File size: 24,004 Bytes
6ccea8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
2023-09-03 20:19:20,809 ----------------------------------------------------------------------------------------------------
2023-09-03 20:19:20,810 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=21, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-09-03 20:19:20,810 ----------------------------------------------------------------------------------------------------
2023-09-03 20:19:20,810 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
2023-09-03 20:19:20,810 ----------------------------------------------------------------------------------------------------
2023-09-03 20:19:20,810 Train: 3575 sentences
2023-09-03 20:19:20,810 (train_with_dev=False, train_with_test=False)
2023-09-03 20:19:20,810 ----------------------------------------------------------------------------------------------------
2023-09-03 20:19:20,810 Training Params:
2023-09-03 20:19:20,810 - learning_rate: "5e-05"
2023-09-03 20:19:20,811 - mini_batch_size: "4"
2023-09-03 20:19:20,811 - max_epochs: "10"
2023-09-03 20:19:20,811 - shuffle: "True"
2023-09-03 20:19:20,811 ----------------------------------------------------------------------------------------------------
2023-09-03 20:19:20,811 Plugins:
2023-09-03 20:19:20,811 - LinearScheduler | warmup_fraction: '0.1'
2023-09-03 20:19:20,811 ----------------------------------------------------------------------------------------------------
2023-09-03 20:19:20,811 Final evaluation on model from best epoch (best-model.pt)
2023-09-03 20:19:20,811 - metric: "('micro avg', 'f1-score')"
2023-09-03 20:19:20,811 ----------------------------------------------------------------------------------------------------
2023-09-03 20:19:20,811 Computation:
2023-09-03 20:19:20,811 - compute on device: cuda:0
2023-09-03 20:19:20,811 - embedding storage: none
2023-09-03 20:19:20,811 ----------------------------------------------------------------------------------------------------
2023-09-03 20:19:20,811 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-09-03 20:19:20,811 ----------------------------------------------------------------------------------------------------
2023-09-03 20:19:20,811 ----------------------------------------------------------------------------------------------------
2023-09-03 20:19:29,527 epoch 1 - iter 89/894 - loss 2.89989312 - time (sec): 8.71 - samples/sec: 919.60 - lr: 0.000005 - momentum: 0.000000
2023-09-03 20:19:38,330 epoch 1 - iter 178/894 - loss 1.76162593 - time (sec): 17.52 - samples/sec: 916.67 - lr: 0.000010 - momentum: 0.000000
2023-09-03 20:19:47,454 epoch 1 - iter 267/894 - loss 1.27223185 - time (sec): 26.64 - samples/sec: 935.95 - lr: 0.000015 - momentum: 0.000000
2023-09-03 20:19:56,329 epoch 1 - iter 356/894 - loss 1.05292482 - time (sec): 35.52 - samples/sec: 930.12 - lr: 0.000020 - momentum: 0.000000
2023-09-03 20:20:05,560 epoch 1 - iter 445/894 - loss 0.89522602 - time (sec): 44.75 - samples/sec: 936.09 - lr: 0.000025 - momentum: 0.000000
