Dataset Viewer
Auto-converted to Parquet
question
stringlengths
46
215
query
stringlengths
50
260
schema
stringclasses
13 values
index
int64
3.41k
3.53k
labels
stringlengths
6
8.24k
display all the information about the department Marketing.
SELECT * FROM departments WHERE department_name = 'Marketing'
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 ```
3,483
DEPARTMENT_ID,DEPARTMENT_NAME,MANAGER_ID,LOCATION_ID 20,Marketing,201,1800
What is the full name ( first name and last name ) for those employees who gets more salary than the employee whose id is 163?
SELECT first_name, last_name FROM employees WHERE salary > (SELECT salary FROM employees WHERE employee_id = 163)
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,469
FIRST_NAME,LAST_NAME Steven,King Neena,Kochhar Lex,De Haan Nancy,Greenberg Den,Raphaely John,Russell Karen,Partners Alberto,Errazuriz Gerald,Cambrault Eleni,Zlotkey Peter,Tucker Janette,King Clara,Vishney Lisa,Ozer Harrison,Bloom Tayler,Fox Ellen,Abel Michael,Hartstein Hermann,Baer Shelley,Higgins
Find the ids of the employees who does not work in those departments where some employees works whose manager id within the range 100 and 200.
SELECT * FROM employees WHERE NOT department_id IN (SELECT department_id FROM departments WHERE manager_id BETWEEN 100 AND 200)
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,497
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 178,Kimberely,Grant,KGRANT,011.44.1644.429263,1987-09-03,SA_REP,7000,0.15,149,0 201,Michael,Hartstein,MHARTSTE,515.123.5555,1987-09-26,MK_MAN,13000,0.0,100,20 202,Pat,Fay,PFAY,603.123.6666,1987-09-27,MK_REP,6000,0.0,201,20 203,Susan,Mavris,SMAVRIS,515.123.7777,1987-09-28,HR_REP,6500,0.0,101,40 204,Hermann,Baer,HBAER,515.123.8888,1987-09-29,PR_REP,10000,0.0,101,70 205,Shelley,Higgins,SHIGGINS,515.123.8080,1987-09-30,AC_MGR,12000,0.0,101,110 206,William,Gietz,WGIETZ,515.123.8181,1987-10-01,AC_ACCOUNT,8300,0.0,205,110
What is the average salary for each job title?
SELECT job_title, AVG(salary) FROM employees AS T1 JOIN jobs AS T2 ON T1.job_id = T2.job_id GROUP BY T2.job_title
``` yaml jobs: # name of dataframe - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_ASST - JOB_TITLE: dtype: string sample_values: President, Administration Vice President, Administration Assistant - MIN_SALARY: dtype: int64 sample_values: 20000, 15000, 3000 - MAX_SALARY: dtype: int64 sample_values: 40000, 30000, 6000 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'job_id' in dataframe 'employees' has a foreign key relation to column 'job_id' in dataframe 'jobs'.
3,468
JOB_TITLE,AVG(salary) Accountant,7920.0 Accounting Manager,12000.0 Administration Assistant,4400.0 Administration Vice President,17000.0 Finance Manager,12000.0 Human Resources Representative,6500.0 Marketing Manager,13000.0 Marketing Representative,6000.0 President,24000.0 Programmer,5760.0 Public Accountant,8300.0 Public Relations Representative,10000.0 Purchasing Clerk,2780.0 Purchasing Manager,11000.0 Sales Manager,12200.0 Sales Representative,8350.0 Shipping Clerk,3215.0 Stock Clerk,2785.0 Stock Manager,7280.0
display the employee ID and job name for all those jobs in department 80.
SELECT T1.employee_id, T2.job_title FROM employees AS T1 JOIN jobs AS T2 ON T1.job_id = T2.job_id WHERE T1.department_id = 80
``` yaml jobs: # name of dataframe - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_ASST - JOB_TITLE: dtype: string sample_values: President, Administration Vice President, Administration Assistant - MIN_SALARY: dtype: int64 sample_values: 20000, 15000, 3000 - MAX_SALARY: dtype: int64 sample_values: 40000, 30000, 6000 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'job_id' in dataframe 'employees' has a foreign key relation to column 'job_id' in dataframe 'jobs'.
3,491
EMPLOYEE_ID,JOB_TITLE 145,Sales Manager 146,Sales Manager 147,Sales Manager 148,Sales Manager 149,Sales Manager 150,Sales Representative 151,Sales Representative 152,Sales Representative 153,Sales Representative 154,Sales Representative 155,Sales Representative 156,Sales Representative 157,Sales Representative 158,Sales Representative 159,Sales Representative 160,Sales Representative 161,Sales Representative 162,Sales Representative 163,Sales Representative 164,Sales Representative 165,Sales Representative 166,Sales Representative 167,Sales Representative 168,Sales Representative 169,Sales Representative 170,Sales Representative 171,Sales Representative 172,Sales Representative 173,Sales Representative 174,Sales Representative 175,Sales Representative 176,Sales Representative 177,Sales Representative 179,Sales Representative
What are the full name, hire data, salary and department id for employees without the letter M in their first name, ordered by ascending department id?
SELECT first_name, last_name, hire_date, salary, department_id FROM employees WHERE NOT first_name LIKE '%M%' ORDER BY department_id
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,420
FIRST_NAME,LAST_NAME,HIRE_DATE,SALARY,DEPARTMENT_ID Jennifer,Whalen,1987-09-25,4400,10 Pat,Fay,1987-09-27,6000,20 Den,Raphaely,1987-07-01,11000,30 Alexander,Khoo,1987-07-02,3100,30 Shelli,Baida,1987-07-03,2900,30 Sigal,Tobias,1987-07-04,2800,30 Guy,Himuro,1987-07-05,2600,30 Karen,Colmenares,1987-07-06,2500,30 Susan,Mavris,1987-09-28,6500,40 Shanta,Vollman,1987-07-10,6500,50 Kevin,Mourgos,1987-07-11,5800,50 Julia,Nayer,1987-07-12,3200,50 Irene,Mikkilineni,1987-07-13,2700,50 Steven,Markle,1987-07-15,2200,50 Laura,Bissot,1987-07-16,3300,50 TJ,Olson,1987-07-19,2100,50 Jason,Mallin,1987-07-20,3300,50 Ki,Gee,1987-07-22,2400,50 Hazel,Philtanker,1987-07-23,2200,50 Renske,Ladwig,1987-07-24,3600,50 Stephen,Stiles,1987-07-25,3200,50 John,Seo,1987-07-26,2700,50 Joshua,Patel,1987-07-27,2500,50 Trenna,Rajs,1987-07-28,3500,50 Curtis,Davies,1987-07-29,3100,50 Randall,Matos,1987-07-30,2600,50 Peter,Vargas,1987-07-31,2500,50 Winston,Taylor,1987-09-05,3200,50 Jean,Fleaur,1987-09-06,3100,50 Girard,Geoni,1987-09-08,2800,50 Nandita,Sarchand,1987-09-09,4200,50 Alexis,Bull,1987-09-10,4100,50 Julia,Dellinger,1987-09-11,3400,50 Anthony,Cabrio,1987-09-12,3000,50 Kelly,Chung,1987-09-13,3800,50 Jennifer,Dilly,1987-09-14,3600,50 Randall,Perkins,1987-09-16,2500,50 Sarah,Bell,1987-09-17,4000,50 Britney,Everett,1987-09-18,3900,50 Vance,Jones,1987-09-20,2800,50 Alana,Walsh,1987-09-21,3100,50 Kevin,Feeney,1987-09-22,3000,50 Donald,OConnell,1987-09-23,2600,50 Douglas,Grant,1987-09-24,2600,50 Alexander,Hunold,1987-06-20,9000,60 Bruce,Ernst,1987-06-21,6000,60 David,Austin,1987-06-22,4800,60 Valli,Pataballa,1987-06-23,4800,60 Diana,Lorentz,1987-06-24,4200,60 John,Russell,1987-08-01,14000,80 Karen,Partners,1987-08-02,13500,80 Alberto,Errazuriz,1987-08-03,12000,80 Gerald,Cambrault,1987-08-04,11000,80 Eleni,Zlotkey,1987-08-05,10500,80 Peter,Tucker,1987-08-06,10000,80 David,Bernstein,1987-08-07,9500,80 Peter,Hall,1987-08-08,9000,80 Christopher,Olsen,1987-08-09,8000,80 Nanette,Cambrault,1987-08-10,7500,80 Oliver,Tuvault,1987-08-11,7000,80 Janette,King,1987-08-12,10000,80 Patrick,Sully,1987-08-13,9500,80 Allan,McEwen,1987-08-14,9000,80 Lindsey,Smith,1987-08-15,8000,80 Louise,Doran,1987-08-16,7500,80 Sarath,Sewall,1987-08-17,7000,80 Clara,Vishney,1987-08-18,10500,80 Danielle,Greene,1987-08-19,9500,80 David,Lee,1987-08-21,6800,80 Sundar,Ande,1987-08-22,6400,80 Lisa,Ozer,1987-08-24,11500,80 Harrison,Bloom,1987-08-25,10000,80 Tayler,Fox,1987-08-26,9600,80 Elizabeth,Bates,1987-08-28,7300,80 Sundita,Kumar,1987-08-29,6100,80 Ellen,Abel,1987-08-30,11000,80 Alyssa,Hutton,1987-08-31,8800,80 Jonathon,Taylor,1987-09-01,8600,80 Jack,Livingston,1987-09-02,8400,80 Charles,Johnson,1987-09-04,6200,80 Steven,King,1987-06-17,24000,90 Neena,Kochhar,1987-06-18,17000,90 Lex,De Haan,1987-06-19,17000,90 Nancy,Greenberg,1987-06-25,12000,100 Daniel,Faviet,1987-06-26,9000,100 John,Chen,1987-06-27,8200,100 Luis,Popp,1987-06-30,6900,100 Shelley,Higgins,1987-09-30,12000,110
display the department name and number of employees in each of the department.
SELECT T2.department_name, COUNT(*) FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id GROUP BY T2.department_name
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'.
3,463
DEPARTMENT_NAME,COUNT(*) Accounting,2 Administration,1 Executive,3 Finance,6 Human Resources,1 IT,5 Marketing,2 Public Relations,1 Purchasing,6 Sales,34 Shipping,45
What is all the job history info done by employees earning a salary greater than or equal to 12000?
SELECT * FROM job_history AS T1 JOIN employees AS T2 ON T1.employee_id = T2.employee_id WHERE T2.salary >= 12000
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ``` Foreign Key constraints: Column 'employee_id' in dataframe 'job_history' has a foreign key relation to column 'employee_id' in dataframe 'employees'.
3,466
EMPLOYEE_ID,START_DATE,END_DATE,JOB_ID,DEPARTMENT_ID,EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 102,1993-01-13,1998-07-24,IT_PROG,60,102,Lex,De Haan,LDEHAAN,515.123.4569,1987-06-19,AD_VP,17000,0,100,90 101,1989-09-21,1993-10-27,AC_ACCOUNT,110,101,Neena,Kochhar,NKOCHHAR,515.123.4568,1987-06-18,AD_VP,17000,0,100,90 101,1993-10-28,1997-03-15,AC_MGR,110,101,Neena,Kochhar,NKOCHHAR,515.123.4568,1987-06-18,AD_VP,17000,0,100,90 201,1996-02-17,1999-12-19,MK_REP,20,201,Michael,Hartstein,MHARTSTE,515.123.5555,1987-09-26,MK_MAN,13000,0,100,20
What are the department names, cities, and state provinces for each department?
SELECT T1.department_name, T2.city, T2.state_province FROM departments AS T1 JOIN locations AS T2 ON T2.location_id = T1.location_id
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 locations: # name of dataframe - LOCATION_ID: dtype: int64 sample_values: 1000, 1100, 1200 - STREET_ADDRESS: dtype: string sample_values: 1297 Via Cola di Rie, 93091 Calle della Testa, 2017 Shinjuku-ku - POSTAL_CODE: dtype: numeric sample_values: 989, 10934, 1689 - CITY: dtype: string sample_values: Roma, Venice, Tokyo - STATE_PROVINCE: dtype: string sample_values: ', , Tokyo Prefecture' - COUNTRY_ID: dtype: string sample_values: IT, IT, JP ``` Foreign Key constraints:
3,522
DEPARTMENT_NAME,CITY,STATE_PROVINCE Administration,Seattle,Washington Marketing,Toronto,Ontario Purchasing,Seattle,Washington Human Resources,London, Shipping,South San Francisco,California IT,Southlake,Texas Public Relations,Munich,Bavaria Sales,OX9 9ZB,Oxford Executive,Seattle,Washington Finance,Seattle,Washington Accounting,Seattle,Washington Treasury,Seattle,Washington Corporate Tax,Seattle,Washington Control And Credit,Seattle,Washington Shareholder Services,Seattle,Washington Benefits,Seattle,Washington Manufacturing,Seattle,Washington Construction,Seattle,Washington Contracting,Seattle,Washington Operations,Seattle,Washington IT Support,Seattle,Washington NOC,Seattle,Washington IT Helpdesk,Seattle,Washington Government Sales,Seattle,Washington Retail Sales,Seattle,Washington Recruiting,Seattle,Washington Payroll,Seattle,Washington
display those employees who joined after 7th September, 1987.
SELECT * FROM employees WHERE hire_date > '1987-09-07'
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,439
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 183,Girard,Geoni,GGEONI,650.507.9879,1987-09-08,SH_CLERK,2800,0,120,50 184,Nandita,Sarchand,NSARCHAN,650.509.1876,1987-09-09,SH_CLERK,4200,0,121,50 185,Alexis,Bull,ABULL,650.509.2876,1987-09-10,SH_CLERK,4100,0,121,50 186,Julia,Dellinger,JDELLING,650.509.3876,1987-09-11,SH_CLERK,3400,0,121,50 187,Anthony,Cabrio,ACABRIO,650.509.4876,1987-09-12,SH_CLERK,3000,0,121,50 188,Kelly,Chung,KCHUNG,650.505.1876,1987-09-13,SH_CLERK,3800,0,122,50 189,Jennifer,Dilly,JDILLY,650.505.2876,1987-09-14,SH_CLERK,3600,0,122,50 190,Timothy,Gates,TGATES,650.505.3876,1987-09-15,SH_CLERK,2900,0,122,50 191,Randall,Perkins,RPERKINS,650.505.4876,1987-09-16,SH_CLERK,2500,0,122,50 192,Sarah,Bell,SBELL,650.501.1876,1987-09-17,SH_CLERK,4000,0,123,50 193,Britney,Everett,BEVERETT,650.501.2876,1987-09-18,SH_CLERK,3900,0,123,50 194,Samuel,McCain,SMCCAIN,650.501.3876,1987-09-19,SH_CLERK,3200,0,123,50 195,Vance,Jones,VJONES,650.501.4876,1987-09-20,SH_CLERK,2800,0,123,50 196,Alana,Walsh,AWALSH,650.507.9811,1987-09-21,SH_CLERK,3100,0,124,50 197,Kevin,Feeney,KFEENEY,650.507.9822,1987-09-22,SH_CLERK,3000,0,124,50 198,Donald,OConnell,DOCONNEL,650.507.9833,1987-09-23,SH_CLERK,2600,0,124,50 199,Douglas,Grant,DGRANT,650.507.9844,1987-09-24,SH_CLERK,2600,0,124,50 200,Jennifer,Whalen,JWHALEN,515.123.4444,1987-09-25,AD_ASST,4400,0,101,10 201,Michael,Hartstein,MHARTSTE,515.123.5555,1987-09-26,MK_MAN,13000,0,100,20 202,Pat,Fay,PFAY,603.123.6666,1987-09-27,MK_REP,6000,0,201,20 203,Susan,Mavris,SMAVRIS,515.123.7777,1987-09-28,HR_REP,6500,0,101,40 204,Hermann,Baer,HBAER,515.123.8888,1987-09-29,PR_REP,10000,0,101,70 205,Shelley,Higgins,SHIGGINS,515.123.8080,1987-09-30,AC_MGR,12000,0,101,110 206,William,Gietz,WGIETZ,515.123.8181,1987-10-01,AC_ACCOUNT,8300,0,205,110
What are the full names and salaries for any employees earning less than 6000?
