|
--- |
|
license: mit |
|
task_categories: |
|
- text-classification |
|
- document-question-answering |
|
language: |
|
- en |
|
tags: |
|
- academic-papers |
|
- openreview |
|
- research |
|
- pdf |
|
- machine-learning |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
# OpenReview PDFs Dataset |
|
|
|
## π― Overview |
|
This dataset contains **7,814 PDF files** from OpenReview, representing a comprehensive collection of machine learning and AI research papers. The papers are organized in clean subdirectories for efficient access and processing. |
|
|
|
## π Repository Structure |
|
``` |
|
data/ |
|
βββ small_papers/ # 1,872 files (< 500KB each) |
|
βββ medium_papers/ # 4,605 files (500KB - 5MB each) |
|
βββ large_papers/ # 1,337 files (>= 5MB each) |
|
``` |
|
|
|
## π Quick Start |
|
|
|
### Installation |
|
```bash |
|
pip install datasets pdfplumber |
|
``` |
|
|
|
### Basic Usage |
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("sumuks/openreview-pdfs") |
|
|
|
# Access a PDF |
|
sample = dataset['train'][0] |
|
pdf_obj = sample['pdf'] |
|
|
|
# Extract text from first page |
|
if pdf_obj.pages: |
|
text = pdf_obj.pages[0].extract_text() |
|
print(text[:500]) # First 500 characters |
|
``` |
|
|
|
### Advanced Usage |
|
```python |
|
import pandas as pd |
|
|
|
# Extract metadata from all PDFs |
|
pdf_data = [] |
|
|
|
for i, sample in enumerate(dataset['train']): |
|
pdf_obj = sample['pdf'] |
|
|
|
# Get metadata |
|
title = "Unknown" |
|
author = "Unknown" |
|
if hasattr(pdf_obj, 'metadata') and pdf_obj.metadata: |
|
title = pdf_obj.metadata.get('Title', 'Unknown') |
|
author = pdf_obj.metadata.get('Author', 'Unknown') |
|
|
|
# Extract first page text |
|
first_page_text = "" |
|
if pdf_obj.pages and len(pdf_obj.pages) > 0: |
|
first_page_text = pdf_obj.pages[0].extract_text() or "" |
|
|
|
pdf_data.append({ |
|
'index': i, |
|
'title': title, |
|
'author': author, |
|
'num_pages': len(pdf_obj.pages) if hasattr(pdf_obj, 'pages') else 0, |
|
'first_page_text': first_page_text |
|
}) |
|
|
|
# Progress indicator |
|
if i % 100 == 0: |
|
print(f"Processed {i} PDFs...") |
|
|
|
# Create DataFrame for analysis |
|
df = pd.DataFrame(pdf_data) |
|
print(f"Dataset summary:\n{df.describe()}") |
|
``` |
|
|
|
### Filtering by Content Size |
|
```python |
|
# Filter papers by number of pages |
|
short_papers = [] |
|
long_papers = [] |
|
|
|
for sample in dataset['train']: |
|
pdf_obj = sample['pdf'] |
|
if hasattr(pdf_obj, 'pages'): |
|
num_pages = len(pdf_obj.pages) |
|
if num_pages <= 10: |
|
short_papers.append(sample) |
|
elif num_pages >= 20: |
|
long_papers.append(sample) |
|
|
|
print(f"Short papers (β€10 pages): {len(short_papers)}") |
|
print(f"Long papers (β₯20 pages): {len(long_papers)}") |
|
``` |
|
|
|
## π Dataset Statistics |
|
- **Total PDFs**: 7,814 |
|
- **Small Papers**: 1,872 files (< 500KB) |
|
- **Medium Papers**: 4,605 files (500KB - 5MB) |
|
- **Large Papers**: 1,337 files (β₯ 5MB) |
|
- **Source**: OpenReview platform |
|
- **Domain**: Machine Learning, AI, Computer Science |
|
|
|
## π¬ Research Applications |
|
|
|
### Document Understanding |
|
```python |
|
# Extract paper structure |
|
for sample in dataset['train'][:5]: |
|
pdf_obj = sample['pdf'] |
|
|
|
print(f"Pages: {len(pdf_obj.pages)}") |
|
|
|
# Analyze page structure |
|
for i, page in enumerate(pdf_obj.pages[:3]): # First 3 pages |
|
text = page.extract_text() |
|
if text: |
|
lines = text.split('\n') |
|
print(f"Page {i+1}: {len(lines)} lines") |
|
``` |
|
|
|
### Academic Text Mining |
|
```python |
|
# Extract research topics and keywords |
|
import re |
|
|
|
keywords = {} |
|
for sample in dataset['train'][:100]: # Sample first 100 papers |
|
pdf_obj = sample['pdf'] |
|
|
|
if pdf_obj.pages: |
|
# Extract abstract (usually on first page) |
|
first_page = pdf_obj.pages[0].extract_text() |
|
|
|
# Simple keyword extraction |
|
if 'abstract' in first_page.lower(): |
|
# Extract common ML terms |
|
ml_terms = ['neural', 'learning', 'algorithm', 'model', 'training', |
|
'optimization', 'deep', 'network', 'classification', 'regression'] |
|
|
|
for term in ml_terms: |
|
if term in first_page.lower(): |
|
keywords[term] = keywords.get(term, 0) + 1 |
|
|
|
print("Most common ML terms:") |
|
for term, count in sorted(keywords.items(), key=lambda x: x[1], reverse=True): |
|
print(f"{term}: {count}") |
|
``` |
|
|
|
### Citation Analysis |
|
```python |
|
# Extract citation patterns |
|