2023-09-03 20:20:16,121 epoch 1 - iter 534/894 - loss 0.78258018 - time (sec): 55.31 - samples/sec: 943.67 - lr: 0.000030 - momentum: 0.000000
2023-09-03 20:20:25,496 epoch 1 - iter 623/894 - loss 0.71307594 - time (sec): 64.68 - samples/sec: 934.93 - lr: 0.000035 - momentum: 0.000000
2023-09-03 20:20:34,781 epoch 1 - iter 712/894 - loss 0.65376441 - time (sec): 73.97 - samples/sec: 936.05 - lr: 0.000040 - momentum: 0.000000
2023-09-03 20:20:43,688 epoch 1 - iter 801/894 - loss 0.61105348 - time (sec): 82.88 - samples/sec: 931.77 - lr: 0.000045 - momentum: 0.000000
2023-09-03 20:20:52,993 epoch 1 - iter 890/894 - loss 0.57058985 - time (sec): 92.18 - samples/sec: 933.39 - lr: 0.000050 - momentum: 0.000000
2023-09-03 20:20:53,415 ----------------------------------------------------------------------------------------------------
2023-09-03 20:20:53,416 EPOCH 1 done: loss 0.5683 - lr: 0.000050
2023-09-03 20:21:04,508 DEV : loss 0.17097648978233337 - f1-score (micro avg) 0.6162
2023-09-03 20:21:04,534 saving best model
2023-09-03 20:21:04,992 ----------------------------------------------------------------------------------------------------
2023-09-03 20:21:14,165 epoch 2 - iter 89/894 - loss 0.20605836 - time (sec): 9.17 - samples/sec: 938.05 - lr: 0.000049 - momentum: 0.000000
2023-09-03 20:21:23,535 epoch 2 - iter 178/894 - loss 0.19007741 - time (sec): 18.54 - samples/sec: 918.64 - lr: 0.000049 - momentum: 0.000000
2023-09-03 20:21:32,430 epoch 2 - iter 267/894 - loss 0.18247790 - time (sec): 27.44 - samples/sec: 919.45 - lr: 0.000048 - momentum: 0.000000
2023-09-03 20:21:41,692 epoch 2 - iter 356/894 - loss 0.18202885 - time (sec): 36.70 - samples/sec: 928.16 - lr: 0.000048 - momentum: 0.000000
2023-09-03 20:21:50,582 epoch 2 - iter 445/894 - loss 0.17738266 - time (sec): 45.59 - samples/sec: 925.06 - lr: 0.000047 - momentum: 0.000000
2023-09-03 20:22:00,394 epoch 2 - iter 534/894 - loss 0.17474082 - time (sec): 55.40 - samples/sec: 929.14 - lr: 0.000047 - momentum: 0.000000
2023-09-03 20:22:09,359 epoch 2 - iter 623/894 - loss 0.16799398 - time (sec): 64.37 - samples/sec: 929.21 - lr: 0.000046 - momentum: 0.000000
2023-09-03 20:22:19,256 epoch 2 - iter 712/894 - loss 0.16240455 - time (sec): 74.26 - samples/sec: 930.96 - lr: 0.000046 - momentum: 0.000000
2023-09-03 20:22:28,965 epoch 2 - iter 801/894 - loss 0.16209682 - time (sec): 83.97 - samples/sec: 927.51 - lr: 0.000045 - momentum: 0.000000
2023-09-03 20:22:37,984 epoch 2 - iter 890/894 - loss 0.16158978 - time (sec): 92.99 - samples/sec: 926.44 - lr: 0.000044 - momentum: 0.000000
2023-09-03 20:22:38,376 ----------------------------------------------------------------------------------------------------
2023-09-03 20:22:38,376 EPOCH 2 done: loss 0.1613 - lr: 0.000044
2023-09-03 20:22:51,909 DEV : loss 0.16291926801204681 - f1-score (micro avg) 0.6627
2023-09-03 20:22:51,935 saving best model
2023-09-03 20:22:53,255 ----------------------------------------------------------------------------------------------------
2023-09-03 20:23:02,702 epoch 3 - iter 89/894 - loss 0.08768279 - time (sec): 9.45 - samples/sec: 913.47 - lr: 0.000044 - momentum: 0.000000