SELECT first_name, last_name, salary FROM employees WHERE salary < 6000
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,408
FIRST_NAME,LAST_NAME,SALARY David,Austin,4800 Valli,Pataballa,4800 Diana,Lorentz,4200 Alexander,Khoo,3100 Shelli,Baida,2900 Sigal,Tobias,2800 Guy,Himuro,2600 Karen,Colmenares,2500 Kevin,Mourgos,5800 Julia,Nayer,3200 Irene,Mikkilineni,2700 James,Landry,2400 Steven,Markle,2200 Laura,Bissot,3300 Mozhe,Atkinson,2800 James,Marlow,2500 TJ,Olson,2100 Jason,Mallin,3300 Michael,Rogers,2900 Ki,Gee,2400 Hazel,Philtanker,2200 Renske,Ladwig,3600 Stephen,Stiles,3200 John,Seo,2700 Joshua,Patel,2500 Trenna,Rajs,3500 Curtis,Davies,3100 Randall,Matos,2600 Peter,Vargas,2500 Winston,Taylor,3200 Jean,Fleaur,3100 Martha,Sullivan,2500 Girard,Geoni,2800 Nandita,Sarchand,4200 Alexis,Bull,4100 Julia,Dellinger,3400 Anthony,Cabrio,3000 Kelly,Chung,3800 Jennifer,Dilly,3600 Timothy,Gates,2900 Randall,Perkins,2500 Sarah,Bell,4000 Britney,Everett,3900 Samuel,McCain,3200 Vance,Jones,2800 Alana,Walsh,3100 Kevin,Feeney,3000 Donald,OConnell,2600 Douglas,Grant,2600 Jennifer,Whalen,4400
What is the first name and job id for all employees in the Finance department?
SELECT T1.first_name, T1.job_id FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id WHERE T2.department_name = 'Finance'
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'.
3,493
FIRST_NAME,JOB_ID Nancy,FI_MGR Daniel,FI_ACCOUNT John,FI_ACCOUNT Ismael,FI_ACCOUNT Jose Manuel,FI_ACCOUNT Luis,FI_ACCOUNT
What is all the information about employees with D or S in their first name, ordered by salary descending?
SELECT * FROM employees WHERE first_name LIKE '%D%' OR first_name LIKE '%S%' ORDER BY salary DESC
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,438
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 100,Steven,King,SKING,515.123.4567,1987-06-17,AD_PRES,24000,0.0,0,90 205,Shelley,Higgins,SHIGGINS,515.123.8080,1987-09-30,AC_MGR,12000,0.0,101,110 168,Lisa,Ozer,LOZER,011.44.1343.929268,1987-08-24,SA_REP,11500,0.25,148,80 114,Den,Raphaely,DRAPHEAL,515.127.4561,1987-07-01,PU_MAN,11000,0.0,100,30 148,Gerald,Cambrault,GCAMBRAU,011.44.1344.619268,1987-08-04,SA_MAN,11000,0.3,100,80 169,Harrison,Bloom,HBLOOM,011.44.1343.829268,1987-08-25,SA_REP,10000,0.2,148,80 151,David,Bernstein,DBERNSTE,011.44.1344.345268,1987-08-07,SA_REP,9500,0.25,145,80 163,Danielle,Greene,DGREENE,011.44.1346.229268,1987-08-19,SA_REP,9500,0.15,147,80 103,Alexander,Hunold,AHUNOLD,590.423.4567,1987-06-20,IT_PROG,9000,0.0,102,60 109,Daniel,Faviet,DFAVIET,515.124.4169,1987-06-26,FI_ACCOUNT,9000,0.0,108,100 175,Alyssa,Hutton,AHUTTON,011.44.1644.429266,1987-08-31,SA_REP,8800,0.25,149,80 121,Adam,Fripp,AFRIPP,650.123.2234,1987-07-08,ST_MAN,8200,0.0,100,50 153,Christopher,Olsen,COLSEN,011.44.1344.498718,1987-08-09,SA_REP,8000,0.2,145,80 159,Lindsey,Smith,LSMITH,011.44.1345.729268,1987-08-15,SA_REP,8000,0.3,146,80 112,Jose Manuel,Urman,JMURMAN,515.124.4469,1987-06-29,FI_ACCOUNT,7800,0.0,108,100 111,Ismael,Sciarra,ISCIARRA,515.124.4369,1987-06-28,FI_ACCOUNT,7700,0.0,108,100 160,Louise,Doran,LDORAN,011.44.1345.629268,1987-08-16,SA_REP,7500,0.3,146,80 161,Sarath,Sewall,SSEWALL,011.44.1345.529268,1987-08-17,SA_REP,7000,0.25,146,80 113,Luis,Popp,LPOPP,515.124.4567,1987-06-30,FI_ACCOUNT,6900,0.0,108,100 165,David,Lee,DLEE,011.44.1346.529268,1987-08-21,SA_REP,6800,0.1,147,80 123,Shanta,Vollman,SVOLLMAN,650.123.4234,1987-07-10,ST_MAN,6500,0.0,100,50 203,Susan,Mavris,SMAVRIS,515.123.7777,1987-09-28,HR_REP,6500,0.0,101,40 166,Sundar,Ande,SANDE,011.44.1346.629268,1987-08-22,SA_REP,6400,0.1,147,80 179,Charles,Johnson,CJOHNSON,011.44.1644.429262,1987-09-04,SA_REP,6200,0.1,149,80 173,Sundita,Kumar,SKUMAR,011.44.1343.329268,1987-08-29,SA_REP,6100,0.1,148,80 105,David,Austin,DAUSTIN,590.423.4569,1987-06-22,IT_PROG,4800,0.0,103,60 107,Diana,Lorentz,DLORENTZ,590.423.5567,1987-06-24,IT_PROG,4200,0.0,103,60 184,Nandita,Sarchand,NSARCHAN,650.509.1876,1987-09-09,SH_CLERK,4200,0.0,121,50 185,Alexis,Bull,ABULL,650.509.2876,1987-09-10,SH_CLERK,4100,0.0,121,50 192,Sarah,Bell,SBELL,650.501.1876,1987-09-17,SH_CLERK,4000,0.0,123,50 137,Renske,Ladwig,RLADWIG,650.121.1234,1987-07-24,ST_CLERK,3600,0.0,123,50 133,Jason,Mallin,JMALLIN,650.127.1934,1987-07-20,ST_CLERK,3300,0.0,122,50 138,Stephen,Stiles,SSTILES,650.121.2034,1987-07-25,ST_CLERK,3200,0.0,123,50 180,Winston,Taylor,WTAYLOR,650.507.9876,1987-09-05,SH_CLERK,3200,0.0,120,50 194,Samuel,McCain,SMCCAIN,650.501.3876,1987-09-19,SH_CLERK,3200,0.0,123,50 115,Alexander,Khoo,AKHOO,515.127.4562,1987-07-02,PU_CLERK,3100,0.0,114,30 142,Curtis,Davies,CDAVIES,650.121.2994,1987-07-29,ST_CLERK,3100,0.0,124,50 116,Shelli,Baida,SBAIDA,515.127.4563,1987-07-03,PU_CLERK,2900,0.0,114,30 117,Sigal,Tobias,STOBIAS,515.127.4564,1987-07-04,PU_CLERK,2800,0.0,114,30 183,Girard,Geoni,GGEONI,650.507.9879,1987-09-08,SH_CLERK,2800,0.0,120,50 143,Randall,Matos,RMATOS,650.121.2874,1987-07-30,ST_CLERK,2600,0.0,124,50 198,Donald,OConnell,DOCONNEL,650.507.9833,1987-09-23,SH_CLERK,2600,0.0,124,50 199,Douglas,Grant,DGRANT,650.507.9844,1987-09-24,SH_CLERK,2600,0.0,124,50 131,James,Marlow,JAMRLOW,650.124.7234,1987-07-18,ST_CLERK,2500,0.0,121,50 140,Joshua,Patel,JPATEL,650.121.1834,1987-07-27,ST_CLERK,2500,0.0,123,50 191,Randall,Perkins,RPERKINS,650.505.4876,1987-09-16,SH_CLERK,2500,0.0,122,50 127,James,Landry,JLANDRY,650.124.1334,1987-07-14,ST_CLERK,2400,0.0,120,50 128,Steven,Markle,SMARKLE,650.124.1434,1987-07-15,ST_CLERK,2200,0.0,120,50
Display all the information about the department Marketing.
SELECT * FROM departments WHERE department_name = 'Marketing'
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 ```
3,413
DEPARTMENT_ID,DEPARTMENT_NAME,MANAGER_ID,LOCATION_ID 20,Marketing,201,1800
display the employee ID for each employee and the date on which he ended his previous job.
SELECT employee_id, MAX(end_date) FROM job_history GROUP BY employee_id
``` yaml job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ```
3,447
EMPLOYEE_ID,MAX(end_date) 0,0000-00-00 101,1997-03-15 102,1998-07-24 114,1999-12-31 122,1999-12-31 176,1999-12-31 200,1998-12-31 201,1999-12-19
What is all the information about the Marketing department?
SELECT * FROM departments WHERE department_name = 'Marketing'
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 ```
3,484
DEPARTMENT_ID,DEPARTMENT_NAME,MANAGER_ID,LOCATION_ID 20,Marketing,201,1800
What are the full names and cities of employees who have the letter Z in their first names?
SELECT T1.first_name, T1.last_name, T3.city FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id JOIN locations AS T3 ON T2.location_id = T3.location_id WHERE T1.first_name LIKE '%z%'
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 locations: # name of dataframe - LOCATION_ID: dtype: int64 sample_values: 1000, 1100, 1200 - STREET_ADDRESS: dtype: string sample_values: 1297 Via Cola di Rie, 93091 Calle della Testa, 2017 Shinjuku-ku - POSTAL_CODE: dtype: numeric sample_values: 989, 10934, 1689 - CITY: dtype: string sample_values: Roma, Venice, Tokyo - STATE_PROVINCE: dtype: string sample_values: ', , Tokyo Prefecture' - COUNTRY_ID: dtype: string sample_values: IT, IT, JP ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'.
3,520
FIRST_NAME,LAST_NAME,CITY Mozhe,Atkinson,South San Francisco Hazel,Philtanker,South San Francisco Elizabeth,Bates,OX9 9ZB
display the full name (first and last), hire date, salary, and department number for those employees whose first name does not containing the letter M and make the result set in ascending order by department number.
SELECT first_name, last_name, hire_date, salary, department_id FROM employees WHERE NOT first_name LIKE '%M%' ORDER BY department_id
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,419
FIRST_NAME,LAST_NAME,HIRE_DATE,SALARY,DEPARTMENT_ID Jennifer,Whalen,1987-09-25,4400,10 Pat,Fay,1987-09-27,6000,20 Den,Raphaely,1987-07-01,11000,30 Alexander,Khoo,1987-07-02,3100,30 Shelli,Baida,1987-07-03,2900,30 Sigal,Tobias,1987-07-04,2800,30 Guy,Himuro,1987-07-05,2600,30 Karen,Colmenares,1987-07-06,2500,30 Susan,Mavris,1987-09-28,6500,40 Shanta,Vollman,1987-07-10,6500,50 Kevin,Mourgos,1987-07-11,5800,50 Julia,Nayer,1987-07-12,3200,50 Irene,Mikkilineni,1987-07-13,2700,50 Steven,Markle,1987-07-15,2200,50 Laura,Bissot,1987-07-16,3300,50 TJ,Olson,1987-07-19,2100,50 Jason,Mallin,1987-07-20,3300,50 Ki,Gee,1987-07-22,2400,50 Hazel,Philtanker,1987-07-23,2200,50 Renske,Ladwig,1987-07-24,3600,50 Stephen,Stiles,1987-07-25,3200,50 John,Seo,1987-07-26,2700,50 Joshua,Patel,1987-07-27,2500,50 Trenna,Rajs,1987-07-28,3500,50 Curtis,Davies,1987-07-29,3100,50 Randall,Matos,1987-07-30,2600,50 Peter,Vargas,1987-07-31,2500,50 Winston,Taylor,1987-09-05,3200,50 Jean,Fleaur,1987-09-06,3100,50 Girard,Geoni,1987-09-08,2800,50 Nandita,Sarchand,1987-09-09,4200,50 Alexis,Bull,1987-09-10,4100,50 Julia,Dellinger,1987-09-11,3400,50 Anthony,Cabrio,1987-09-12,3000,50 Kelly,Chung,1987-09-13,3800,50 Jennifer,Dilly,1987-09-14,3600,50 Randall,Perkins,1987-09-16,2500,50 Sarah,Bell,1987-09-17,4000,50 Britney,Everett,1987-09-18,3900,50 Vance,Jones,1987-09-20,2800,50 Alana,Walsh,1987-09-21,3100,50 Kevin,Feeney,1987-09-22,3000,50 Donald,OConnell,1987-09-23,2600,50 Douglas,Grant,1987-09-24,2600,50 Alexander,Hunold,1987-06-20,9000,60 Bruce,Ernst,1987-06-21,6000,60 David,Austin,1987-06-22,4800,60 Valli,Pataballa,1987-06-23,4800,60 Diana,Lorentz,1987-06-24,4200,60 John,Russell,1987-08-01,14000,80 Karen,Partners,1987-08-02,13500,80 Alberto,Errazuriz,1987-08-03,12000,80 Gerald,Cambrault,1987-08-04,11000,80 Eleni,Zlotkey,1987-08-05,10500,80 Peter,Tucker,1987-08-06,10000,80 David,Bernstein,1987-08-07,9500,80 Peter,Hall,1987-08-08,9000,80 Christopher,Olsen,1987-08-09,8000,80 Nanette,Cambrault,1987-08-10,7500,80 Oliver,Tuvault,1987-08-11,7000,80 Janette,King,1987-08-12,10000,80 Patrick,Sully,1987-08-13,9500,80 Allan,McEwen,1987-08-14,9000,80 Lindsey,Smith,1987-08-15,8000,80 Louise,Doran,1987-08-16,7500,80 Sarath,Sewall,1987-08-17,7000,80 Clara,Vishney,1987-08-18,10500,80 Danielle,Greene,1987-08-19,9500,80 David,Lee,1987-08-21,6800,80 Sundar,Ande,1987-08-22,6400,80 Lisa,Ozer,1987-08-24,11500,80 Harrison,Bloom,1987-08-25,10000,80 Tayler,Fox,1987-08-26,9600,80 Elizabeth,Bates,1987-08-28,7300,80 Sundita,Kumar,1987-08-29,6100,80 Ellen,Abel,1987-08-30,11000,80 Alyssa,Hutton,1987-08-31,8800,80 Jonathon,Taylor,1987-09-01,8600,80 Jack,Livingston,1987-09-02,8400,80 Charles,Johnson,1987-09-04,6200,80 Steven,King,1987-06-17,24000,90 Neena,Kochhar,1987-06-18,17000,90 Lex,De Haan,1987-06-19,17000,90 Nancy,Greenberg,1987-06-25,12000,100 Daniel,Faviet,1987-06-26,9000,100 John,Chen,1987-06-27,8200,100 Luis,Popp,1987-06-30,6900,100 Shelley,Higgins,1987-09-30,12000,110
Can you return all detailed info of jobs which was done by any of the employees who is presently earning a salary on and above 12000?
