|
2023-09-03 20:19:20,809 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:19:20,810 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=21, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-09-03 20:19:20,810 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:19:20,810 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences |
|
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator |
|
2023-09-03 20:19:20,810 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:19:20,810 Train: 3575 sentences |
|
2023-09-03 20:19:20,810 (train_with_dev=False, train_with_test=False) |
|
2023-09-03 20:19:20,810 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:19:20,810 Training Params: |
|
2023-09-03 20:19:20,810 - learning_rate: "5e-05" |
|
2023-09-03 20:19:20,811 - mini_batch_size: "4" |
|
2023-09-03 20:19:20,811 - max_epochs: "10" |
|
2023-09-03 20:19:20,811 - shuffle: "True" |
|
2023-09-03 20:19:20,811 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:19:20,811 Plugins: |
|
2023-09-03 20:19:20,811 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-09-03 20:19:20,811 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:19:20,811 Final evaluation on model from best epoch (best-model.pt) |
|
2023-09-03 20:19:20,811 - metric: "('micro avg', 'f1-score')" |
|
2023-09-03 20:19:20,811 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:19:20,811 Computation: |
|
2023-09-03 20:19:20,811 - compute on device: cuda:0 |
|
2023-09-03 20:19:20,811 - embedding storage: none |
|
2023-09-03 20:19:20,811 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:19:20,811 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2" |
|
2023-09-03 20:19:20,811 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:19:20,811 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:19:29,527 epoch 1 - iter 89/894 - loss 2.89989312 - time (sec): 8.71 - samples/sec: 919.60 - lr: 0.000005 - momentum: 0.000000 |
|
2023-09-03 20:19:38,330 epoch 1 - iter 178/894 - loss 1.76162593 - time (sec): 17.52 - samples/sec: 916.67 - lr: 0.000010 - momentum: 0.000000 |
|
2023-09-03 20:19:47,454 epoch 1 - iter 267/894 - loss 1.27223185 - time (sec): 26.64 - samples/sec: 935.95 - lr: 0.000015 - momentum: 0.000000 |
|
2023-09-03 20:19:56,329 epoch 1 - iter 356/894 - loss 1.05292482 - time (sec): 35.52 - samples/sec: 930.12 - lr: 0.000020 - momentum: 0.000000 |
|
2023-09-03 20:20:05,560 epoch 1 - iter 445/894 - loss 0.89522602 - time (sec): 44.75 - samples/sec: 936.09 - lr: 0.000025 - momentum: 0.000000 |
|
2023-09-03 20:20:16,121 epoch 1 - iter 534/894 - loss 0.78258018 - time (sec): 55.31 - samples/sec: 943.67 - lr: 0.000030 - momentum: 0.000000 |
|
2023-09-03 20:20:25,496 epoch 1 - iter 623/894 - loss 0.71307594 - time (sec): 64.68 - samples/sec: 934.93 - lr: 0.000035 - momentum: 0.000000 |
|
2023-09-03 20:20:34,781 epoch 1 - iter 712/894 - loss 0.65376441 - time (sec): 73.97 - samples/sec: 936.05 - lr: 0.000040 - momentum: 0.000000 |