2023-09-03 20:23:12,631 epoch 3 - iter 178/894 - loss 0.08725946 - time (sec): 19.37 - samples/sec: 942.88 - lr: 0.000043 - momentum: 0.000000
2023-09-03 20:23:22,249 epoch 3 - iter 267/894 - loss 0.09362897 - time (sec): 28.99 - samples/sec: 948.89 - lr: 0.000043 - momentum: 0.000000
2023-09-03 20:23:31,711 epoch 3 - iter 356/894 - loss 0.08860942 - time (sec): 38.45 - samples/sec: 948.63 - lr: 0.000042 - momentum: 0.000000
2023-09-03 20:23:41,240 epoch 3 - iter 445/894 - loss 0.09576555 - time (sec): 47.98 - samples/sec: 947.72 - lr: 0.000042 - momentum: 0.000000
2023-09-03 20:23:50,052 epoch 3 - iter 534/894 - loss 0.10063010 - time (sec): 56.80 - samples/sec: 935.90 - lr: 0.000041 - momentum: 0.000000
2023-09-03 20:23:58,894 epoch 3 - iter 623/894 - loss 0.09832043 - time (sec): 65.64 - samples/sec: 937.51 - lr: 0.000041 - momentum: 0.000000
2023-09-03 20:24:07,624 epoch 3 - iter 712/894 - loss 0.09817305 - time (sec): 74.37 - samples/sec: 934.63 - lr: 0.000040 - momentum: 0.000000
2023-09-03 20:24:16,848 epoch 3 - iter 801/894 - loss 0.10180100 - time (sec): 83.59 - samples/sec: 931.72 - lr: 0.000039 - momentum: 0.000000
2023-09-03 20:24:25,737 epoch 3 - iter 890/894 - loss 0.10148223 - time (sec): 92.48 - samples/sec: 931.35 - lr: 0.000039 - momentum: 0.000000
2023-09-03 20:24:26,139 ----------------------------------------------------------------------------------------------------
2023-09-03 20:24:26,139 EPOCH 3 done: loss 0.1014 - lr: 0.000039
2023-09-03 20:24:39,577 DEV : loss 0.1718726009130478 - f1-score (micro avg) 0.7266
2023-09-03 20:24:39,603 saving best model
2023-09-03 20:24:40,951 ----------------------------------------------------------------------------------------------------
2023-09-03 20:24:49,636 epoch 4 - iter 89/894 - loss 0.07154590 - time (sec): 8.68 - samples/sec: 877.87 - lr: 0.000038 - momentum: 0.000000
2023-09-03 20:24:59,559 epoch 4 - iter 178/894 - loss 0.06212479 - time (sec): 18.61 - samples/sec: 912.49 - lr: 0.000038 - momentum: 0.000000
2023-09-03 20:25:08,695 epoch 4 - iter 267/894 - loss 0.06975820 - time (sec): 27.74 - samples/sec: 912.20 - lr: 0.000037 - momentum: 0.000000
2023-09-03 20:25:17,849 epoch 4 - iter 356/894 - loss 0.06914589 - time (sec): 36.90 - samples/sec: 920.20 - lr: 0.000037 - momentum: 0.000000
2023-09-03 20:25:26,598 epoch 4 - iter 445/894 - loss 0.06933892 - time (sec): 45.65 - samples/sec: 910.82 - lr: 0.000036 - momentum: 0.000000
2023-09-03 20:25:37,152 epoch 4 - iter 534/894 - loss 0.06671475 - time (sec): 56.20 - samples/sec: 924.15 - lr: 0.000036 - momentum: 0.000000
2023-09-03 20:25:46,669 epoch 4 - iter 623/894 - loss 0.06771971 - time (sec): 65.72 - samples/sec: 920.47 - lr: 0.000035 - momentum: 0.000000
2023-09-03 20:25:55,680 epoch 4 - iter 712/894 - loss 0.06810537 - time (sec): 74.73 - samples/sec: 918.03 - lr: 0.000034 - momentum: 0.000000
2023-09-03 20:26:05,114 epoch 4 - iter 801/894 - loss 0.06697660 - time (sec): 84.16 - samples/sec: 924.22 - lr: 0.000034 - momentum: 0.000000