SELECT * FROM job_history AS T1 JOIN employees AS T2 ON T1.employee_id = T2.employee_id WHERE T2.salary >= 12000
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ``` Foreign Key constraints: Column 'employee_id' in dataframe 'job_history' has a foreign key relation to column 'employee_id' in dataframe 'employees'.
3,465
EMPLOYEE_ID,START_DATE,END_DATE,JOB_ID,DEPARTMENT_ID,EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 102,1993-01-13,1998-07-24,IT_PROG,60,102,Lex,De Haan,LDEHAAN,515.123.4569,1987-06-19,AD_VP,17000,0,100,90 101,1989-09-21,1993-10-27,AC_ACCOUNT,110,101,Neena,Kochhar,NKOCHHAR,515.123.4568,1987-06-18,AD_VP,17000,0,100,90 101,1993-10-28,1997-03-15,AC_MGR,110,101,Neena,Kochhar,NKOCHHAR,515.123.4568,1987-06-18,AD_VP,17000,0,100,90 201,1996-02-17,1999-12-19,MK_REP,20,201,Michael,Hartstein,MHARTSTE,515.123.5555,1987-09-26,MK_MAN,13000,0,100,20
display the department id and the total salary for those departments which contains at least two employees.
SELECT department_id, SUM(salary) FROM employees GROUP BY department_id HAVING COUNT(*) >= 2
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,511
DEPARTMENT_ID,SUM(salary) 20,19000 30,24900 50,156400 60,28800 80,304500 90,58000 100,51600 110,20300
Find the employee id for all employees who earn more than the average salary.
SELECT employee_id FROM employees WHERE salary > (SELECT AVG(salary) FROM employees)
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,475
EMPLOYEE_ID 100 101 102 103 108 109 110 111 112 113 114 120 121 122 123 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 168 169 170 171 172 174 175 176 177 178 201 203 204 205 206
What is all the information about the Marketing department?
SELECT * FROM departments WHERE department_name = 'Marketing'
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 ```
3,414
DEPARTMENT_ID,DEPARTMENT_NAME,MANAGER_ID,LOCATION_ID 20,Marketing,201,1800
display the job title of jobs which minimum salary is greater than 9000.
SELECT job_title FROM jobs WHERE min_salary > 9000
``` yaml jobs: # name of dataframe - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_ASST - JOB_TITLE: dtype: string sample_values: President, Administration Vice President, Administration Assistant - MIN_SALARY: dtype: int64 sample_values: 20000, 15000, 3000 - MAX_SALARY: dtype: int64 sample_values: 40000, 30000, 6000 ```
3,441
JOB_TITLE President Administration Vice President Sales Manager
Find the salary and manager number for those employees who is working under a manager.
SELECT salary, manager_id FROM employees WHERE manager_id <> "null"
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,433
SALARY,MANAGER_ID 24000,0 17000,100 17000,100 9000,102 6000,103 4800,103 4800,103 4200,103 12000,101 9000,108 8200,108 7700,108 7800,108 6900,108 11000,100 3100,114 2900,114 2800,114 2600,114 2500,114 8000,100 8200,100 7900,100 6500,100 5800,100 3200,120 2700,120 2400,120 2200,120 3300,121 2800,121 2500,121 2100,121 3300,122 2900,122 2400,122 2200,122 3600,123 3200,123 2700,123 2500,123 3500,124 3100,124 2600,124 2500,124 14000,100 13500,100 12000,100 11000,100 10500,100 10000,145 9500,145 9000,145 8000,145 7500,145 7000,145 10000,146 9500,146 9000,146 8000,146 7500,146 7000,146 10500,147 9500,147 7200,147 6800,147 6400,147 6200,147 11500,148 10000,148 9600,148 7400,148 7300,148 6100,148 11000,149 8800,149 8600,149 8400,149 7000,149 6200,149 3200,120 3100,120 2500,120 2800,120 4200,121 4100,121 3400,121 3000,121 3800,122 3600,122 2900,122 2500,122 4000,123 3900,123 3200,123 2800,123 3100,124 3000,124 2600,124 2600,124 4400,101 13000,100 6000,201 6500,101 10000,101 12000,101 8300,205
display the average salary of employees for each department who gets a commission percentage.
SELECT department_id, AVG(salary) FROM employees WHERE commission_pct <> "null" GROUP BY department_id
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,453
DEPARTMENT_ID,AVG(salary) 0,7000.0 10,4400.0 20,9500.0 30,4150.0 40,6500.0 50,3475.5555555555557 60,5760.0 70,10000.0 80,8955.882352941177 90,19333.333333333332 100,8600.0 110,10150.0
Find the first name and last name and department id for those employees who earn such amount of salary which is the smallest salary of any of the departments.
SELECT first_name, last_name, department_id FROM employees WHERE salary IN (SELECT MIN(salary) FROM employees GROUP BY department_id)
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,473
FIRST_NAME,LAST_NAME,DEPARTMENT_ID Neena,Kochhar,90 Lex,De Haan,90 Bruce,Ernst,60 Diana,Lorentz,60 Luis,Popp,100 Karen,Colmenares,30 Shanta,Vollman,50 James,Marlow,50 TJ,Olson,50 Joshua,Patel,50 Peter,Vargas,50 Peter,Tucker,80 Oliver,Tuvault,80 Janette,King,80 Sarath,Sewall,80 Harrison,Bloom,80 Sundita,Kumar,80 Kimberely,Grant,0 Martha,Sullivan,50 Nandita,Sarchand,50 Randall,Perkins,50 Jennifer,Whalen,10 Pat,Fay,20 Susan,Mavris,40 Hermann,Baer,70 William,Gietz,110
List the full name (first and last name), and salary for those employees who earn below 6000.
SELECT first_name, last_name, salary FROM employees WHERE salary < 6000
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,407
FIRST_NAME,LAST_NAME,SALARY David,Austin,4800 Valli,Pataballa,4800 Diana,Lorentz,4200 Alexander,Khoo,3100 Shelli,Baida,2900 Sigal,Tobias,2800 Guy,Himuro,2600 Karen,Colmenares,2500 Kevin,Mourgos,5800 Julia,Nayer,3200 Irene,Mikkilineni,2700 James,Landry,2400 Steven,Markle,2200 Laura,Bissot,3300 Mozhe,Atkinson,2800 James,Marlow,2500 TJ,Olson,2100 Jason,Mallin,3300 Michael,Rogers,2900 Ki,Gee,2400 Hazel,Philtanker,2200 Renske,Ladwig,3600 Stephen,Stiles,3200 John,Seo,2700 Joshua,Patel,2500 Trenna,Rajs,3500 Curtis,Davies,3100 Randall,Matos,2600 Peter,Vargas,2500 Winston,Taylor,3200 Jean,Fleaur,3100 Martha,Sullivan,2500 Girard,Geoni,2800 Nandita,Sarchand,4200 Alexis,Bull,4100 Julia,Dellinger,3400 Anthony,Cabrio,3000 Kelly,Chung,3800 Jennifer,Dilly,3600 Timothy,Gates,2900 Randall,Perkins,2500 Sarah,Bell,4000 Britney,Everett,3900 Samuel,McCain,3200 Vance,Jones,2800 Alana,Walsh,3100 Kevin,Feeney,3000 Donald,OConnell,2600 Douglas,Grant,2600 Jennifer,Whalen,4400
Display the first name, and department number for all employees whose last name is "McEwen".
SELECT first_name, department_id FROM employees WHERE last_name = 'McEwen'
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,409
FIRST_NAME,DEPARTMENT_ID Allan,80
Give the country id and corresponding count of cities in each country.
SELECT country_id, COUNT(*) FROM locations GROUP BY country_id
``` yaml locations: # name of dataframe - LOCATION_ID: dtype: int64 sample_values: 1000, 1100, 1200 - STREET_ADDRESS: dtype: string sample_values: 1297 Via Cola di Rie, 93091 Calle della Testa, 2017 Shinjuku-ku - POSTAL_CODE: dtype: numeric sample_values: 989, 10934, 1689 - CITY: dtype: string sample_values: Roma, Venice, Tokyo - STATE_PROVINCE: dtype: string sample_values: ', , Tokyo Prefecture' - COUNTRY_ID: dtype: string sample_values: IT, IT, JP ```
3,456
COUNTRY_ID,COUNT(*) """",1 AU,1 BR,1 CA,2 CH,2 CN,1 DE,1 IN,1 IT,2 JP,2 NL,1 Ox,1 SG,1 UK,2 US,4
What are the job ids corresponding to jobs with average salary above 8000?
SELECT job_id FROM employees GROUP BY job_id HAVING AVG(salary) > 8000
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,490
JOB_ID AC_ACCOUNT AC_MGR AD_PRES AD_VP FI_MGR MK_MAN PR_REP PU_MAN SA_MAN SA_REP
What are the employee ids for employees who have held two or more jobs?
SELECT employee_id FROM job_history GROUP BY employee_id HAVING COUNT(*) >= 2
``` yaml job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ```
3,460
EMPLOYEE_ID 101 176 200
What are total salaries and department id for each department that has more than 2 employees?
SELECT department_id, SUM(salary) FROM employees GROUP BY department_id HAVING COUNT(*) >= 2
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,512
DEPARTMENT_ID,SUM(salary) 20,19000 30,24900 50,156400 60,28800 80,304500 90,58000 100,51600 110,20300
display those departments where more than ten employees work who got a commission percentage.
SELECT department_id FROM employees GROUP BY department_id HAVING COUNT(commission_pct) > 10
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,449
DEPARTMENT_ID 50 80
What are the emails of employees with null commission, salary between 7000 and 12000, and who work in department 50?
SELECT email FROM employees WHERE commission_pct = "null" AND salary BETWEEN 7000 AND 12000 AND department_id = 50
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,446
EMAIL
What are the employee ids for employees who make more than the average?
SELECT employee_id FROM employees WHERE salary > (SELECT AVG(salary) FROM employees)
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,476
EMPLOYEE_ID 100 101 102 103 108 109 110 111 112 113 114 120 121 122 123 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 168 169 170 171 172 174 175 176 177 178 201 203 204 205 206
What are the employee ids, full names, and job ids for employees who make more than the highest earning employee with title PU_MAN?
SELECT employee_id, first_name, last_name, job_id FROM employees WHERE salary > (SELECT MAX(salary) FROM employees WHERE job_id = 'PU_MAN')
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,510
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,JOB_ID 100,Steven,King,AD_PRES 101,Neena,Kochhar,AD_VP 102,Lex,De Haan,AD_VP 108,Nancy,Greenberg,FI_MGR 145,John,Russell,SA_MAN 146,Karen,Partners,SA_MAN 147,Alberto,Errazuriz,SA_MAN 168,Lisa,Ozer,SA_REP 201,Michael,Hartstein,MK_MAN 205,Shelley,Higgins,AC_MGR
Display the first and last name, and salary for those employees whose first name is ending with the letter m.
SELECT first_name, last_name, salary FROM employees WHERE first_name LIKE '%m'
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,427
FIRST_NAME,LAST_NAME,SALARY Adam,Fripp,8200 Payam,Kaufling,7900 William,Smith,7400 William,Gietz,8300
What are the full names and hire dates for employees in the same department as someone with the first name Clara, not including Clara?
SELECT first_name, last_name, hire_date FROM employees WHERE department_id = (SELECT department_id FROM employees WHERE first_name = "Clara") AND first_name <> "Clara"
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,502
FIRST_NAME,LAST_NAME,HIRE_DATE John,Russell,1987-08-01 Karen,Partners,1987-08-02 Alberto,Errazuriz,1987-08-03 Gerald,Cambrault,1987-08-04 Eleni,Zlotkey,1987-08-05 Peter,Tucker,1987-08-06 David,Bernstein,1987-08-07 Peter,Hall,1987-08-08 Christopher,Olsen,1987-08-09 Nanette,Cambrault,1987-08-10 Oliver,Tuvault,1987-08-11 Janette,King,1987-08-12 Patrick,Sully,1987-08-13 Allan,McEwen,1987-08-14 Lindsey,Smith,1987-08-15 Louise,Doran,1987-08-16 Sarath,Sewall,1987-08-17 Danielle,Greene,1987-08-19 Mattea,Marvins,1987-08-20 David,Lee,1987-08-21 Sundar,Ande,1987-08-22 Amit,Banda,1987-08-23 Lisa,Ozer,1987-08-24 Harrison,Bloom,1987-08-25 Tayler,Fox,1987-08-26 William,Smith,1987-08-27 Elizabeth,Bates,1987-08-28 Sundita,Kumar,1987-08-29 Ellen,Abel,1987-08-30 Alyssa,Hutton,1987-08-31 Jonathon,Taylor,1987-09-01 Jack,Livingston,1987-09-02 Charles,Johnson,1987-09-04
What are the department ids for which more than 10 employees had a commission?
SELECT department_id FROM employees GROUP BY department_id HAVING COUNT(commission_pct) > 10
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,450
DEPARTMENT_ID 50 80
Return all the information for all employees without any department number.
SELECT * FROM employees WHERE department_id = "null"
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,411
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID
What is all the information about employees hired before June 21, 2002?