|
2023-09-03 20:20:43,688 epoch 1 - iter 801/894 - loss 0.61105348 - time (sec): 82.88 - samples/sec: 931.77 - lr: 0.000045 - momentum: 0.000000 |
|
2023-09-03 20:20:52,993 epoch 1 - iter 890/894 - loss 0.57058985 - time (sec): 92.18 - samples/sec: 933.39 - lr: 0.000050 - momentum: 0.000000 |
|
2023-09-03 20:20:53,415 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:20:53,416 EPOCH 1 done: loss 0.5683 - lr: 0.000050 |
|
2023-09-03 20:21:04,508 DEV : loss 0.17097648978233337 - f1-score (micro avg) 0.6162 |
|
2023-09-03 20:21:04,534 saving best model |
|
2023-09-03 20:21:04,992 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:21:14,165 epoch 2 - iter 89/894 - loss 0.20605836 - time (sec): 9.17 - samples/sec: 938.05 - lr: 0.000049 - momentum: 0.000000 |
|
2023-09-03 20:21:23,535 epoch 2 - iter 178/894 - loss 0.19007741 - time (sec): 18.54 - samples/sec: 918.64 - lr: 0.000049 - momentum: 0.000000 |
|
2023-09-03 20:21:32,430 epoch 2 - iter 267/894 - loss 0.18247790 - time (sec): 27.44 - samples/sec: 919.45 - lr: 0.000048 - momentum: 0.000000 |
|
2023-09-03 20:21:41,692 epoch 2 - iter 356/894 - loss 0.18202885 - time (sec): 36.70 - samples/sec: 928.16 - lr: 0.000048 - momentum: 0.000000 |
|
2023-09-03 20:21:50,582 epoch 2 - iter 445/894 - loss 0.17738266 - time (sec): 45.59 - samples/sec: 925.06 - lr: 0.000047 - momentum: 0.000000 |
|
2023-09-03 20:22:00,394 epoch 2 - iter 534/894 - loss 0.17474082 - time (sec): 55.40 - samples/sec: 929.14 - lr: 0.000047 - momentum: 0.000000 |
|
2023-09-03 20:22:09,359 epoch 2 - iter 623/894 - loss 0.16799398 - time (sec): 64.37 - samples/sec: 929.21 - lr: 0.000046 - momentum: 0.000000 |
|
2023-09-03 20:22:19,256 epoch 2 - iter 712/894 - loss 0.16240455 - time (sec): 74.26 - samples/sec: 930.96 - lr: 0.000046 - momentum: 0.000000 |
|
2023-09-03 20:22:28,965 epoch 2 - iter 801/894 - loss 0.16209682 - time (sec): 83.97 - samples/sec: 927.51 - lr: 0.000045 - momentum: 0.000000 |
|
2023-09-03 20:22:37,984 epoch 2 - iter 890/894 - loss 0.16158978 - time (sec): 92.99 - samples/sec: 926.44 - lr: 0.000044 - momentum: 0.000000 |
|
2023-09-03 20:22:38,376 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:22:38,376 EPOCH 2 done: loss 0.1613 - lr: 0.000044 |
|
2023-09-03 20:22:51,909 DEV : loss 0.16291926801204681 - f1-score (micro avg) 0.6627 |
|
2023-09-03 20:22:51,935 saving best model |
|
2023-09-03 20:22:53,255 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:23:02,702 epoch 3 - iter 89/894 - loss 0.08768279 - time (sec): 9.45 - samples/sec: 913.47 - lr: 0.000044 - momentum: 0.000000 |
|
2023-09-03 20:23:12,631 epoch 3 - iter 178/894 - loss 0.08725946 - time (sec): 19.37 - samples/sec: 942.88 - lr: 0.000043 - momentum: 0.000000 |
|
2023-09-03 20:23:22,249 epoch 3 - iter 267/894 - loss 0.09362897 - time (sec): 28.99 - samples/sec: 948.89 - lr: 0.000043 - momentum: 0.000000 |
|