2023-09-03 20:26:14,205 epoch 4 - iter 890/894 - loss 0.06654671 - time (sec): 93.25 - samples/sec: 924.97 - lr: 0.000033 - momentum: 0.000000
2023-09-03 20:26:14,594 ----------------------------------------------------------------------------------------------------
2023-09-03 20:26:14,594 EPOCH 4 done: loss 0.0663 - lr: 0.000033
2023-09-03 20:26:28,159 DEV : loss 0.21245643496513367 - f1-score (micro avg) 0.7368
2023-09-03 20:26:28,186 saving best model
2023-09-03 20:26:30,057 ----------------------------------------------------------------------------------------------------
2023-09-03 20:26:39,218 epoch 5 - iter 89/894 - loss 0.06250775 - time (sec): 9.16 - samples/sec: 888.32 - lr: 0.000033 - momentum: 0.000000
2023-09-03 20:26:48,153 epoch 5 - iter 178/894 - loss 0.04987455 - time (sec): 18.09 - samples/sec: 886.77 - lr: 0.000032 - momentum: 0.000000
2023-09-03 20:26:57,584 epoch 5 - iter 267/894 - loss 0.05005559 - time (sec): 27.53 - samples/sec: 899.07 - lr: 0.000032 - momentum: 0.000000
2023-09-03 20:27:07,691 epoch 5 - iter 356/894 - loss 0.05457406 - time (sec): 37.63 - samples/sec: 906.19 - lr: 0.000031 - momentum: 0.000000
2023-09-03 20:27:16,826 epoch 5 - iter 445/894 - loss 0.05184580 - time (sec): 46.77 - samples/sec: 919.43 - lr: 0.000031 - momentum: 0.000000
2023-09-03 20:27:25,722 epoch 5 - iter 534/894 - loss 0.05490556 - time (sec): 55.66 - samples/sec: 923.67 - lr: 0.000030 - momentum: 0.000000
2023-09-03 20:27:35,344 epoch 5 - iter 623/894 - loss 0.05272637 - time (sec): 65.28 - samples/sec: 926.24 - lr: 0.000029 - momentum: 0.000000
2023-09-03 20:27:45,383 epoch 5 - iter 712/894 - loss 0.05144270 - time (sec): 75.32 - samples/sec: 926.86 - lr: 0.000029 - momentum: 0.000000
2023-09-03 20:27:54,395 epoch 5 - iter 801/894 - loss 0.04983405 - time (sec): 84.34 - samples/sec: 930.09 - lr: 0.000028 - momentum: 0.000000
2023-09-03 20:28:03,140 epoch 5 - iter 890/894 - loss 0.04937796 - time (sec): 93.08 - samples/sec: 926.12 - lr: 0.000028 - momentum: 0.000000
2023-09-03 20:28:03,510 ----------------------------------------------------------------------------------------------------
2023-09-03 20:28:03,510 EPOCH 5 done: loss 0.0498 - lr: 0.000028
2023-09-03 20:28:17,043 DEV : loss 0.22385385632514954 - f1-score (micro avg) 0.7632
2023-09-03 20:28:17,070 saving best model
2023-09-03 20:28:18,382 ----------------------------------------------------------------------------------------------------
2023-09-03 20:28:27,680 epoch 6 - iter 89/894 - loss 0.03521194 - time (sec): 9.30 - samples/sec: 933.60 - lr: 0.000027 - momentum: 0.000000
2023-09-03 20:28:36,764 epoch 6 - iter 178/894 - loss 0.03279992 - time (sec): 18.38 - samples/sec: 921.40 - lr: 0.000027 - momentum: 0.000000
2023-09-03 20:28:45,721 epoch 6 - iter 267/894 - loss 0.03124356 - time (sec): 27.34 - samples/sec: 917.56 - lr: 0.000026 - momentum: 0.000000
2023-09-03 20:28:54,970 epoch 6 - iter 356/894 - loss 0.02894350 - time (sec): 36.59 - samples/sec: 922.08 - lr: 0.000026 - momentum: 0.000000
2023-09-03 20:29:04,198 epoch 6 - iter 445/894 - loss 0.03070838 - time (sec): 45.81 - samples/sec: 916.42 - lr: 0.000025 - momentum: 0.000000