SELECT * FROM employees WHERE hire_date < '2002-06-21'
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,436
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 100,Steven,King,SKING,515.123.4567,1987-06-17,AD_PRES,24000,0.0,0,90 101,Neena,Kochhar,NKOCHHAR,515.123.4568,1987-06-18,AD_VP,17000,0.0,100,90 102,Lex,De Haan,LDEHAAN,515.123.4569,1987-06-19,AD_VP,17000,0.0,100,90 103,Alexander,Hunold,AHUNOLD,590.423.4567,1987-06-20,IT_PROG,9000,0.0,102,60 104,Bruce,Ernst,BERNST,590.423.4568,1987-06-21,IT_PROG,6000,0.0,103,60 105,David,Austin,DAUSTIN,590.423.4569,1987-06-22,IT_PROG,4800,0.0,103,60 106,Valli,Pataballa,VPATABAL,590.423.4560,1987-06-23,IT_PROG,4800,0.0,103,60 107,Diana,Lorentz,DLORENTZ,590.423.5567,1987-06-24,IT_PROG,4200,0.0,103,60 108,Nancy,Greenberg,NGREENBE,515.124.4569,1987-06-25,FI_MGR,12000,0.0,101,100 109,Daniel,Faviet,DFAVIET,515.124.4169,1987-06-26,FI_ACCOUNT,9000,0.0,108,100 110,John,Chen,JCHEN,515.124.4269,1987-06-27,FI_ACCOUNT,8200,0.0,108,100 111,Ismael,Sciarra,ISCIARRA,515.124.4369,1987-06-28,FI_ACCOUNT,7700,0.0,108,100 112,Jose Manuel,Urman,JMURMAN,515.124.4469,1987-06-29,FI_ACCOUNT,7800,0.0,108,100 113,Luis,Popp,LPOPP,515.124.4567,1987-06-30,FI_ACCOUNT,6900,0.0,108,100 114,Den,Raphaely,DRAPHEAL,515.127.4561,1987-07-01,PU_MAN,11000,0.0,100,30 115,Alexander,Khoo,AKHOO,515.127.4562,1987-07-02,PU_CLERK,3100,0.0,114,30 116,Shelli,Baida,SBAIDA,515.127.4563,1987-07-03,PU_CLERK,2900,0.0,114,30 117,Sigal,Tobias,STOBIAS,515.127.4564,1987-07-04,PU_CLERK,2800,0.0,114,30 118,Guy,Himuro,GHIMURO,515.127.4565,1987-07-05,PU_CLERK,2600,0.0,114,30 119,Karen,Colmenares,KCOLMENA,515.127.4566,1987-07-06,PU_CLERK,2500,0.0,114,30 120,Matthew,Weiss,MWEISS,650.123.1234,1987-07-07,ST_MAN,8000,0.0,100,50 121,Adam,Fripp,AFRIPP,650.123.2234,1987-07-08,ST_MAN,8200,0.0,100,50 122,Payam,Kaufling,PKAUFLIN,650.123.3234,1987-07-09,ST_MAN,7900,0.0,100,50 123,Shanta,Vollman,SVOLLMAN,650.123.4234,1987-07-10,ST_MAN,6500,0.0,100,50 124,Kevin,Mourgos,KMOURGOS,650.123.5234,1987-07-11,ST_MAN,5800,0.0,100,50 125,Julia,Nayer,JNAYER,650.124.1214,1987-07-12,ST_CLERK,3200,0.0,120,50 126,Irene,Mikkilineni,IMIKKILI,650.124.1224,1987-07-13,ST_CLERK,2700,0.0,120,50 127,James,Landry,JLANDRY,650.124.1334,1987-07-14,ST_CLERK,2400,0.0,120,50 128,Steven,Markle,SMARKLE,650.124.1434,1987-07-15,ST_CLERK,2200,0.0,120,50 129,Laura,Bissot,LBISSOT,650.124.5234,1987-07-16,ST_CLERK,3300,0.0,121,50 130,Mozhe,Atkinson,MATKINSO,650.124.6234,1987-07-17,ST_CLERK,2800,0.0,121,50 131,James,Marlow,JAMRLOW,650.124.7234,1987-07-18,ST_CLERK,2500,0.0,121,50 132,TJ,Olson,TJOLSON,650.124.8234,1987-07-19,ST_CLERK,2100,0.0,121,50 133,Jason,Mallin,JMALLIN,650.127.1934,1987-07-20,ST_CLERK,3300,0.0,122,50 134,Michael,Rogers,MROGERS,650.127.1834,1987-07-21,ST_CLERK,2900,0.0,122,50 135,Ki,Gee,KGEE,650.127.1734,1987-07-22,ST_CLERK,2400,0.0,122,50 136,Hazel,Philtanker,HPHILTAN,650.127.1634,1987-07-23,ST_CLERK,2200,0.0,122,50 137,Renske,Ladwig,RLADWIG,650.121.1234,1987-07-24,ST_CLERK,3600,0.0,123,50 138,Stephen,Stiles,SSTILES,650.121.2034,1987-07-25,ST_CLERK,3200,0.0,123,50 139,John,Seo,JSEO,650.121.2019,1987-07-26,ST_CLERK,2700,0.0,123,50 140,Joshua,Patel,JPATEL,650.121.1834,1987-07-27,ST_CLERK,2500,0.0,123,50 141,Trenna,Rajs,TRAJS,650.121.8009,1987-07-28,ST_CLERK,3500,0.0,124,50 142,Curtis,Davies,CDAVIES,650.121.2994,1987-07-29,ST_CLERK,3100,0.0,124,50 143,Randall,Matos,RMATOS,650.121.2874,1987-07-30,ST_CLERK,2600,0.0,124,50 144,Peter,Vargas,PVARGAS,650.121.2004,1987-07-31,ST_CLERK,2500,0.0,124,50 145,John,Russell,JRUSSEL,011.44.1344.429268,1987-08-01,SA_MAN,14000,0.4,100,80 146,Karen,Partners,KPARTNER,011.44.1344.467268,1987-08-02,SA_MAN,13500,0.3,100,80 147,Alberto,Errazuriz,AERRAZUR,011.44.1344.429278,1987-08-03,SA_MAN,12000,0.3,100,80 148,Gerald,Cambrault,GCAMBRAU,011.44.1344.619268,1987-08-04,SA_MAN,11000,0.3,100,80 149,Eleni,Zlotkey,EZLOTKEY,011.44.1344.429018,1987-08-05,SA_MAN,10500,0.2,100,80 150,Peter,Tucker,PTUCKER,011.44.1344.129268,1987-08-06,SA_REP,10000,0.3,145,80 151,David,Bernstein,DBERNSTE,011.44.1344.345268,1987-08-07,SA_REP,9500,0.25,145,80 152,Peter,Hall,PHALL,011.44.1344.478968,1987-08-08,SA_REP,9000,0.25,145,80 153,Christopher,Olsen,COLSEN,011.44.1344.498718,1987-08-09,SA_REP,8000,0.2,145,80 154,Nanette,Cambrault,NCAMBRAU,011.44.1344.987668,1987-08-10,SA_REP,7500,0.2,145,80 155,Oliver,Tuvault,OTUVAULT,011.44.1344.486508,1987-08-11,SA_REP,7000,0.15,145,80 156,Janette,King,JKING,011.44.1345.429268,1987-08-12,SA_REP,10000,0.35,146,80 157,Patrick,Sully,PSULLY,011.44.1345.929268,1987-08-13,SA_REP,9500,0.35,146,80 158,Allan,McEwen,AMCEWEN,011.44.1345.829268,1987-08-14,SA_REP,9000,0.35,146,80 159,Lindsey,Smith,LSMITH,011.44.1345.729268,1987-08-15,SA_REP,8000,0.3,146,80 160,Louise,Doran,LDORAN,011.44.1345.629268,1987-08-16,SA_REP,7500,0.3,146,80 161,Sarath,Sewall,SSEWALL,011.44.1345.529268,1987-08-17,SA_REP,7000,0.25,146,80 162,Clara,Vishney,CVISHNEY,011.44.1346.129268,1987-08-18,SA_REP,10500,0.25,147,80 163,Danielle,Greene,DGREENE,011.44.1346.229268,1987-08-19,SA_REP,9500,0.15,147,80 164,Mattea,Marvins,MMARVINS,011.44.1346.329268,1987-08-20,SA_REP,7200,0.1,147,80 165,David,Lee,DLEE,011.44.1346.529268,1987-08-21,SA_REP,6800,0.1,147,80 166,Sundar,Ande,SANDE,011.44.1346.629268,1987-08-22,SA_REP,6400,0.1,147,80 167,Amit,Banda,ABANDA,011.44.1346.729268,1987-08-23,SA_REP,6200,0.1,147,80 168,Lisa,Ozer,LOZER,011.44.1343.929268,1987-08-24,SA_REP,11500,0.25,148,80 169,Harrison,Bloom,HBLOOM,011.44.1343.829268,1987-08-25,SA_REP,10000,0.2,148,80 170,Tayler,Fox,TFOX,011.44.1343.729268,1987-08-26,SA_REP,9600,0.2,148,80 171,William,Smith,WSMITH,011.44.1343.629268,1987-08-27,SA_REP,7400,0.15,148,80 172,Elizabeth,Bates,EBATES,011.44.1343.529268,1987-08-28,SA_REP,7300,0.15,148,80 173,Sundita,Kumar,SKUMAR,011.44.1343.329268,1987-08-29,SA_REP,6100,0.1,148,80 174,Ellen,Abel,EABEL,011.44.1644.429267,1987-08-30,SA_REP,11000,0.3,149,80 175,Alyssa,Hutton,AHUTTON,011.44.1644.429266,1987-08-31,SA_REP,8800,0.25,149,80 176,Jonathon,Taylor,JTAYLOR,011.44.1644.429265,1987-09-01,SA_REP,8600,0.2,149,80 177,Jack,Livingston,JLIVINGS,011.44.1644.429264,1987-09-02,SA_REP,8400,0.2,149,80 178,Kimberely,Grant,KGRANT,011.44.1644.429263,1987-09-03,SA_REP,7000,0.15,149,0 179,Charles,Johnson,CJOHNSON,011.44.1644.429262,1987-09-04,SA_REP,6200,0.1,149,80 180,Winston,Taylor,WTAYLOR,650.507.9876,1987-09-05,SH_CLERK,3200,0.0,120,50 181,Jean,Fleaur,JFLEAUR,650.507.9877,1987-09-06,SH_CLERK,3100,0.0,120,50 182,Martha,Sullivan,MSULLIVA,650.507.9878,1987-09-07,SH_CLERK,2500,0.0,120,50 183,Girard,Geoni,GGEONI,650.507.9879,1987-09-08,SH_CLERK,2800,0.0,120,50 184,Nandita,Sarchand,NSARCHAN,650.509.1876,1987-09-09,SH_CLERK,4200,0.0,121,50 185,Alexis,Bull,ABULL,650.509.2876,1987-09-10,SH_CLERK,4100,0.0,121,50 186,Julia,Dellinger,JDELLING,650.509.3876,1987-09-11,SH_CLERK,3400,0.0,121,50 187,Anthony,Cabrio,ACABRIO,650.509.4876,1987-09-12,SH_CLERK,3000,0.0,121,50 188,Kelly,Chung,KCHUNG,650.505.1876,1987-09-13,SH_CLERK,3800,0.0,122,50 189,Jennifer,Dilly,JDILLY,650.505.2876,1987-09-14,SH_CLERK,3600,0.0,122,50 190,Timothy,Gates,TGATES,650.505.3876,1987-09-15,SH_CLERK,2900,0.0,122,50 191,Randall,Perkins,RPERKINS,650.505.4876,1987-09-16,SH_CLERK,2500,0.0,122,50 192,Sarah,Bell,SBELL,650.501.1876,1987-09-17,SH_CLERK,4000,0.0,123,50 193,Britney,Everett,BEVERETT,650.501.2876,1987-09-18,SH_CLERK,3900,0.0,123,50 194,Samuel,McCain,SMCCAIN,650.501.3876,1987-09-19,SH_CLERK,3200,0.0,123,50 195,Vance,Jones,VJONES,650.501.4876,1987-09-20,SH_CLERK,2800,0.0,123,50 196,Alana,Walsh,AWALSH,650.507.9811,1987-09-21,SH_CLERK,3100,0.0,124,50 197,Kevin,Feeney,KFEENEY,650.507.9822,1987-09-22,SH_CLERK,3000,0.0,124,50 198,Donald,OConnell,DOCONNEL,650.507.9833,1987-09-23,SH_CLERK,2600,0.0,124,50 199,Douglas,Grant,DGRANT,650.507.9844,1987-09-24,SH_CLERK,2600,0.0,124,50 200,Jennifer,Whalen,JWHALEN,515.123.4444,1987-09-25,AD_ASST,4400,0.0,101,10 201,Michael,Hartstein,MHARTSTE,515.123.5555,1987-09-26,MK_MAN,13000,0.0,100,20 202,Pat,Fay,PFAY,603.123.6666,1987-09-27,MK_REP,6000,0.0,201,20 203,Susan,Mavris,SMAVRIS,515.123.7777,1987-09-28,HR_REP,6500,0.0,101,40 204,Hermann,Baer,HBAER,515.123.8888,1987-09-29,PR_REP,10000,0.0,101,70 205,Shelley,Higgins,SHIGGINS,515.123.8080,1987-09-30,AC_MGR,12000,0.0,101,110 206,William,Gietz,WGIETZ,515.123.8181,1987-10-01,AC_ACCOUNT,8300,0.0,205,110
What is the average salary of employees who have a commission percentage that is not null?
SELECT department_id, AVG(salary) FROM employees WHERE commission_pct <> "null" GROUP BY department_id
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,454
DEPARTMENT_ID,AVG(salary) 0,7000.0 10,4400.0 20,9500.0 30,4150.0 40,6500.0 50,3475.5555555555557 60,5760.0 70,10000.0 80,8955.882352941177 90,19333.333333333332 100,8600.0 110,10150.0
What is all the information about employees who have never had a job in the past?