2023-09-03 20:23:31,711 epoch 3 - iter 356/894 - loss 0.08860942 - time (sec): 38.45 - samples/sec: 948.63 - lr: 0.000042 - momentum: 0.000000 |
|
2023-09-03 20:23:41,240 epoch 3 - iter 445/894 - loss 0.09576555 - time (sec): 47.98 - samples/sec: 947.72 - lr: 0.000042 - momentum: 0.000000 |
|
2023-09-03 20:23:50,052 epoch 3 - iter 534/894 - loss 0.10063010 - time (sec): 56.80 - samples/sec: 935.90 - lr: 0.000041 - momentum: 0.000000 |
|
2023-09-03 20:23:58,894 epoch 3 - iter 623/894 - loss 0.09832043 - time (sec): 65.64 - samples/sec: 937.51 - lr: 0.000041 - momentum: 0.000000 |
|
2023-09-03 20:24:07,624 epoch 3 - iter 712/894 - loss 0.09817305 - time (sec): 74.37 - samples/sec: 934.63 - lr: 0.000040 - momentum: 0.000000 |
|
2023-09-03 20:24:16,848 epoch 3 - iter 801/894 - loss 0.10180100 - time (sec): 83.59 - samples/sec: 931.72 - lr: 0.000039 - momentum: 0.000000 |
|
2023-09-03 20:24:25,737 epoch 3 - iter 890/894 - loss 0.10148223 - time (sec): 92.48 - samples/sec: 931.35 - lr: 0.000039 - momentum: 0.000000 |
|
2023-09-03 20:24:26,139 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:24:26,139 EPOCH 3 done: loss 0.1014 - lr: 0.000039 |
|
2023-09-03 20:24:39,577 DEV : loss 0.1718726009130478 - f1-score (micro avg) 0.7266 |
|
2023-09-03 20:24:39,603 saving best model |
|
2023-09-03 20:24:40,951 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:24:49,636 epoch 4 - iter 89/894 - loss 0.07154590 - time (sec): 8.68 - samples/sec: 877.87 - lr: 0.000038 - momentum: 0.000000 |
|
2023-09-03 20:24:59,559 epoch 4 - iter 178/894 - loss 0.06212479 - time (sec): 18.61 - samples/sec: 912.49 - lr: 0.000038 - momentum: 0.000000 |
|
2023-09-03 20:25:08,695 epoch 4 - iter 267/894 - loss 0.06975820 - time (sec): 27.74 - samples/sec: 912.20 - lr: 0.000037 - momentum: 0.000000 |
|
2023-09-03 20:25:17,849 epoch 4 - iter 356/894 - loss 0.06914589 - time (sec): 36.90 - samples/sec: 920.20 - lr: 0.000037 - momentum: 0.000000 |
|
2023-09-03 20:25:26,598 epoch 4 - iter 445/894 - loss 0.06933892 - time (sec): 45.65 - samples/sec: 910.82 - lr: 0.000036 - momentum: 0.000000 |
|
2023-09-03 20:25:37,152 epoch 4 - iter 534/894 - loss 0.06671475 - time (sec): 56.20 - samples/sec: 924.15 - lr: 0.000036 - momentum: 0.000000 |
|
2023-09-03 20:25:46,669 epoch 4 - iter 623/894 - loss 0.06771971 - time (sec): 65.72 - samples/sec: 920.47 - lr: 0.000035 - momentum: 0.000000 |
|
2023-09-03 20:25:55,680 epoch 4 - iter 712/894 - loss 0.06810537 - time (sec): 74.73 - samples/sec: 918.03 - lr: 0.000034 - momentum: 0.000000 |
|
2023-09-03 20:26:05,114 epoch 4 - iter 801/894 - loss 0.06697660 - time (sec): 84.16 - samples/sec: 924.22 - lr: 0.000034 - momentum: 0.000000 |
|
2023-09-03 20:26:14,205 epoch 4 - iter 890/894 - loss 0.06654671 - time (sec): 93.25 - samples/sec: 924.97 - lr: 0.000033 - momentum: 0.000000 |
|
2023-09-03 20:26:14,594 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:26:14,594 EPOCH 4 done: loss 0.0663 - lr: 0.000033 |
|