2023-09-03 20:29:13,064 epoch 6 - iter 534/894 - loss 0.02981611 - time (sec): 54.68 - samples/sec: 922.41 - lr: 0.000024 - momentum: 0.000000
2023-09-03 20:29:21,897 epoch 6 - iter 623/894 - loss 0.02928313 - time (sec): 63.51 - samples/sec: 922.19 - lr: 0.000024 - momentum: 0.000000
2023-09-03 20:29:31,119 epoch 6 - iter 712/894 - loss 0.03070513 - time (sec): 72.74 - samples/sec: 920.91 - lr: 0.000023 - momentum: 0.000000
2023-09-03 20:29:40,917 epoch 6 - iter 801/894 - loss 0.03083902 - time (sec): 82.53 - samples/sec: 920.26 - lr: 0.000023 - momentum: 0.000000
2023-09-03 20:29:51,131 epoch 6 - iter 890/894 - loss 0.02973958 - time (sec): 92.75 - samples/sec: 927.19 - lr: 0.000022 - momentum: 0.000000
2023-09-03 20:29:51,649 ----------------------------------------------------------------------------------------------------
2023-09-03 20:29:51,649 EPOCH 6 done: loss 0.0304 - lr: 0.000022
2023-09-03 20:30:05,098 DEV : loss 0.21197949349880219 - f1-score (micro avg) 0.764
2023-09-03 20:30:05,132 saving best model
2023-09-03 20:30:06,446 ----------------------------------------------------------------------------------------------------
2023-09-03 20:30:15,471 epoch 7 - iter 89/894 - loss 0.02658940 - time (sec): 9.02 - samples/sec: 962.78 - lr: 0.000022 - momentum: 0.000000
2023-09-03 20:30:24,494 epoch 7 - iter 178/894 - loss 0.02246646 - time (sec): 18.05 - samples/sec: 956.13 - lr: 0.000021 - momentum: 0.000000
2023-09-03 20:30:33,443 epoch 7 - iter 267/894 - loss 0.02172733 - time (sec): 27.00 - samples/sec: 974.31 - lr: 0.000021 - momentum: 0.000000
2023-09-03 20:30:42,859 epoch 7 - iter 356/894 - loss 0.02104734 - time (sec): 36.41 - samples/sec: 963.89 - lr: 0.000020 - momentum: 0.000000
2023-09-03 20:30:51,845 epoch 7 - iter 445/894 - loss 0.02039607 - time (sec): 45.40 - samples/sec: 951.69 - lr: 0.000019 - momentum: 0.000000
2023-09-03 20:31:01,067 epoch 7 - iter 534/894 - loss 0.02106881 - time (sec): 54.62 - samples/sec: 948.49 - lr: 0.000019 - momentum: 0.000000
2023-09-03 20:31:10,101 epoch 7 - iter 623/894 - loss 0.02042294 - time (sec): 63.65 - samples/sec: 943.65 - lr: 0.000018 - momentum: 0.000000
2023-09-03 20:31:19,311 epoch 7 - iter 712/894 - loss 0.02048542 - time (sec): 72.86 - samples/sec: 939.55 - lr: 0.000018 - momentum: 0.000000
2023-09-03 20:31:28,143 epoch 7 - iter 801/894 - loss 0.02025357 - time (sec): 81.70 - samples/sec: 933.03 - lr: 0.000017 - momentum: 0.000000
2023-09-03 20:31:38,718 epoch 7 - iter 890/894 - loss 0.02006831 - time (sec): 92.27 - samples/sec: 932.68 - lr: 0.000017 - momentum: 0.000000
2023-09-03 20:31:39,169 ----------------------------------------------------------------------------------------------------
2023-09-03 20:31:39,169 EPOCH 7 done: loss 0.0200 - lr: 0.000017
2023-09-03 20:31:52,686 DEV : loss 0.22539937496185303 - f1-score (micro avg) 0.7688
2023-09-03 20:31:52,713 saving best model
2023-09-03 20:31:54,079 ----------------------------------------------------------------------------------------------------