SELECT * FROM employees WHERE NOT employee_id IN (SELECT employee_id FROM job_history)
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ```
3,514
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 100,Steven,King,SKING,515.123.4567,1987-06-17,AD_PRES,24000,0.0,0,90 103,Alexander,Hunold,AHUNOLD,590.423.4567,1987-06-20,IT_PROG,9000,0.0,102,60 104,Bruce,Ernst,BERNST,590.423.4568,1987-06-21,IT_PROG,6000,0.0,103,60 105,David,Austin,DAUSTIN,590.423.4569,1987-06-22,IT_PROG,4800,0.0,103,60 106,Valli,Pataballa,VPATABAL,590.423.4560,1987-06-23,IT_PROG,4800,0.0,103,60 107,Diana,Lorentz,DLORENTZ,590.423.5567,1987-06-24,IT_PROG,4200,0.0,103,60 108,Nancy,Greenberg,NGREENBE,515.124.4569,1987-06-25,FI_MGR,12000,0.0,101,100 109,Daniel,Faviet,DFAVIET,515.124.4169,1987-06-26,FI_ACCOUNT,9000,0.0,108,100 110,John,Chen,JCHEN,515.124.4269,1987-06-27,FI_ACCOUNT,8200,0.0,108,100 111,Ismael,Sciarra,ISCIARRA,515.124.4369,1987-06-28,FI_ACCOUNT,7700,0.0,108,100 112,Jose Manuel,Urman,JMURMAN,515.124.4469,1987-06-29,FI_ACCOUNT,7800,0.0,108,100 113,Luis,Popp,LPOPP,515.124.4567,1987-06-30,FI_ACCOUNT,6900,0.0,108,100 115,Alexander,Khoo,AKHOO,515.127.4562,1987-07-02,PU_CLERK,3100,0.0,114,30 116,Shelli,Baida,SBAIDA,515.127.4563,1987-07-03,PU_CLERK,2900,0.0,114,30 117,Sigal,Tobias,STOBIAS,515.127.4564,1987-07-04,PU_CLERK,2800,0.0,114,30 118,Guy,Himuro,GHIMURO,515.127.4565,1987-07-05,PU_CLERK,2600,0.0,114,30 119,Karen,Colmenares,KCOLMENA,515.127.4566,1987-07-06,PU_CLERK,2500,0.0,114,30 120,Matthew,Weiss,MWEISS,650.123.1234,1987-07-07,ST_MAN,8000,0.0,100,50 121,Adam,Fripp,AFRIPP,650.123.2234,1987-07-08,ST_MAN,8200,0.0,100,50 123,Shanta,Vollman,SVOLLMAN,650.123.4234,1987-07-10,ST_MAN,6500,0.0,100,50 124,Kevin,Mourgos,KMOURGOS,650.123.5234,1987-07-11,ST_MAN,5800,0.0,100,50 125,Julia,Nayer,JNAYER,650.124.1214,1987-07-12,ST_CLERK,3200,0.0,120,50 126,Irene,Mikkilineni,IMIKKILI,650.124.1224,1987-07-13,ST_CLERK,2700,0.0,120,50 127,James,Landry,JLANDRY,650.124.1334,1987-07-14,ST_CLERK,2400,0.0,120,50 128,Steven,Markle,SMARKLE,650.124.1434,1987-07-15,ST_CLERK,2200,0.0,120,50 129,Laura,Bissot,LBISSOT,650.124.5234,1987-07-16,ST_CLERK,3300,0.0,121,50 130,Mozhe,Atkinson,MATKINSO,650.124.6234,1987-07-17,ST_CLERK,2800,0.0,121,50 131,James,Marlow,JAMRLOW,650.124.7234,1987-07-18,ST_CLERK,2500,0.0,121,50 132,TJ,Olson,TJOLSON,650.124.8234,1987-07-19,ST_CLERK,2100,0.0,121,50 133,Jason,Mallin,JMALLIN,650.127.1934,1987-07-20,ST_CLERK,3300,0.0,122,50 134,Michael,Rogers,MROGERS,650.127.1834,1987-07-21,ST_CLERK,2900,0.0,122,50 135,Ki,Gee,KGEE,650.127.1734,1987-07-22,ST_CLERK,2400,0.0,122,50 136,Hazel,Philtanker,HPHILTAN,650.127.1634,1987-07-23,ST_CLERK,2200,0.0,122,50 137,Renske,Ladwig,RLADWIG,650.121.1234,1987-07-24,ST_CLERK,3600,0.0,123,50 138,Stephen,Stiles,SSTILES,650.121.2034,1987-07-25,ST_CLERK,3200,0.0,123,50 139,John,Seo,JSEO,650.121.2019,1987-07-26,ST_CLERK,2700,0.0,123,50 140,Joshua,Patel,JPATEL,650.121.1834,1987-07-27,ST_CLERK,2500,0.0,123,50 141,Trenna,Rajs,TRAJS,650.121.8009,1987-07-28,ST_CLERK,3500,0.0,124,50 142,Curtis,Davies,CDAVIES,650.121.2994,1987-07-29,ST_CLERK,3100,0.0,124,50 143,Randall,Matos,RMATOS,650.121.2874,1987-07-30,ST_CLERK,2600,0.0,124,50 144,Peter,Vargas,PVARGAS,650.121.2004,1987-07-31,ST_CLERK,2500,0.0,124,50 145,John,Russell,JRUSSEL,011.44.1344.429268,1987-08-01,SA_MAN,14000,0.4,100,80 146,Karen,Partners,KPARTNER,011.44.1344.467268,1987-08-02,SA_MAN,13500,0.3,100,80 147,Alberto,Errazuriz,AERRAZUR,011.44.1344.429278,1987-08-03,SA_MAN,12000,0.3,100,80 148,Gerald,Cambrault,GCAMBRAU,011.44.1344.619268,1987-08-04,SA_MAN,11000,0.3,100,80 149,Eleni,Zlotkey,EZLOTKEY,011.44.1344.429018,1987-08-05,SA_MAN,10500,0.2,100,80 150,Peter,Tucker,PTUCKER,011.44.1344.129268,1987-08-06,SA_REP,10000,0.3,145,80 151,David,Bernstein,DBERNSTE,011.44.1344.345268,1987-08-07,SA_REP,9500,0.25,145,80 152,Peter,Hall,PHALL,011.44.1344.478968,1987-08-08,SA_REP,9000,0.25,145,80 153,Christopher,Olsen,COLSEN,011.44.1344.498718,1987-08-09,SA_REP,8000,0.2,145,80 154,Nanette,Cambrault,NCAMBRAU,011.44.1344.987668,1987-08-10,SA_REP,7500,0.2,145,80 155,Oliver,Tuvault,OTUVAULT,011.44.1344.486508,1987-08-11,SA_REP,7000,0.15,145,80 156,Janette,King,JKING,011.44.1345.429268,1987-08-12,SA_REP,10000,0.35,146,80 157,Patrick,Sully,PSULLY,011.44.1345.929268,1987-08-13,SA_REP,9500,0.35,146,80 158,Allan,McEwen,AMCEWEN,011.44.1345.829268,1987-08-14,SA_REP,9000,0.35,146,80 159,Lindsey,Smith,LSMITH,011.44.1345.729268,1987-08-15,SA_REP,8000,0.3,146,80 160,Louise,Doran,LDORAN,011.44.1345.629268,1987-08-16,SA_REP,7500,0.3,146,80 161,Sarath,Sewall,SSEWALL,011.44.1345.529268,1987-08-17,SA_REP,7000,0.25,146,80 162,Clara,Vishney,CVISHNEY,011.44.1346.129268,1987-08-18,SA_REP,10500,0.25,147,80 163,Danielle,Greene,DGREENE,011.44.1346.229268,1987-08-19,SA_REP,9500,0.15,147,80 164,Mattea,Marvins,MMARVINS,011.44.1346.329268,1987-08-20,SA_REP,7200,0.1,147,80 165,David,Lee,DLEE,011.44.1346.529268,1987-08-21,SA_REP,6800,0.1,147,80 166,Sundar,Ande,SANDE,011.44.1346.629268,1987-08-22,SA_REP,6400,0.1,147,80 167,Amit,Banda,ABANDA,011.44.1346.729268,1987-08-23,SA_REP,6200,0.1,147,80 168,Lisa,Ozer,LOZER,011.44.1343.929268,1987-08-24,SA_REP,11500,0.25,148,80 169,Harrison,Bloom,HBLOOM,011.44.1343.829268,1987-08-25,SA_REP,10000,0.2,148,80 170,Tayler,Fox,TFOX,011.44.1343.729268,1987-08-26,SA_REP,9600,0.2,148,80 171,William,Smith,WSMITH,011.44.1343.629268,1987-08-27,SA_REP,7400,0.15,148,80 172,Elizabeth,Bates,EBATES,011.44.1343.529268,1987-08-28,SA_REP,7300,0.15,148,80 173,Sundita,Kumar,SKUMAR,011.44.1343.329268,1987-08-29,SA_REP,6100,0.1,148,80 174,Ellen,Abel,EABEL,011.44.1644.429267,1987-08-30,SA_REP,11000,0.3,149,80 175,Alyssa,Hutton,AHUTTON,011.44.1644.429266,1987-08-31,SA_REP,8800,0.25,149,80 177,Jack,Livingston,JLIVINGS,011.44.1644.429264,1987-09-02,SA_REP,8400,0.2,149,80 178,Kimberely,Grant,KGRANT,011.44.1644.429263,1987-09-03,SA_REP,7000,0.15,149,0 179,Charles,Johnson,CJOHNSON,011.44.1644.429262,1987-09-04,SA_REP,6200,0.1,149,80 180,Winston,Taylor,WTAYLOR,650.507.9876,1987-09-05,SH_CLERK,3200,0.0,120,50 181,Jean,Fleaur,JFLEAUR,650.507.9877,1987-09-06,SH_CLERK,3100,0.0,120,50 182,Martha,Sullivan,MSULLIVA,650.507.9878,1987-09-07,SH_CLERK,2500,0.0,120,50 183,Girard,Geoni,GGEONI,650.507.9879,1987-09-08,SH_CLERK,2800,0.0,120,50 184,Nandita,Sarchand,NSARCHAN,650.509.1876,1987-09-09,SH_CLERK,4200,0.0,121,50 185,Alexis,Bull,ABULL,650.509.2876,1987-09-10,SH_CLERK,4100,0.0,121,50 186,Julia,Dellinger,JDELLING,650.509.3876,1987-09-11,SH_CLERK,3400,0.0,121,50 187,Anthony,Cabrio,ACABRIO,650.509.4876,1987-09-12,SH_CLERK,3000,0.0,121,50 188,Kelly,Chung,KCHUNG,650.505.1876,1987-09-13,SH_CLERK,3800,0.0,122,50 189,Jennifer,Dilly,JDILLY,650.505.2876,1987-09-14,SH_CLERK,3600,0.0,122,50 190,Timothy,Gates,TGATES,650.505.3876,1987-09-15,SH_CLERK,2900,0.0,122,50 191,Randall,Perkins,RPERKINS,650.505.4876,1987-09-16,SH_CLERK,2500,0.0,122,50 192,Sarah,Bell,SBELL,650.501.1876,1987-09-17,SH_CLERK,4000,0.0,123,50 193,Britney,Everett,BEVERETT,650.501.2876,1987-09-18,SH_CLERK,3900,0.0,123,50 194,Samuel,McCain,SMCCAIN,650.501.3876,1987-09-19,SH_CLERK,3200,0.0,123,50 195,Vance,Jones,VJONES,650.501.4876,1987-09-20,SH_CLERK,2800,0.0,123,50 196,Alana,Walsh,AWALSH,650.507.9811,1987-09-21,SH_CLERK,3100,0.0,124,50 197,Kevin,Feeney,KFEENEY,650.507.9822,1987-09-22,SH_CLERK,3000,0.0,124,50 198,Donald,OConnell,DOCONNEL,650.507.9833,1987-09-23,SH_CLERK,2600,0.0,124,50 199,Douglas,Grant,DGRANT,650.507.9844,1987-09-24,SH_CLERK,2600,0.0,124,50 202,Pat,Fay,PFAY,603.123.6666,1987-09-27,MK_REP,6000,0.0,201,20 203,Susan,Mavris,SMAVRIS,515.123.7777,1987-09-28,HR_REP,6500,0.0,101,40 204,Hermann,Baer,HBAER,515.123.8888,1987-09-29,PR_REP,10000,0.0,101,70 205,Shelley,Higgins,SHIGGINS,515.123.8080,1987-09-30,AC_MGR,12000,0.0,101,110 206,William,Gietz,WGIETZ,515.123.8181,1987-10-01,AC_ACCOUNT,8300,0.0,205,110
Find the ids of the departments where any manager is managing 4 or more employees.
SELECT DISTINCT department_id FROM employees GROUP BY department_id, manager_id HAVING COUNT(employee_id) >= 4
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,451
DEPARTMENT_ID 30 50 60 80 100
display the department name, city, and state province for each department.
SELECT T1.department_name, T2.city, T2.state_province FROM departments AS T1 JOIN locations AS T2 ON T2.location_id = T1.location_id
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 locations: # name of dataframe - LOCATION_ID: dtype: int64 sample_values: 1000, 1100, 1200 - STREET_ADDRESS: dtype: string sample_values: 1297 Via Cola di Rie, 93091 Calle della Testa, 2017 Shinjuku-ku - POSTAL_CODE: dtype: numeric sample_values: 989, 10934, 1689 - CITY: dtype: string sample_values: Roma, Venice, Tokyo - STATE_PROVINCE: dtype: string sample_values: ', , Tokyo Prefecture' - COUNTRY_ID: dtype: string sample_values: IT, IT, JP ``` Foreign Key constraints:
3,521
DEPARTMENT_NAME,CITY,STATE_PROVINCE Administration,Seattle,Washington Marketing,Toronto,Ontario Purchasing,Seattle,Washington Human Resources,London, Shipping,South San Francisco,California IT,Southlake,Texas Public Relations,Munich,Bavaria Sales,OX9 9ZB,Oxford Executive,Seattle,Washington Finance,Seattle,Washington Accounting,Seattle,Washington Treasury,Seattle,Washington Corporate Tax,Seattle,Washington Control And Credit,Seattle,Washington Shareholder Services,Seattle,Washington Benefits,Seattle,Washington Manufacturing,Seattle,Washington Construction,Seattle,Washington Contracting,Seattle,Washington Operations,Seattle,Washington IT Support,Seattle,Washington NOC,Seattle,Washington IT Helpdesk,Seattle,Washington Government Sales,Seattle,Washington Retail Sales,Seattle,Washington Recruiting,Seattle,Washington Payroll,Seattle,Washington
What are full names and salaries of employees working in the city of London?
SELECT first_name, last_name, salary FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id JOIN locations AS T3 ON T2.location_id = T3.location_id WHERE T3.city = 'London'
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 locations: # name of dataframe - LOCATION_ID: dtype: int64 sample_values: 1000, 1100, 1200 - STREET_ADDRESS: dtype: string sample_values: 1297 Via Cola di Rie, 93091 Calle della Testa, 2017 Shinjuku-ku - POSTAL_CODE: dtype: numeric sample_values: 989, 10934, 1689 - CITY: dtype: string sample_values: Roma, Venice, Tokyo - STATE_PROVINCE: dtype: string sample_values: ', , Tokyo Prefecture' - COUNTRY_ID: dtype: string sample_values: IT, IT, JP ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'.
3,528
FIRST_NAME,LAST_NAME,SALARY Susan,Mavris,6500
On what dates were employees without the letter M in their first names hired?
SELECT hire_date FROM employees WHERE NOT first_name LIKE '%M%'
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,416
HIRE_DATE 1987-06-17 1987-06-18 1987-06-19 1987-06-20 1987-06-21 1987-06-22 1987-06-23 1987-06-24 1987-06-25 1987-06-26 1987-06-27 1987-06-30 1987-07-01 1987-07-02 1987-07-03 1987-07-04 1987-07-05 1987-07-06 1987-07-10 1987-07-11 1987-07-12 1987-07-13 1987-07-15 1987-07-16 1987-07-19 1987-07-20 1987-07-22 1987-07-23 1987-07-24 1987-07-25 1987-07-26 1987-07-27 1987-07-28 1987-07-29 1987-07-30 1987-07-31 1987-08-01 1987-08-02 1987-08-03 1987-08-04 1987-08-05 1987-08-06 1987-08-07 1987-08-08 1987-08-09 1987-08-10 1987-08-11 1987-08-12 1987-08-13 1987-08-14 1987-08-15 1987-08-16 1987-08-17 1987-08-18 1987-08-19 1987-08-21 1987-08-22 1987-08-24 1987-08-25 1987-08-26 1987-08-28 1987-08-29 1987-08-30 1987-08-31 1987-09-01 1987-09-02 1987-09-04 1987-09-05 1987-09-06 1987-09-08 1987-09-09 1987-09-10 1987-09-11 1987-09-12 1987-09-13 1987-09-14 1987-09-16 1987-09-17 1987-09-18 1987-09-20 1987-09-21 1987-09-22 1987-09-23 1987-09-24 1987-09-25 1987-09-27 1987-09-28 1987-09-30
What are the job titles, and range of salaries for jobs with maximum salary between 12000 and 18000?
SELECT job_title, max_salary - min_salary FROM jobs WHERE max_salary BETWEEN 12000 AND 18000
``` yaml jobs: # name of dataframe - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_ASST - JOB_TITLE: dtype: string sample_values: President, Administration Vice President, Administration Assistant - MIN_SALARY: dtype: int64 sample_values: 20000, 15000, 3000 - MAX_SALARY: dtype: int64 sample_values: 40000, 30000, 6000 ```
3,444
JOB_TITLE,max_salary - min_salary Finance Manager,7800 Accounting Manager,7800 Sales Representative,6000 Purchasing Manager,7000 Marketing Manager,6000
get the details of employees who manage a department.
SELECT DISTINCT * FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id WHERE T1.employee_id = T2.manager_id
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'.