2023-09-03 20:26:28,159 DEV : loss 0.21245643496513367 - f1-score (micro avg) 0.7368 |
|
2023-09-03 20:26:28,186 saving best model |
|
2023-09-03 20:26:30,057 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:26:39,218 epoch 5 - iter 89/894 - loss 0.06250775 - time (sec): 9.16 - samples/sec: 888.32 - lr: 0.000033 - momentum: 0.000000 |
|
2023-09-03 20:26:48,153 epoch 5 - iter 178/894 - loss 0.04987455 - time (sec): 18.09 - samples/sec: 886.77 - lr: 0.000032 - momentum: 0.000000 |
|
2023-09-03 20:26:57,584 epoch 5 - iter 267/894 - loss 0.05005559 - time (sec): 27.53 - samples/sec: 899.07 - lr: 0.000032 - momentum: 0.000000 |
|
2023-09-03 20:27:07,691 epoch 5 - iter 356/894 - loss 0.05457406 - time (sec): 37.63 - samples/sec: 906.19 - lr: 0.000031 - momentum: 0.000000 |
|
2023-09-03 20:27:16,826 epoch 5 - iter 445/894 - loss 0.05184580 - time (sec): 46.77 - samples/sec: 919.43 - lr: 0.000031 - momentum: 0.000000 |
|
2023-09-03 20:27:25,722 epoch 5 - iter 534/894 - loss 0.05490556 - time (sec): 55.66 - samples/sec: 923.67 - lr: 0.000030 - momentum: 0.000000 |
|
2023-09-03 20:27:35,344 epoch 5 - iter 623/894 - loss 0.05272637 - time (sec): 65.28 - samples/sec: 926.24 - lr: 0.000029 - momentum: 0.000000 |
|
2023-09-03 20:27:45,383 epoch 5 - iter 712/894 - loss 0.05144270 - time (sec): 75.32 - samples/sec: 926.86 - lr: 0.000029 - momentum: 0.000000 |
|
2023-09-03 20:27:54,395 epoch 5 - iter 801/894 - loss 0.04983405 - time (sec): 84.34 - samples/sec: 930.09 - lr: 0.000028 - momentum: 0.000000 |
|
2023-09-03 20:28:03,140 epoch 5 - iter 890/894 - loss 0.04937796 - time (sec): 93.08 - samples/sec: 926.12 - lr: 0.000028 - momentum: 0.000000 |
|
2023-09-03 20:28:03,510 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:28:03,510 EPOCH 5 done: loss 0.0498 - lr: 0.000028 |
|
2023-09-03 20:28:17,043 DEV : loss 0.22385385632514954 - f1-score (micro avg) 0.7632 |
|
2023-09-03 20:28:17,070 saving best model |
|
2023-09-03 20:28:18,382 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:28:27,680 epoch 6 - iter 89/894 - loss 0.03521194 - time (sec): 9.30 - samples/sec: 933.60 - lr: 0.000027 - momentum: 0.000000 |
|
2023-09-03 20:28:36,764 epoch 6 - iter 178/894 - loss 0.03279992 - time (sec): 18.38 - samples/sec: 921.40 - lr: 0.000027 - momentum: 0.000000 |
|
2023-09-03 20:28:45,721 epoch 6 - iter 267/894 - loss 0.03124356 - time (sec): 27.34 - samples/sec: 917.56 - lr: 0.000026 - momentum: 0.000000 |
|
2023-09-03 20:28:54,970 epoch 6 - iter 356/894 - loss 0.02894350 - time (sec): 36.59 - samples/sec: 922.08 - lr: 0.000026 - momentum: 0.000000 |
|
2023-09-03 20:29:04,198 epoch 6 - iter 445/894 - loss 0.03070838 - time (sec): 45.81 - samples/sec: 916.42 - lr: 0.000025 - momentum: 0.000000 |
|
2023-09-03 20:29:13,064 epoch 6 - iter 534/894 - loss 0.02981611 - time (sec): 54.68 - samples/sec: 922.41 - lr: 0.000024 - momentum: 0.000000 |
|