2023-09-03 20:32:02,989 epoch 8 - iter 89/894 - loss 0.00996259 - time (sec): 8.91 - samples/sec: 942.28 - lr: 0.000016 - momentum: 0.000000
2023-09-03 20:32:13,683 epoch 8 - iter 178/894 - loss 0.01308135 - time (sec): 19.60 - samples/sec: 922.53 - lr: 0.000016 - momentum: 0.000000
2023-09-03 20:32:22,805 epoch 8 - iter 267/894 - loss 0.01115617 - time (sec): 28.72 - samples/sec: 918.94 - lr: 0.000015 - momentum: 0.000000
2023-09-03 20:32:31,984 epoch 8 - iter 356/894 - loss 0.01062211 - time (sec): 37.90 - samples/sec: 924.07 - lr: 0.000014 - momentum: 0.000000
2023-09-03 20:32:40,824 epoch 8 - iter 445/894 - loss 0.01045602 - time (sec): 46.74 - samples/sec: 915.64 - lr: 0.000014 - momentum: 0.000000
2023-09-03 20:32:50,497 epoch 8 - iter 534/894 - loss 0.01026522 - time (sec): 56.42 - samples/sec: 917.51 - lr: 0.000013 - momentum: 0.000000
2023-09-03 20:32:59,618 epoch 8 - iter 623/894 - loss 0.01133332 - time (sec): 65.54 - samples/sec: 924.87 - lr: 0.000013 - momentum: 0.000000
2023-09-03 20:33:08,738 epoch 8 - iter 712/894 - loss 0.01245965 - time (sec): 74.66 - samples/sec: 922.67 - lr: 0.000012 - momentum: 0.000000
2023-09-03 20:33:17,904 epoch 8 - iter 801/894 - loss 0.01295115 - time (sec): 83.82 - samples/sec: 924.48 - lr: 0.000012 - momentum: 0.000000
2023-09-03 20:33:27,219 epoch 8 - iter 890/894 - loss 0.01278545 - time (sec): 93.14 - samples/sec: 925.48 - lr: 0.000011 - momentum: 0.000000
2023-09-03 20:33:27,604 ----------------------------------------------------------------------------------------------------
2023-09-03 20:33:27,604 EPOCH 8 done: loss 0.0127 - lr: 0.000011
2023-09-03 20:33:41,115 DEV : loss 0.23452451825141907 - f1-score (micro avg) 0.7825
2023-09-03 20:33:41,142 saving best model
2023-09-03 20:33:42,466 ----------------------------------------------------------------------------------------------------
2023-09-03 20:33:51,655 epoch 9 - iter 89/894 - loss 0.00216462 - time (sec): 9.19 - samples/sec: 941.78 - lr: 0.000011 - momentum: 0.000000
2023-09-03 20:34:00,559 epoch 9 - iter 178/894 - loss 0.00335217 - time (sec): 18.09 - samples/sec: 942.77 - lr: 0.000010 - momentum: 0.000000
2023-09-03 20:34:09,729 epoch 9 - iter 267/894 - loss 0.00587195 - time (sec): 27.26 - samples/sec: 929.47 - lr: 0.000009 - momentum: 0.000000
2023-09-03 20:34:18,819 epoch 9 - iter 356/894 - loss 0.00603339 - time (sec): 36.35 - samples/sec: 936.75 - lr: 0.000009 - momentum: 0.000000
2023-09-03 20:34:29,238 epoch 9 - iter 445/894 - loss 0.00533673 - time (sec): 46.77 - samples/sec: 936.89 - lr: 0.000008 - momentum: 0.000000
2023-09-03 20:34:38,377 epoch 9 - iter 534/894 - loss 0.00548625 - time (sec): 55.91 - samples/sec: 934.06 - lr: 0.000008 - momentum: 0.000000
2023-09-03 20:34:47,598 epoch 9 - iter 623/894 - loss 0.00623569 - time (sec): 65.13 - samples/sec: 930.15 - lr: 0.000007 - momentum: 0.000000
2023-09-03 20:34:57,098 epoch 9 - iter 712/894 - loss 0.00622240 - time (sec): 74.63 - samples/sec: 930.85 - lr: 0.000007 - momentum: 0.000000
2023-09-03 20:35:05,905 epoch 9 - iter 801/894 - loss 0.00690534 - time (sec): 83.44 - samples/sec: 929.19 - lr: 0.000006 - momentum: 0.000000