3,481
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID,DEPARTMENT_ID,DEPARTMENT_NAME,MANAGER_ID,LOCATION_ID 100,Steven,King,SKING,515.123.4567,1987-06-17,AD_PRES,24000,0.0,0,90,90,Executive,100,1700 103,Alexander,Hunold,AHUNOLD,590.423.4567,1987-06-20,IT_PROG,9000,0.0,102,60,60,IT,103,1400 108,Nancy,Greenberg,NGREENBE,515.124.4569,1987-06-25,FI_MGR,12000,0.0,101,100,100,Finance,108,1700 114,Den,Raphaely,DRAPHEAL,515.127.4561,1987-07-01,PU_MAN,11000,0.0,100,30,30,Purchasing,114,1700 121,Adam,Fripp,AFRIPP,650.123.2234,1987-07-08,ST_MAN,8200,0.0,100,50,50,Shipping,121,1500 145,John,Russell,JRUSSEL,011.44.1344.429268,1987-08-01,SA_MAN,14000,0.4,100,80,80,Sales,145,2500 200,Jennifer,Whalen,JWHALEN,515.123.4444,1987-09-25,AD_ASST,4400,0.0,101,10,10,Administration,200,1700 201,Michael,Hartstein,MHARTSTE,515.123.5555,1987-09-26,MK_MAN,13000,0.0,100,20,20,Marketing,201,1800 203,Susan,Mavris,SMAVRIS,515.123.7777,1987-09-28,HR_REP,6500,0.0,101,40,40,Human Resources,203,2400 204,Hermann,Baer,HBAER,515.123.8888,1987-09-29,PR_REP,10000,0.0,101,70,70,Public Relations,204,2700 205,Shelley,Higgins,SHIGGINS,515.123.8080,1987-09-30,AC_MGR,12000,0.0,101,110,110,Accounting,205,1700
display the ID for those employees who did two or more jobs in the past.
SELECT employee_id FROM job_history GROUP BY employee_id HAVING COUNT(*) >= 2
``` yaml job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ```
3,485
EMPLOYEE_ID 101 176 200
Give the distinct department ids of departments in which a manager is in charge of 4 or more employees?
SELECT DISTINCT department_id FROM employees GROUP BY department_id, manager_id HAVING COUNT(employee_id) >= 4
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,488
DEPARTMENT_ID 30 50 60 80 100
What are the ids and full names for employees who work in a department that has someone with a first name that contains the letter T?
SELECT employee_id, first_name, last_name FROM employees WHERE department_id IN (SELECT department_id FROM employees WHERE first_name LIKE '%T%')
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,504
EMPLOYEE_ID,FIRST_NAME,LAST_NAME 100,Steven,King 101,Neena,Kochhar 102,Lex,De Haan 120,Matthew,Weiss 121,Adam,Fripp 122,Payam,Kaufling 123,Shanta,Vollman 124,Kevin,Mourgos 125,Julia,Nayer 126,Irene,Mikkilineni 127,James,Landry 128,Steven,Markle 129,Laura,Bissot 130,Mozhe,Atkinson 131,James,Marlow 132,TJ,Olson 133,Jason,Mallin 134,Michael,Rogers 135,Ki,Gee 136,Hazel,Philtanker 137,Renske,Ladwig 138,Stephen,Stiles 139,John,Seo 140,Joshua,Patel 141,Trenna,Rajs 142,Curtis,Davies 143,Randall,Matos 144,Peter,Vargas 145,John,Russell 146,Karen,Partners 147,Alberto,Errazuriz 148,Gerald,Cambrault 149,Eleni,Zlotkey 150,Peter,Tucker 151,David,Bernstein 152,Peter,Hall 153,Christopher,Olsen 154,Nanette,Cambrault 155,Oliver,Tuvault 156,Janette,King 157,Patrick,Sully 158,Allan,McEwen 159,Lindsey,Smith 160,Louise,Doran 161,Sarath,Sewall 162,Clara,Vishney 163,Danielle,Greene 164,Mattea,Marvins 165,David,Lee 166,Sundar,Ande 167,Amit,Banda 168,Lisa,Ozer 169,Harrison,Bloom 170,Tayler,Fox 171,William,Smith 172,Elizabeth,Bates 173,Sundita,Kumar 174,Ellen,Abel 175,Alyssa,Hutton 176,Jonathon,Taylor 177,Jack,Livingston 179,Charles,Johnson 180,Winston,Taylor 181,Jean,Fleaur 182,Martha,Sullivan 183,Girard,Geoni 184,Nandita,Sarchand 185,Alexis,Bull 186,Julia,Dellinger 187,Anthony,Cabrio 188,Kelly,Chung 189,Jennifer,Dilly 190,Timothy,Gates 191,Randall,Perkins 192,Sarah,Bell 193,Britney,Everett 194,Samuel,McCain 195,Vance,Jones 196,Alana,Walsh 197,Kevin,Feeney 198,Donald,OConnell 199,Douglas,Grant 201,Michael,Hartstein 202,Pat,Fay
display the employee number and name( first name and last name ) for all employees who work in a department with any employee whose name contains a ’T’.
SELECT employee_id, first_name, last_name FROM employees WHERE department_id IN (SELECT department_id FROM employees WHERE first_name LIKE '%T%')
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,503
EMPLOYEE_ID,FIRST_NAME,LAST_NAME 100,Steven,King 101,Neena,Kochhar 102,Lex,De Haan 120,Matthew,Weiss 121,Adam,Fripp 122,Payam,Kaufling 123,Shanta,Vollman 124,Kevin,Mourgos 125,Julia,Nayer 126,Irene,Mikkilineni 127,James,Landry 128,Steven,Markle 129,Laura,Bissot 130,Mozhe,Atkinson 131,James,Marlow 132,TJ,Olson 133,Jason,Mallin 134,Michael,Rogers 135,Ki,Gee 136,Hazel,Philtanker 137,Renske,Ladwig 138,Stephen,Stiles 139,John,Seo 140,Joshua,Patel 141,Trenna,Rajs 142,Curtis,Davies 143,Randall,Matos 144,Peter,Vargas 145,John,Russell 146,Karen,Partners 147,Alberto,Errazuriz 148,Gerald,Cambrault 149,Eleni,Zlotkey 150,Peter,Tucker 151,David,Bernstein 152,Peter,Hall 153,Christopher,Olsen 154,Nanette,Cambrault 155,Oliver,Tuvault 156,Janette,King 157,Patrick,Sully 158,Allan,McEwen 159,Lindsey,Smith 160,Louise,Doran 161,Sarath,Sewall 162,Clara,Vishney 163,Danielle,Greene 164,Mattea,Marvins 165,David,Lee 166,Sundar,Ande 167,Amit,Banda 168,Lisa,Ozer 169,Harrison,Bloom 170,Tayler,Fox 171,William,Smith 172,Elizabeth,Bates 173,Sundita,Kumar 174,Ellen,Abel 175,Alyssa,Hutton 176,Jonathon,Taylor 177,Jack,Livingston 179,Charles,Johnson 180,Winston,Taylor 181,Jean,Fleaur 182,Martha,Sullivan 183,Girard,Geoni 184,Nandita,Sarchand 185,Alexis,Bull 186,Julia,Dellinger 187,Anthony,Cabrio 188,Kelly,Chung 189,Jennifer,Dilly 190,Timothy,Gates 191,Randall,Perkins 192,Sarah,Bell 193,Britney,Everett 194,Samuel,McCain 195,Vance,Jones 196,Alana,Walsh 197,Kevin,Feeney 198,Donald,OConnell 199,Douglas,Grant 201,Michael,Hartstein 202,Pat,Fay
What are the ids for employees who do not work in departments with managers that have ids between 100 and 200?
SELECT * FROM employees WHERE NOT department_id IN (SELECT department_id FROM departments WHERE manager_id BETWEEN 100 AND 200)
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,498
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 178,Kimberely,Grant,KGRANT,011.44.1644.429263,1987-09-03,SA_REP,7000,0.15,149,0 201,Michael,Hartstein,MHARTSTE,515.123.5555,1987-09-26,MK_MAN,13000,0.0,100,20 202,Pat,Fay,PFAY,603.123.6666,1987-09-27,MK_REP,6000,0.0,201,20 203,Susan,Mavris,SMAVRIS,515.123.7777,1987-09-28,HR_REP,6500,0.0,101,40 204,Hermann,Baer,HBAER,515.123.8888,1987-09-29,PR_REP,10000,0.0,101,70 205,Shelley,Higgins,SHIGGINS,515.123.8080,1987-09-30,AC_MGR,12000,0.0,101,110 206,William,Gietz,WGIETZ,515.123.8181,1987-10-01,AC_ACCOUNT,8300,0.0,205,110
What are all the employees without a department number?
SELECT * FROM employees WHERE department_id = "null"
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,412
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID
What are the employee ids for each employee and final dates of employment at their last job?
SELECT employee_id, MAX(end_date) FROM job_history GROUP BY employee_id
``` yaml job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ```
3,448
EMPLOYEE_ID,MAX(end_date) 0,0000-00-00 101,1997-03-15 102,1998-07-24 114,1999-12-31 122,1999-12-31 176,1999-12-31 200,1998-12-31 201,1999-12-19
What are the names of departments that have at least one employee.
SELECT DISTINCT T2.department_name FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'.
3,480
DEPARTMENT_NAME Executive IT Finance Purchasing Shipping Sales Administration Marketing Human Resources Public Relations Accounting
display the employee id and salary of all employees who report to Payam (first name).
SELECT employee_id, salary FROM employees WHERE manager_id = (SELECT employee_id FROM employees WHERE first_name = 'Payam')
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,477
EMPLOYEE_ID,SALARY 133,3300 134,2900 135,2400 136,2200 188,3800 189,3600 190,2900 191,2500
What are the salaries and manager ids for employees who have managers?
SELECT salary, manager_id FROM employees WHERE manager_id <> "null"
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,434
SALARY,MANAGER_ID 24000,0 17000,100 17000,100 9000,102 6000,103 4800,103 4800,103 4200,103 12000,101 9000,108 8200,108 7700,108 7800,108 6900,108 11000,100 3100,114 2900,114 2800,114 2600,114 2500,114 8000,100 8200,100 7900,100 6500,100 5800,100 3200,120 2700,120 2400,120 2200,120 3300,121 2800,121 2500,121 2100,121 3300,122 2900,122 2400,122 2200,122 3600,123 3200,123 2700,123 2500,123 3500,124 3100,124 2600,124 2500,124 14000,100 13500,100 12000,100 11000,100 10500,100 10000,145 9500,145 9000,145 8000,145 7500,145 7000,145 10000,146 9500,146 9000,146 8000,146 7500,146 7000,146 10500,147 9500,147 7200,147 6800,147 6400,147 6200,147 11500,148 10000,148 9600,148 7400,148 7300,148 6100,148 11000,149 8800,149 8600,149 8400,149 7000,149 6200,149 3200,120 3100,120 2500,120 2800,120 4200,121 4100,121 3400,121 3000,121 3800,122 3600,122 2900,122 2500,122 4000,123 3900,123 3200,123 2800,123 3100,124 3000,124 2600,124 2600,124 4400,101 13000,100 6000,201 6500,101 10000,101 12000,101 8300,205
display the employee name ( first name and last name ) and hire date for all employees in the same department as Clara excluding Clara.
SELECT first_name, last_name, hire_date FROM employees WHERE department_id = (SELECT department_id FROM employees WHERE first_name = "Clara") AND first_name <> "Clara"
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,501
FIRST_NAME,LAST_NAME,HIRE_DATE John,Russell,1987-08-01 Karen,Partners,1987-08-02 Alberto,Errazuriz,1987-08-03 Gerald,Cambrault,1987-08-04 Eleni,Zlotkey,1987-08-05 Peter,Tucker,1987-08-06 David,Bernstein,1987-08-07 Peter,Hall,1987-08-08 Christopher,Olsen,1987-08-09 Nanette,Cambrault,1987-08-10 Oliver,Tuvault,1987-08-11 Janette,King,1987-08-12 Patrick,Sully,1987-08-13 Allan,McEwen,1987-08-14 Lindsey,Smith,1987-08-15 Louise,Doran,1987-08-16 Sarath,Sewall,1987-08-17 Danielle,Greene,1987-08-19 Mattea,Marvins,1987-08-20 David,Lee,1987-08-21 Sundar,Ande,1987-08-22 Amit,Banda,1987-08-23 Lisa,Ozer,1987-08-24 Harrison,Bloom,1987-08-25 Tayler,Fox,1987-08-26 William,Smith,1987-08-27 Elizabeth,Bates,1987-08-28 Sundita,Kumar,1987-08-29 Ellen,Abel,1987-08-30 Alyssa,Hutton,1987-08-31 Jonathon,Taylor,1987-09-01 Jack,Livingston,1987-09-02 Charles,Johnson,1987-09-04
What are the job ids for jobs done more than once for a period of more than 300 days?
SELECT job_id FROM job_history WHERE end_date - start_date > 300 GROUP BY job_id HAVING COUNT(*) >= 2
``` yaml job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ```
3,458
JOB_ID
Which employees were hired after September 7th, 1987?
SELECT * FROM employees WHERE hire_date > '1987-09-07'
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,440
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 183,Girard,Geoni,GGEONI,650.507.9879,1987-09-08,SH_CLERK,2800,0,120,50 184,Nandita,Sarchand,NSARCHAN,650.509.1876,1987-09-09,SH_CLERK,4200,0,121,50 185,Alexis,Bull,ABULL,650.509.2876,1987-09-10,SH_CLERK,4100,0,121,50 186,Julia,Dellinger,JDELLING,650.509.3876,1987-09-11,SH_CLERK,3400,0,121,50 187,Anthony,Cabrio,ACABRIO,650.509.4876,1987-09-12,SH_CLERK,3000,0,121,50 188,Kelly,Chung,KCHUNG,650.505.1876,1987-09-13,SH_CLERK,3800,0,122,50 189,Jennifer,Dilly,JDILLY,650.505.2876,1987-09-14,SH_CLERK,3600,0,122,50 190,Timothy,Gates,TGATES,650.505.3876,1987-09-15,SH_CLERK,2900,0,122,50 191,Randall,Perkins,RPERKINS,650.505.4876,1987-09-16,SH_CLERK,2500,0,122,50 192,Sarah,Bell,SBELL,650.501.1876,1987-09-17,SH_CLERK,4000,0,123,50 193,Britney,Everett,BEVERETT,650.501.2876,1987-09-18,SH_CLERK,3900,0,123,50 194,Samuel,McCain,SMCCAIN,650.501.3876,1987-09-19,SH_CLERK,3200,0,123,50 195,Vance,Jones,VJONES,650.501.4876,1987-09-20,SH_CLERK,2800,0,123,50 196,Alana,Walsh,AWALSH,650.507.9811,1987-09-21,SH_CLERK,3100,0,124,50 197,Kevin,Feeney,KFEENEY,650.507.9822,1987-09-22,SH_CLERK,3000,0,124,50 198,Donald,OConnell,DOCONNEL,650.507.9833,1987-09-23,SH_CLERK,2600,0,124,50 199,Douglas,Grant,DGRANT,650.507.9844,1987-09-24,SH_CLERK,2600,0,124,50 200,Jennifer,Whalen,JWHALEN,515.123.4444,1987-09-25,AD_ASST,4400,0,101,10 201,Michael,Hartstein,MHARTSTE,515.123.5555,1987-09-26,MK_MAN,13000,0,100,20 202,Pat,Fay,PFAY,603.123.6666,1987-09-27,MK_REP,6000,0,201,20 203,Susan,Mavris,SMAVRIS,515.123.7777,1987-09-28,HR_REP,6500,0,101,40 204,Hermann,Baer,HBAER,515.123.8888,1987-09-29,PR_REP,10000,0,101,70 205,Shelley,Higgins,SHIGGINS,515.123.8080,1987-09-30,AC_MGR,12000,0,101,110 206,William,Gietz,WGIETZ,515.123.8181,1987-10-01,AC_ACCOUNT,8300,0,205,110
Display the first name and department name for each employee.