2023-09-03 20:29:21,897 epoch 6 - iter 623/894 - loss 0.02928313 - time (sec): 63.51 - samples/sec: 922.19 - lr: 0.000024 - momentum: 0.000000 |
|
2023-09-03 20:29:31,119 epoch 6 - iter 712/894 - loss 0.03070513 - time (sec): 72.74 - samples/sec: 920.91 - lr: 0.000023 - momentum: 0.000000 |
|
2023-09-03 20:29:40,917 epoch 6 - iter 801/894 - loss 0.03083902 - time (sec): 82.53 - samples/sec: 920.26 - lr: 0.000023 - momentum: 0.000000 |
|
2023-09-03 20:29:51,131 epoch 6 - iter 890/894 - loss 0.02973958 - time (sec): 92.75 - samples/sec: 927.19 - lr: 0.000022 - momentum: 0.000000 |
|
2023-09-03 20:29:51,649 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:29:51,649 EPOCH 6 done: loss 0.0304 - lr: 0.000022 |
|
2023-09-03 20:30:05,098 DEV : loss 0.21197949349880219 - f1-score (micro avg) 0.764 |
|
2023-09-03 20:30:05,132 saving best model |
|
2023-09-03 20:30:06,446 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:30:15,471 epoch 7 - iter 89/894 - loss 0.02658940 - time (sec): 9.02 - samples/sec: 962.78 - lr: 0.000022 - momentum: 0.000000 |
|
2023-09-03 20:30:24,494 epoch 7 - iter 178/894 - loss 0.02246646 - time (sec): 18.05 - samples/sec: 956.13 - lr: 0.000021 - momentum: 0.000000 |
|
2023-09-03 20:30:33,443 epoch 7 - iter 267/894 - loss 0.02172733 - time (sec): 27.00 - samples/sec: 974.31 - lr: 0.000021 - momentum: 0.000000 |
|
2023-09-03 20:30:42,859 epoch 7 - iter 356/894 - loss 0.02104734 - time (sec): 36.41 - samples/sec: 963.89 - lr: 0.000020 - momentum: 0.000000 |
|
2023-09-03 20:30:51,845 epoch 7 - iter 445/894 - loss 0.02039607 - time (sec): 45.40 - samples/sec: 951.69 - lr: 0.000019 - momentum: 0.000000 |
|
2023-09-03 20:31:01,067 epoch 7 - iter 534/894 - loss 0.02106881 - time (sec): 54.62 - samples/sec: 948.49 - lr: 0.000019 - momentum: 0.000000 |
|
2023-09-03 20:31:10,101 epoch 7 - iter 623/894 - loss 0.02042294 - time (sec): 63.65 - samples/sec: 943.65 - lr: 0.000018 - momentum: 0.000000 |
|
2023-09-03 20:31:19,311 epoch 7 - iter 712/894 - loss 0.02048542 - time (sec): 72.86 - samples/sec: 939.55 - lr: 0.000018 - momentum: 0.000000 |
|
2023-09-03 20:31:28,143 epoch 7 - iter 801/894 - loss 0.02025357 - time (sec): 81.70 - samples/sec: 933.03 - lr: 0.000017 - momentum: 0.000000 |
|
2023-09-03 20:31:38,718 epoch 7 - iter 890/894 - loss 0.02006831 - time (sec): 92.27 - samples/sec: 932.68 - lr: 0.000017 - momentum: 0.000000 |
|
2023-09-03 20:31:39,169 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:31:39,169 EPOCH 7 done: loss 0.0200 - lr: 0.000017 |
|
2023-09-03 20:31:52,686 DEV : loss 0.22539937496185303 - f1-score (micro avg) 0.7688 |
|
2023-09-03 20:31:52,713 saving best model |
|
2023-09-03 20:31:54,079 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:32:02,989 epoch 8 - iter 89/894 - loss 0.00996259 - time (sec): 8.91 - samples/sec: 942.28 - lr: 0.000016 - momentum: 0.000000 |
|
2023-09-03 20:32:13,683 epoch 8 - iter 178/894 - loss 0.01308135 - time (sec): 19.60 - samples/sec: 922.53 - lr: 0.000016 - momentum: 0.000000 |