import re |
|
|
|
citation_patterns = [] |
|
|
|
for sample in dataset['train'][:50]: |
|
pdf_obj = sample['pdf'] |
|
|
|
if pdf_obj.pages: |
|
# Look for references section |
|
for page in pdf_obj.pages: |
|
text = page.extract_text() |
|
if text and 'references' in text.lower(): |
|
# Simple citation extraction |
|
citations = re.findall(r'\[\d+\]', text) |
|
citation_patterns.extend(citations) |
|
|
|
print(f"Found {len(citation_patterns)} citation references") |
|
``` |
|
|
|
## π οΈ Technical Details |
|
|
|
### PDF Processing |
|
- **Library**: Uses `pdfplumber` for PDF processing |
|
- **Text Extraction**: Full-text extraction with layout preservation |
|
- **Metadata Access**: Original document metadata when available |
|
- **Image Support**: Can extract images and figures (see pdfplumber docs) |
|
|
|
### Performance Tips |
|
```python |
|
# For large-scale processing, use streaming |
|
dataset_stream = load_dataset("sumuks/openreview-pdfs", streaming=True) |
|
|
|
# Process in batches |
|
batch_size = 10 |
|
batch = [] |
|
|
|
for sample in dataset_stream['train']: |
|
batch.append(sample) |
|
|
|
if len(batch) >= batch_size: |
|
# Process batch |
|
for item in batch: |
|
pdf_obj = item['pdf'] |
|
# Your processing here |
|
|
|
batch = [] # Reset batch |
|
``` |
|
|
|
### Memory Management |
|
```python |
|
# For memory-efficient processing |
|
def process_pdf_efficiently(sample): |
|
pdf_obj = sample['pdf'] |
|
|
|
# Extract only what you need |
|
metadata = { |
|
'num_pages': len(pdf_obj.pages) if hasattr(pdf_obj, 'pages') else 0, |
|
'title': pdf_obj.metadata.get('Title', '') if hasattr(pdf_obj, 'metadata') and pdf_obj.metadata else '' |
|
} |
|
|
|
# Extract text page by page to avoid loading entire document |
|
first_page_text = "" |
|
if pdf_obj.pages: |
|
first_page_text = pdf_obj.pages[0].extract_text() or "" |
|
|
|
return metadata, first_page_text |
|
|
|
# Use generator for memory efficiency |
|
def pdf_generator(): |
|
for sample in dataset['train']: |
|
yield process_pdf_efficiently(sample) |
|
``` |
|
|
|
## π Use Cases |
|
|
|
1. **Large Language Model Training**: Academic domain-specific text |
|
2. **Information Retrieval**: Document search and recommendation |
|
3. **Research Analytics**: Trend analysis and impact prediction |
|
4. **Document Classification**: Paper categorization by topic/methodology |
|
5. **Citation Networks**: Academic relationship mapping |
|
6. **Text Summarization**: Abstract and conclusion extraction |
|
7. **Knowledge Extraction**: Methodology and result mining |
|
|
|
## π Quality Notes |
|
|
|
- All PDFs are verified and accessible |
|
- Original filenames and metadata preserved where possible |
|
- Organized structure for efficient browsing and filtering |
|
- Compatible with standard PDF processing libraries |
|
|
|
## π Citation |
|
|
|
If you use this dataset in your research, please cite: |
|
|
|
```bibtex |
|
@misc{sanyal2025sparkscientificallycreativeidea, |
|
title={Spark: A System for Scientifically Creative Idea Generation}, |
|
author={Aishik Sanyal and Samuel Schapiro and Sumuk Shashidhar and Royce Moon and Lav R. Varshney and Dilek Hakkani-Tur}, |
|
year={2025}, |
|
eprint={2504.20090}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.AI}, |
|
url={https://arxiv.org/abs/2504.20090}, |
|
} |
|
``` |
|
|
|
## π License |
|
|
|
MIT License - Please respect the original licensing and copyright of individual papers. This dataset is provided for research and educational purposes. |
|
|
|
## π Acknowledgments |
|
|
|
- **OpenReview**: For hosting and providing access to academic research |
|
- **Research Community**: For contributing valuable academic content |
|
- **HuggingFace**: For providing the datasets infrastructure |
|
- **PDF Processing Libraries**: pdfplumber and related tools |
|
|
|
## π Issues & Support |
|
|
|
If you encounter any issues with the dataset: |
|
|
|
1. Check that you have the required dependencies: `pip install datasets pdfplumber` |
|
2. Ensure you're using the latest version of the datasets library |
|
3. For PDF-specific issues, refer to the pdfplumber documentation |
|
4. Report dataset issues on the HuggingFace discussion page |
|
|
|
## π Updates |
|
|
|
This dataset was created in 2025 and represents a snapshot of OpenReview content. For the most current research, please also check the live OpenReview platform. |
|
|
|
--- |
|
|
|
**Happy Researching! π** |
|
|