SELECT T1.first_name, T2.department_name FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'.
3,405
FIRST_NAME,DEPARTMENT_NAME Steven,Executive Neena,Executive Lex,Executive Alexander,IT Bruce,IT David,IT Valli,IT Diana,IT Nancy,Finance Daniel,Finance John,Finance Ismael,Finance Jose Manuel,Finance Luis,Finance Den,Purchasing Alexander,Purchasing Shelli,Purchasing Sigal,Purchasing Guy,Purchasing Karen,Purchasing Matthew,Shipping Adam,Shipping Payam,Shipping Shanta,Shipping Kevin,Shipping Julia,Shipping Irene,Shipping James,Shipping Steven,Shipping Laura,Shipping Mozhe,Shipping James,Shipping TJ,Shipping Jason,Shipping Michael,Shipping Ki,Shipping Hazel,Shipping Renske,Shipping Stephen,Shipping John,Shipping Joshua,Shipping Trenna,Shipping Curtis,Shipping Randall,Shipping Peter,Shipping John,Sales Karen,Sales Alberto,Sales Gerald,Sales Eleni,Sales Peter,Sales David,Sales Peter,Sales Christopher,Sales Nanette,Sales Oliver,Sales Janette,Sales Patrick,Sales Allan,Sales Lindsey,Sales Louise,Sales Sarath,Sales Clara,Sales Danielle,Sales Mattea,Sales David,Sales Sundar,Sales Amit,Sales Lisa,Sales Harrison,Sales Tayler,Sales William,Sales Elizabeth,Sales Sundita,Sales Ellen,Sales Alyssa,Sales Jonathon,Sales Jack,Sales Charles,Sales Winston,Shipping Jean,Shipping Martha,Shipping Girard,Shipping Nandita,Shipping Alexis,Shipping Julia,Shipping Anthony,Shipping Kelly,Shipping Jennifer,Shipping Timothy,Shipping Randall,Shipping Sarah,Shipping Britney,Shipping Samuel,Shipping Vance,Shipping Alana,Shipping Kevin,Shipping Donald,Shipping Douglas,Shipping Jennifer,Administration Michael,Marketing Pat,Marketing Susan,Human Resources Hermann,Public Relations Shelley,Accounting William,Accounting
What are the department names and how many employees work in each of them?
SELECT department_name, COUNT(*) FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id GROUP BY department_name
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'.
3,526
DEPARTMENT_NAME,COUNT(*) Accounting,2 Administration,1 Executive,3 Finance,6 Human Resources,1 IT,5 Marketing,2 Public Relations,1 Purchasing,6 Sales,34 Shipping,45
Return the full names and salaries for employees with first names that end with the letter m.
SELECT first_name, last_name, salary FROM employees WHERE first_name LIKE '%m'
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,428
FIRST_NAME,LAST_NAME,SALARY Adam,Fripp,8200 Payam,Kaufling,7900 William,Smith,7400 William,Gietz,8300
What are the ids, full names, and salaries for employees making more than average and who work in a department with employees who have the letter J in their first name?
SELECT employee_id, first_name, last_name, salary FROM employees WHERE salary > (SELECT AVG(salary) FROM employees) AND department_id IN (SELECT department_id FROM employees WHERE first_name LIKE '%J%')
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,506
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,SALARY 108,Nancy,Greenberg,12000 109,Daniel,Faviet,9000 110,John,Chen,8200 111,Ismael,Sciarra,7700 112,Jose Manuel,Urman,7800 113,Luis,Popp,6900 120,Matthew,Weiss,8000 121,Adam,Fripp,8200 122,Payam,Kaufling,7900 123,Shanta,Vollman,6500 145,John,Russell,14000 146,Karen,Partners,13500 147,Alberto,Errazuriz,12000 148,Gerald,Cambrault,11000 149,Eleni,Zlotkey,10500 150,Peter,Tucker,10000 151,David,Bernstein,9500 152,Peter,Hall,9000 153,Christopher,Olsen,8000 154,Nanette,Cambrault,7500 155,Oliver,Tuvault,7000 156,Janette,King,10000 157,Patrick,Sully,9500 158,Allan,McEwen,9000 159,Lindsey,Smith,8000 160,Louise,Doran,7500 161,Sarath,Sewall,7000 162,Clara,Vishney,10500 163,Danielle,Greene,9500 164,Mattea,Marvins,7200 165,David,Lee,6800 168,Lisa,Ozer,11500 169,Harrison,Bloom,10000 170,Tayler,Fox,9600 171,William,Smith,7400 172,Elizabeth,Bates,7300 174,Ellen,Abel,11000 175,Alyssa,Hutton,8800 176,Jonathon,Taylor,8600 177,Jack,Livingston,8400
What are all the employee ids and the names of the countries in which they work?
SELECT T1.employee_id, T4.country_name FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id JOIN locations AS T3 ON T2.location_id = T3.location_id JOIN countries AS T4 ON T3.country_id = T4.country_id
``` yaml countries: # name of dataframe - COUNTRY_ID: dtype: string sample_values: AR, AU, BE - COUNTRY_NAME: dtype: string sample_values: Argentina, Australia, Belgium - REGION_ID: dtype: int64 sample_values: 2, 3, 1 departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 locations: # name of dataframe - LOCATION_ID: dtype: int64 sample_values: 1000, 1100, 1200 - STREET_ADDRESS: dtype: string sample_values: 1297 Via Cola di Rie, 93091 Calle della Testa, 2017 Shinjuku-ku - POSTAL_CODE: dtype: numeric sample_values: 989, 10934, 1689 - CITY: dtype: string sample_values: Roma, Venice, Tokyo - STATE_PROVINCE: dtype: string sample_values: ', , Tokyo Prefecture' - COUNTRY_ID: dtype: string sample_values: IT, IT, JP ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'. Column 'country_id' in dataframe 'locations' has a foreign key relation to column 'country_id' in dataframe 'countries'.
3,462
EMPLOYEE_ID,COUNTRY_NAME 100,United States of America 101,United States of America 102,United States of America 103,United States of America 104,United States of America 105,United States of America 106,United States of America 107,United States of America 108,United States of America 109,United States of America 110,United States of America 111,United States of America 112,United States of America 113,United States of America 114,United States of America 115,United States of America 116,United States of America 117,United States of America 118,United States of America 119,United States of America 120,United States of America 121,United States of America 122,United States of America 123,United States of America 124,United States of America 125,United States of America 126,United States of America 127,United States of America 128,United States of America 129,United States of America 130,United States of America 131,United States of America 132,United States of America 133,United States of America 134,United States of America 135,United States of America 136,United States of America 137,United States of America 138,United States of America 139,United States of America 140,United States of America 141,United States of America 142,United States of America 143,United States of America 144,United States of America 180,United States of America 181,United States of America 182,United States of America 183,United States of America 184,United States of America 185,United States of America 186,United States of America 187,United States of America 188,United States of America 189,United States of America 190,United States of America 191,United States of America 192,United States of America 193,United States of America 194,United States of America 195,United States of America 196,United States of America 197,United States of America 198,United States of America 199,United States of America 200,United States of America 201,Canada 202,Canada 203,United Kingdom 204,Germany 205,United States of America 206,United States of America
What are the full name, hire date, salary, and department id for employees without the letter M in their first name?
SELECT first_name, last_name, hire_date, salary, department_id FROM employees WHERE NOT first_name LIKE '%M%'
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,418
FIRST_NAME,LAST_NAME,HIRE_DATE,SALARY,DEPARTMENT_ID Steven,King,1987-06-17,24000,90 Neena,Kochhar,1987-06-18,17000,90 Lex,De Haan,1987-06-19,17000,90 Alexander,Hunold,1987-06-20,9000,60 Bruce,Ernst,1987-06-21,6000,60 David,Austin,1987-06-22,4800,60 Valli,Pataballa,1987-06-23,4800,60 Diana,Lorentz,1987-06-24,4200,60 Nancy,Greenberg,1987-06-25,12000,100 Daniel,Faviet,1987-06-26,9000,100 John,Chen,1987-06-27,8200,100 Luis,Popp,1987-06-30,6900,100 Den,Raphaely,1987-07-01,11000,30 Alexander,Khoo,1987-07-02,3100,30 Shelli,Baida,1987-07-03,2900,30 Sigal,Tobias,1987-07-04,2800,30 Guy,Himuro,1987-07-05,2600,30 Karen,Colmenares,1987-07-06,2500,30 Shanta,Vollman,1987-07-10,6500,50 Kevin,Mourgos,1987-07-11,5800,50 Julia,Nayer,1987-07-12,3200,50 Irene,Mikkilineni,1987-07-13,2700,50 Steven,Markle,1987-07-15,2200,50 Laura,Bissot,1987-07-16,3300,50 TJ,Olson,1987-07-19,2100,50 Jason,Mallin,1987-07-20,3300,50 Ki,Gee,1987-07-22,2400,50 Hazel,Philtanker,1987-07-23,2200,50 Renske,Ladwig,1987-07-24,3600,50 Stephen,Stiles,1987-07-25,3200,50 John,Seo,1987-07-26,2700,50 Joshua,Patel,1987-07-27,2500,50 Trenna,Rajs,1987-07-28,3500,50 Curtis,Davies,1987-07-29,3100,50 Randall,Matos,1987-07-30,2600,50 Peter,Vargas,1987-07-31,2500,50 John,Russell,1987-08-01,14000,80 Karen,Partners,1987-08-02,13500,80 Alberto,Errazuriz,1987-08-03,12000,80 Gerald,Cambrault,1987-08-04,11000,80 Eleni,Zlotkey,1987-08-05,10500,80 Peter,Tucker,1987-08-06,10000,80 David,Bernstein,1987-08-07,9500,80 Peter,Hall,1987-08-08,9000,80 Christopher,Olsen,1987-08-09,8000,80 Nanette,Cambrault,1987-08-10,7500,80 Oliver,Tuvault,1987-08-11,7000,80 Janette,King,1987-08-12,10000,80 Patrick,Sully,1987-08-13,9500,80 Allan,McEwen,1987-08-14,9000,80 Lindsey,Smith,1987-08-15,8000,80 Louise,Doran,1987-08-16,7500,80 Sarath,Sewall,1987-08-17,7000,80 Clara,Vishney,1987-08-18,10500,80 Danielle,Greene,1987-08-19,9500,80 David,Lee,1987-08-21,6800,80 Sundar,Ande,1987-08-22,6400,80 Lisa,Ozer,1987-08-24,11500,80 Harrison,Bloom,1987-08-25,10000,80 Tayler,Fox,1987-08-26,9600,80 Elizabeth,Bates,1987-08-28,7300,80 Sundita,Kumar,1987-08-29,6100,80 Ellen,Abel,1987-08-30,11000,80 Alyssa,Hutton,1987-08-31,8800,80 Jonathon,Taylor,1987-09-01,8600,80 Jack,Livingston,1987-09-02,8400,80 Charles,Johnson,1987-09-04,6200,80 Winston,Taylor,1987-09-05,3200,50 Jean,Fleaur,1987-09-06,3100,50 Girard,Geoni,1987-09-08,2800,50 Nandita,Sarchand,1987-09-09,4200,50 Alexis,Bull,1987-09-10,4100,50 Julia,Dellinger,1987-09-11,3400,50 Anthony,Cabrio,1987-09-12,3000,50 Kelly,Chung,1987-09-13,3800,50 Jennifer,Dilly,1987-09-14,3600,50 Randall,Perkins,1987-09-16,2500,50 Sarah,Bell,1987-09-17,4000,50 Britney,Everett,1987-09-18,3900,50 Vance,Jones,1987-09-20,2800,50 Alana,Walsh,1987-09-21,3100,50 Kevin,Feeney,1987-09-22,3000,50 Donald,OConnell,1987-09-23,2600,50 Douglas,Grant,1987-09-24,2600,50 Jennifer,Whalen,1987-09-25,4400,10 Pat,Fay,1987-09-27,6000,20 Susan,Mavris,1987-09-28,6500,40 Shelley,Higgins,1987-09-30,12000,110
display all the information of those employees who did not have any job in the past.