|
2023-09-03 20:32:22,805 epoch 8 - iter 267/894 - loss 0.01115617 - time (sec): 28.72 - samples/sec: 918.94 - lr: 0.000015 - momentum: 0.000000 |
|
2023-09-03 20:32:31,984 epoch 8 - iter 356/894 - loss 0.01062211 - time (sec): 37.90 - samples/sec: 924.07 - lr: 0.000014 - momentum: 0.000000 |
|
2023-09-03 20:32:40,824 epoch 8 - iter 445/894 - loss 0.01045602 - time (sec): 46.74 - samples/sec: 915.64 - lr: 0.000014 - momentum: 0.000000 |
|
2023-09-03 20:32:50,497 epoch 8 - iter 534/894 - loss 0.01026522 - time (sec): 56.42 - samples/sec: 917.51 - lr: 0.000013 - momentum: 0.000000 |
|
2023-09-03 20:32:59,618 epoch 8 - iter 623/894 - loss 0.01133332 - time (sec): 65.54 - samples/sec: 924.87 - lr: 0.000013 - momentum: 0.000000 |
|
2023-09-03 20:33:08,738 epoch 8 - iter 712/894 - loss 0.01245965 - time (sec): 74.66 - samples/sec: 922.67 - lr: 0.000012 - momentum: 0.000000 |
|
2023-09-03 20:33:17,904 epoch 8 - iter 801/894 - loss 0.01295115 - time (sec): 83.82 - samples/sec: 924.48 - lr: 0.000012 - momentum: 0.000000 |
|
2023-09-03 20:33:27,219 epoch 8 - iter 890/894 - loss 0.01278545 - time (sec): 93.14 - samples/sec: 925.48 - lr: 0.000011 - momentum: 0.000000 |
|
2023-09-03 20:33:27,604 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:33:27,604 EPOCH 8 done: loss 0.0127 - lr: 0.000011 |
|
2023-09-03 20:33:41,115 DEV : loss 0.23452451825141907 - f1-score (micro avg) 0.7825 |
|
2023-09-03 20:33:41,142 saving best model |
|
2023-09-03 20:33:42,466 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:33:51,655 epoch 9 - iter 89/894 - loss 0.00216462 - time (sec): 9.19 - samples/sec: 941.78 - lr: 0.000011 - momentum: 0.000000 |
|
2023-09-03 20:34:00,559 epoch 9 - iter 178/894 - loss 0.00335217 - time (sec): 18.09 - samples/sec: 942.77 - lr: 0.000010 - momentum: 0.000000 |
|
2023-09-03 20:34:09,729 epoch 9 - iter 267/894 - loss 0.00587195 - time (sec): 27.26 - samples/sec: 929.47 - lr: 0.000009 - momentum: 0.000000 |
|
2023-09-03 20:34:18,819 epoch 9 - iter 356/894 - loss 0.00603339 - time (sec): 36.35 - samples/sec: 936.75 - lr: 0.000009 - momentum: 0.000000 |
|
2023-09-03 20:34:29,238 epoch 9 - iter 445/894 - loss 0.00533673 - time (sec): 46.77 - samples/sec: 936.89 - lr: 0.000008 - momentum: 0.000000 |
|
2023-09-03 20:34:38,377 epoch 9 - iter 534/894 - loss 0.00548625 - time (sec): 55.91 - samples/sec: 934.06 - lr: 0.000008 - momentum: 0.000000 |
|
2023-09-03 20:34:47,598 epoch 9 - iter 623/894 - loss 0.00623569 - time (sec): 65.13 - samples/sec: 930.15 - lr: 0.000007 - momentum: 0.000000 |
|
2023-09-03 20:34:57,098 epoch 9 - iter 712/894 - loss 0.00622240 - time (sec): 74.63 - samples/sec: 930.85 - lr: 0.000007 - momentum: 0.000000 |
|
2023-09-03 20:35:05,905 epoch 9 - iter 801/894 - loss 0.00690534 - time (sec): 83.44 - samples/sec: 929.19 - lr: 0.000006 - momentum: 0.000000 |
|