2023-09-03 20:35:15,382 epoch 9 - iter 890/894 - loss 0.00691071 - time (sec): 92.91 - samples/sec: 927.59 - lr: 0.000006 - momentum: 0.000000
2023-09-03 20:35:15,781 ----------------------------------------------------------------------------------------------------
2023-09-03 20:35:15,782 EPOCH 9 done: loss 0.0071 - lr: 0.000006
2023-09-03 20:35:29,298 DEV : loss 0.2623580992221832 - f1-score (micro avg) 0.763
2023-09-03 20:35:29,325 ----------------------------------------------------------------------------------------------------
2023-09-03 20:35:38,945 epoch 10 - iter 89/894 - loss 0.00043241 - time (sec): 9.62 - samples/sec: 960.91 - lr: 0.000005 - momentum: 0.000000
2023-09-03 20:35:47,979 epoch 10 - iter 178/894 - loss 0.00207187 - time (sec): 18.65 - samples/sec: 929.48 - lr: 0.000004 - momentum: 0.000000
2023-09-03 20:35:57,573 epoch 10 - iter 267/894 - loss 0.00536179 - time (sec): 28.25 - samples/sec: 911.89 - lr: 0.000004 - momentum: 0.000000
2023-09-03 20:36:07,788 epoch 10 - iter 356/894 - loss 0.00509014 - time (sec): 38.46 - samples/sec: 923.95 - lr: 0.000003 - momentum: 0.000000
2023-09-03 20:36:16,901 epoch 10 - iter 445/894 - loss 0.00516233 - time (sec): 47.57 - samples/sec: 922.77 - lr: 0.000003 - momentum: 0.000000
2023-09-03 20:36:25,959 epoch 10 - iter 534/894 - loss 0.00504847 - time (sec): 56.63 - samples/sec: 925.35 - lr: 0.000002 - momentum: 0.000000
2023-09-03 20:36:34,875 epoch 10 - iter 623/894 - loss 0.00481702 - time (sec): 65.55 - samples/sec: 917.34 - lr: 0.000002 - momentum: 0.000000
2023-09-03 20:36:44,411 epoch 10 - iter 712/894 - loss 0.00432165 - time (sec): 75.08 - samples/sec: 915.89 - lr: 0.000001 - momentum: 0.000000
2023-09-03 20:36:53,441 epoch 10 - iter 801/894 - loss 0.00422815 - time (sec): 84.12 - samples/sec: 914.71 - lr: 0.000001 - momentum: 0.000000
2023-09-03 20:37:03,105 epoch 10 - iter 890/894 - loss 0.00396219 - time (sec): 93.78 - samples/sec: 919.69 - lr: 0.000000 - momentum: 0.000000
2023-09-03 20:37:03,504 ----------------------------------------------------------------------------------------------------
2023-09-03 20:37:03,504 EPOCH 10 done: loss 0.0040 - lr: 0.000000
2023-09-03 20:37:17,166 DEV : loss 0.2543531358242035 - f1-score (micro avg) 0.7802
2023-09-03 20:37:17,642 ----------------------------------------------------------------------------------------------------
2023-09-03 20:37:17,643 Loading model from best epoch ...
2023-09-03 20:37:19,438 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
2023-09-03 20:37:30,123
Results:
- F-score (micro) 0.7459
- F-score (macro) 0.6693
- Accuracy 0.6167
By class:
precision recall f1-score support
loc 0.8527 0.8356 0.8441 596
pers 0.6384 0.7688 0.6975 333
org 0.5455 0.5000 0.5217 132
prod 0.6600 0.5000 0.5690 66
time 0.7143 0.7143 0.7143 49
micro avg 0.7369 0.7551 0.7459 1176
macro avg 0.6822 0.6637 0.6693 1176
weighted avg 0.7410 0.7551 0.7456 1176
2023-09-03 20:37:30,123 ----------------------------------------------------------------------------------------------------
|