter any issues with the dataset:
1. Check that you have the required dependencies: `pip install datasets pdfplumber`
2. Ensure you're using the latest version of the datasets library
3. For PDF-specific issues, refer to the pdfplumber documentation
4. Report dataset issues on the HuggingFace discussion page
## πŸ”„ Updates
This dataset was created in 2025 and represents a snapshot of OpenReview content. For the most current research, please also check the live OpenReview platform.
---
**Happy Researching! πŸš€**