2023-09-03 20:35:15,382 epoch 9 - iter 890/894 - loss 0.00691071 - time (sec): 92.91 - samples/sec: 927.59 - lr: 0.000006 - momentum: 0.000000 |
|
2023-09-03 20:35:15,781 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:35:15,782 EPOCH 9 done: loss 0.0071 - lr: 0.000006 |
|
2023-09-03 20:35:29,298 DEV : loss 0.2623580992221832 - f1-score (micro avg) 0.763 |
|
2023-09-03 20:35:29,325 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:35:38,945 epoch 10 - iter 89/894 - loss 0.00043241 - time (sec): 9.62 - samples/sec: 960.91 - lr: 0.000005 - momentum: 0.000000 |
|
2023-09-03 20:35:47,979 epoch 10 - iter 178/894 - loss 0.00207187 - time (sec): 18.65 - samples/sec: 929.48 - lr: 0.000004 - momentum: 0.000000 |
|
2023-09-03 20:35:57,573 epoch 10 - iter 267/894 - loss 0.00536179 - time (sec): 28.25 - samples/sec: 911.89 - lr: 0.000004 - momentum: 0.000000 |
|
2023-09-03 20:36:07,788 epoch 10 - iter 356/894 - loss 0.00509014 - time (sec): 38.46 - samples/sec: 923.95 - lr: 0.000003 - momentum: 0.000000 |
|
2023-09-03 20:36:16,901 epoch 10 - iter 445/894 - loss 0.00516233 - time (sec): 47.57 - samples/sec: 922.77 - lr: 0.000003 - momentum: 0.000000 |
|
2023-09-03 20:36:25,959 epoch 10 - iter 534/894 - loss 0.00504847 - time (sec): 56.63 - samples/sec: 925.35 - lr: 0.000002 - momentum: 0.000000 |
|
2023-09-03 20:36:34,875 epoch 10 - iter 623/894 - loss 0.00481702 - time (sec): 65.55 - samples/sec: 917.34 - lr: 0.000002 - momentum: 0.000000 |
|
2023-09-03 20:36:44,411 epoch 10 - iter 712/894 - loss 0.00432165 - time (sec): 75.08 - samples/sec: 915.89 - lr: 0.000001 - momentum: 0.000000 |
|
2023-09-03 20:36:53,441 epoch 10 - iter 801/894 - loss 0.00422815 - time (sec): 84.12 - samples/sec: 914.71 - lr: 0.000001 - momentum: 0.000000 |
|
2023-09-03 20:37:03,105 epoch 10 - iter 890/894 - loss 0.00396219 - time (sec): 93.78 - samples/sec: 919.69 - lr: 0.000000 - momentum: 0.000000 |
|
2023-09-03 20:37:03,504 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:37:03,504 EPOCH 10 done: loss 0.0040 - lr: 0.000000 |
|
2023-09-03 20:37:17,166 DEV : loss 0.2543531358242035 - f1-score (micro avg) 0.7802 |
|
2023-09-03 20:37:17,642 ---------------------------------------------------------------------------------------------------- |
|
2023-09-03 20:37:17,643 Loading model from best epoch ... |
|
2023-09-03 20:37:19,438 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time |
|
2023-09-03 20:37:30,123 |
|
Results: |
|
- F-score (micro) 0.7459 |
|
- F-score (macro) 0.6693 |
|
- Accuracy 0.6167 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.8527 0.8356 0.8441 596 |
|
pers 0.6384 0.7688 0.6975 333 |
|
org 0.5455 0.5000 0.5217 132 |
|
prod 0.6600 0.5000 0.5690 66 |
|
time 0.7143 0.7143 0.7143 49 |
|
|
|
micro avg 0.7369 0.7551 0.7459 1176 |
|
macro avg 0.6822 0.6637 0.6693 1176 |
|
weighted avg 0.7410 0.7551 0.7456 1176 |
|
|
|
2023-09-03 20:37:30,123 ---------------------------------------------------------------------------------------------------- |
|
|