SELECT * FROM employees WHERE NOT employee_id IN (SELECT employee_id FROM job_history)
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ```
3,513
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 100,Steven,King,SKING,515.123.4567,1987-06-17,AD_PRES,24000,0.0,0,90 103,Alexander,Hunold,AHUNOLD,590.423.4567,1987-06-20,IT_PROG,9000,0.0,102,60 104,Bruce,Ernst,BERNST,590.423.4568,1987-06-21,IT_PROG,6000,0.0,103,60 105,David,Austin,DAUSTIN,590.423.4569,1987-06-22,IT_PROG,4800,0.0,103,60 106,Valli,Pataballa,VPATABAL,590.423.4560,1987-06-23,IT_PROG,4800,0.0,103,60 107,Diana,Lorentz,DLORENTZ,590.423.5567,1987-06-24,IT_PROG,4200,0.0,103,60 108,Nancy,Greenberg,NGREENBE,515.124.4569,1987-06-25,FI_MGR,12000,0.0,101,100 109,Daniel,Faviet,DFAVIET,515.124.4169,1987-06-26,FI_ACCOUNT,9000,0.0,108,100 110,John,Chen,JCHEN,515.124.4269,1987-06-27,FI_ACCOUNT,8200,0.0,108,100 111,Ismael,Sciarra,ISCIARRA,515.124.4369,1987-06-28,FI_ACCOUNT,7700,0.0,108,100 112,Jose Manuel,Urman,JMURMAN,515.124.4469,1987-06-29,FI_ACCOUNT,7800,0.0,108,100 113,Luis,Popp,LPOPP,515.124.4567,1987-06-30,FI_ACCOUNT,6900,0.0,108,100 115,Alexander,Khoo,AKHOO,515.127.4562,1987-07-02,PU_CLERK,3100,0.0,114,30 116,Shelli,Baida,SBAIDA,515.127.4563,1987-07-03,PU_CLERK,2900,0.0,114,30 117,Sigal,Tobias,STOBIAS,515.127.4564,1987-07-04,PU_CLERK,2800,0.0,114,30 118,Guy,Himuro,GHIMURO,515.127.4565,1987-07-05,PU_CLERK,2600,0.0,114,30 119,Karen,Colmenares,KCOLMENA,515.127.4566,1987-07-06,PU_CLERK,2500,0.0,114,30 120,Matthew,Weiss,MWEISS,650.123.1234,1987-07-07,ST_MAN,8000,0.0,100,50 121,Adam,Fripp,AFRIPP,650.123.2234,1987-07-08,ST_MAN,8200,0.0,100,50 123,Shanta,Vollman,SVOLLMAN,650.123.4234,1987-07-10,ST_MAN,6500,0.0,100,50 124,Kevin,Mourgos,KMOURGOS,650.123.5234,1987-07-11,ST_MAN,5800,0.0,100,50 125,Julia,Nayer,JNAYER,650.124.1214,1987-07-12,ST_CLERK,3200,0.0,120,50 126,Irene,Mikkilineni,IMIKKILI,650.124.1224,1987-07-13,ST_CLERK,2700,0.0,120,50 127,James,Landry,JLANDRY,650.124.1334,1987-07-14,ST_CLERK,2400,0.0,120,50 128,Steven,Markle,SMARKLE,650.124.1434,1987-07-15,ST_CLERK,2200,0.0,120,50 129,Laura,Bissot,LBISSOT,650.124.5234,1987-07-16,ST_CLERK,3300,0.0,121,50 130,Mozhe,Atkinson,MATKINSO,650.124.6234,1987-07-17,ST_CLERK,2800,0.0,121,50 131,James,Marlow,JAMRLOW,650.124.7234,1987-07-18,ST_CLERK,2500,0.0,121,50 132,TJ,Olson,TJOLSON,650.124.8234,1987-07-19,ST_CLERK,2100,0.0,121,50 133,Jason,Mallin,JMALLIN,650.127.1934,1987-07-20,ST_CLERK,3300,0.0,122,50 134,Michael,Rogers,MROGERS,650.127.1834,1987-07-21,ST_CLERK,2900,0.0,122,50 135,Ki,Gee,KGEE,650.127.1734,1987-07-22,ST_CLERK,2400,0.0,122,50 136,Hazel,Philtanker,HPHILTAN,650.127.1634,1987-07-23,ST_CLERK,2200,0.0,122,50 137,Renske,Ladwig,RLADWIG,650.121.1234,1987-07-24,ST_CLERK,3600,0.0,123,50 138,Stephen,Stiles,SSTILES,650.121.2034,1987-07-25,ST_CLERK,3200,0.0,123,50 139,John,Seo,JSEO,650.121.2019,1987-07-26,ST_CLERK,2700,0.0,123,50 140,Joshua,Patel,JPATEL,650.121.1834,1987-07-27,ST_CLERK,2500,0.0,123,50 141,Trenna,Rajs,TRAJS,650.121.8009,1987-07-28,ST_CLERK,3500,0.0,124,50 142,Curtis,Davies,CDAVIES,650.121.2994,1987-07-29,ST_CLERK,3100,0.0,124,50 143,Randall,Matos,RMATOS,650.121.2874,1987-07-30,ST_CLERK,2600,0.0,124,50 144,Peter,Vargas,PVARGAS,650.121.2004,1987-07-31,ST_CLERK,2500,0.0,124,50 145,John,Russell,JRUSSEL,011.44.1344.429268,1987-08-01,SA_MAN,14000,0.4,100,80 146,Karen,Partners,KPARTNER,011.44.1344.467268,1987-08-02,SA_MAN,13500,0.3,100,80 147,Alberto,Errazuriz,AERRAZUR,011.44.1344.429278,1987-08-03,SA_MAN,12000,0.3,100,80 148,Gerald,Cambrault,GCAMBRAU,011.44.1344.619268,1987-08-04,SA_MAN,11000,0.3,100,80 149,Eleni,Zlotkey,EZLOTKEY,011.44.1344.429018,1987-08-05,SA_MAN,10500,0.2,100,80 150,Peter,Tucker,PTUCKER,011.44.1344.129268,1987-08-06,SA_REP,10000,0.3,145,80 151,David,Bernstein,DBERNSTE,011.44.1344.345268,1987-08-07,SA_REP,9500,0.25,145,80 152,Peter,Hall,PHALL,011.44.1344.478968,1987-08-08,SA_REP,9000,0.25,145,80 153,Christopher,Olsen,COLSEN,011.44.1344.498718,1987-08-09,SA_REP,8000,0.2,145,80 154,Nanette,Cambrault,NCAMBRAU,011.44.1344.987668,1987-08-10,SA_REP,7500,0.2,145,80 155,Oliver,Tuvault,OTUVAULT,011.44.1344.486508,1987-08-11,SA_REP,7000,0.15,145,80 156,Janette,King,JKING,011.44.1345.429268,1987-08-12,SA_REP,10000,0.35,146,80 157,Patrick,Sully,PSULLY,011.44.1345.929268,1987-08-13,SA_REP,9500,0.35,146,80 158,Allan,McEwen,AMCEWEN,011.44.1345.829268,1987-08-14,SA_REP,9000,0.35,146,80 159,Lindsey,Smith,LSMITH,011.44.1345.729268,1987-08-15,SA_REP,8000,0.3,146,80 160,Louise,Doran,LDORAN,011.44.1345.629268,1987-08-16,SA_REP,7500,0.3,146,80 161,Sarath,Sewall,SSEWALL,011.44.1345.529268,1987-08-17,SA_REP,7000,0.25,146,80 162,Clara,Vishney,CVISHNEY,011.44.1346.129268,1987-08-18,SA_REP,10500,0.25,147,80 163,Danielle,Greene,DGREENE,011.44.1346.229268,1987-08-19,SA_REP,9500,0.15,147,80 164,Mattea,Marvins,MMARVINS,011.44.1346.329268,1987-08-20,SA_REP,7200,0.1,147,80 165,David,Lee,DLEE,011.44.1346.529268,1987-08-21,SA_REP,6800,0.1,147,80 166,Sundar,Ande,SANDE,011.44.1346.629268,1987-08-22,SA_REP,6400,0.1,147,80 167,Amit,Banda,ABANDA,011.44.1346.729268,1987-08-23,SA_REP,6200,0.1,147,80 168,Lisa,Ozer,LOZER,011.44.1343.929268,1987-08-24,SA_REP,11500,0.25,148,80 169,Harrison,Bloom,HBLOOM,011.44.1343.829268,1987-08-25,SA_REP,10000,0.2,148,80 170,Tayler,Fox,TFOX,011.44.1343.729268,1987-08-26,SA_REP,9600,0.2,148,80 171,William,Smith,WSMITH,011.44.1343.629268,1987-08-27,SA_REP,7400,0.15,148,80 172,Elizabeth,Bates,EBATES,011.44.1343.529268,1987-08-28,SA_REP,7300,0.15,148,80 173,Sundita,Kumar,SKUMAR,011.44.1343.329268,1987-08-29,SA_REP,6100,0.1,148,80 174,Ellen,Abel,EABEL,011.44.1644.429267,1987-08-30,SA_REP,11000,0.3,149,80 175,Alyssa,Hutton,AHUTTON,011.44.1644.429266,1987-08-31,SA_REP,8800,0.25,149,80 177,Jack,Livingston,JLIVINGS,011.44.1644.429264,1987-09-02,SA_REP,8400,0.2,149,80 178,Kimberely,Grant,KGRANT,011.44.1644.429263,1987-09-03,SA_REP,7000,0.15,149,0 179,Charles,Johnson,CJOHNSON,011.44.1644.429262,1987-09-04,SA_REP,6200,0.1,149,80 180,Winston,Taylor,WTAYLOR,650.507.9876,1987-09-05,SH_CLERK,3200,0.0,120,50 181,Jean,Fleaur,JFLEAUR,650.507.9877,1987-09-06,SH_CLERK,3100,0.0,120,50 182,Martha,Sullivan,MSULLIVA,650.507.9878,1987-09-07,SH_CLERK,2500,0.0,120,50 183,Girard,Geoni,GGEONI,650.507.9879,1987-09-08,SH_CLERK,2800,0.0,120,50 184,Nandita,Sarchand,NSARCHAN,650.509.1876,1987-09-09,SH_CLERK,4200,0.0,121,50 185,Alexis,Bull,ABULL,650.509.2876,1987-09-10,SH_CLERK,4100,0.0,121,50 186,Julia,Dellinger,JDELLING,650.509.3876,1987-09-11,SH_CLERK,3400,0.0,121,50 187,Anthony,Cabrio,ACABRIO,650.509.4876,1987-09-12,SH_CLERK,3000,0.0,121,50 188,Kelly,Chung,KCHUNG,650.505.1876,1987-09-13,SH_CLERK,3800,0.0,122,50 189,Jennifer,Dilly,JDILLY,650.505.2876,1987-09-14,SH_CLERK,3600,0.0,122,50 190,Timothy,Gates,TGATES,650.505.3876,1987-09-15,SH_CLERK,2900,0.0,122,50 191,Randall,Perkins,RPERKINS,650.505.4876,1987-09-16,SH_CLERK,2500,0.0,122,50 192,Sarah,Bell,SBELL,650.501.1876,1987-09-17,SH_CLERK,4000,0.0,123,50 193,Britney,Everett,BEVERETT,650.501.2876,1987-09-18,SH_CLERK,3900,0.0,123,50 194,Samuel,McCain,SMCCAIN,650.501.3876,1987-09-19,SH_CLERK,3200,0.0,123,50 195,Vance,Jones,VJONES,650.501.4876,1987-09-20,SH_CLERK,2800,0.0,123,50 196,Alana,Walsh,AWALSH,650.507.9811,1987-09-21,SH_CLERK,3100,0.0,124,50 197,Kevin,Feeney,KFEENEY,650.507.9822,1987-09-22,SH_CLERK,3000,0.0,124,50 198,Donald,OConnell,DOCONNEL,650.507.9833,1987-09-23,SH_CLERK,2600,0.0,124,50 199,Douglas,Grant,DGRANT,650.507.9844,1987-09-24,SH_CLERK,2600,0.0,124,50 202,Pat,Fay,PFAY,603.123.6666,1987-09-27,MK_REP,6000,0.0,201,20 203,Susan,Mavris,SMAVRIS,515.123.7777,1987-09-28,HR_REP,6500,0.0,101,40 204,Hermann,Baer,HBAER,515.123.8888,1987-09-29,PR_REP,10000,0.0,101,70 205,Shelley,Higgins,SHIGGINS,515.123.8080,1987-09-30,AC_MGR,12000,0.0,101,110 206,William,Gietz,WGIETZ,515.123.8181,1987-10-01,AC_ACCOUNT,8300,0.0,205,110
What are the first names and department numbers for employees with last name McEwen?
SELECT first_name, department_id FROM employees WHERE last_name = 'McEwen'
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,410
FIRST_NAME,DEPARTMENT_ID Allan,80
What is all the information regarding employees with salaries above the minimum and under 2500?
SELECT * FROM employees WHERE salary BETWEEN (SELECT MIN(salary) FROM employees) AND 2500
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,496
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 119,Karen,Colmenares,KCOLMENA,515.127.4566,1987-07-06,PU_CLERK,2500,0,114,30 127,James,Landry,JLANDRY,650.124.1334,1987-07-14,ST_CLERK,2400,0,120,50 128,Steven,Markle,SMARKLE,650.124.1434,1987-07-15,ST_CLERK,2200,0,120,50 131,James,Marlow,JAMRLOW,650.124.7234,1987-07-18,ST_CLERK,2500,0,121,50 132,TJ,Olson,TJOLSON,650.124.8234,1987-07-19,ST_CLERK,2100,0,121,50 135,Ki,Gee,KGEE,650.127.1734,1987-07-22,ST_CLERK,2400,0,122,50 136,Hazel,Philtanker,HPHILTAN,650.127.1634,1987-07-23,ST_CLERK,2200,0,122,50 140,Joshua,Patel,JPATEL,650.121.1834,1987-07-27,ST_CLERK,2500,0,123,50 144,Peter,Vargas,PVARGAS,650.121.2004,1987-07-31,ST_CLERK,2500,0,124,50 182,Martha,Sullivan,MSULLIVA,650.507.9878,1987-09-07,SH_CLERK,2500,0,120,50 191,Randall,Perkins,RPERKINS,650.505.4876,1987-09-16,SH_CLERK,2500,0,122,50
What are the employee ids of employees who report to Payam, and what are their salaries?
SELECT employee_id, salary FROM employees WHERE manager_id = (SELECT employee_id FROM employees WHERE first_name = 'Payam')
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,478
EMPLOYEE_ID,SALARY 133,3300 134,2900 135,2400 136,2200 188,3800 189,3600 190,2900 191,2500
display the emails of the employees who have no commission percentage and salary within the range 7000 to 12000 and works in that department which number is 50.
SELECT email FROM employees WHERE commission_pct = "null" AND salary BETWEEN 7000 AND 12000 AND department_id = 50
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,445
EMAIL
display job ID for those jobs that were done by two or more for more than 300 days.
SELECT job_id FROM job_history WHERE end_date - start_date > 300 GROUP BY job_id HAVING COUNT(*) >= 2
``` yaml job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ```
3,457
JOB_ID
What are department ids for departments with managers managing more than 3 employees?
SELECT DISTINCT department_id FROM employees GROUP BY department_id, manager_id HAVING COUNT(employee_id) >= 4
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,452
DEPARTMENT_ID 30 50 60 80 100
display the employee name ( first name and last name ) and hire date for all employees in the same department as Clara.
SELECT first_name, last_name, hire_date FROM employees WHERE department_id = (SELECT department_id FROM employees WHERE first_name = "Clara")
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,499
FIRST_NAME,LAST_NAME,HIRE_DATE John,Russell,1987-08-01 Karen,Partners,1987-08-02 Alberto,Errazuriz,1987-08-03 Gerald,Cambrault,1987-08-04 Eleni,Zlotkey,1987-08-05 Peter,Tucker,1987-08-06 David,Bernstein,1987-08-07 Peter,Hall,1987-08-08 Christopher,Olsen,1987-08-09 Nanette,Cambrault,1987-08-10 Oliver,Tuvault,1987-08-11 Janette,King,1987-08-12 Patrick,Sully,1987-08-13 Allan,McEwen,1987-08-14 Lindsey,Smith,1987-08-15 Louise,Doran,1987-08-16 Sarath,Sewall,1987-08-17 Clara,Vishney,1987-08-18 Danielle,Greene,1987-08-19 Mattea,Marvins,1987-08-20 David,Lee,1987-08-21 Sundar,Ande,1987-08-22 Amit,Banda,1987-08-23 Lisa,Ozer,1987-08-24 Harrison,Bloom,1987-08-25 Tayler,Fox,1987-08-26 William,Smith,1987-08-27 Elizabeth,Bates,1987-08-28 Sundita,Kumar,1987-08-29 Ellen,Abel,1987-08-30 Alyssa,Hutton,1987-08-31 Jonathon,Taylor,1987-09-01 Jack,Livingston,1987-09-02 Charles,Johnson,1987-09-04
display the full name (first and last name ) of employee with ID and name of the country presently where (s)he is working.
SELECT T1.first_name, T1.last_name, T1.employee_id, T4.country_name FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id JOIN locations AS T3 ON T2.location_id = T3.location_id JOIN countries AS T4 ON T3.country_id = T4.country_id
``` yaml countries: # name of dataframe - COUNTRY_ID: dtype: string sample_values: AR, AU, BE - COUNTRY_NAME: dtype: string sample_values: Argentina, Australia, Belgium - REGION_ID: dtype: int64 sample_values: 2, 3, 1 departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 locations: # name of dataframe - LOCATION_ID: dtype: int64 sample_values: 1000, 1100, 1200 - STREET_ADDRESS: dtype: string sample_values: 1297 Via Cola di Rie, 93091 Calle della Testa, 2017 Shinjuku-ku - POSTAL_CODE: dtype: numeric sample_values: 989, 10934, 1689 - CITY: dtype: string sample_values: Roma, Venice, Tokyo - STATE_PROVINCE: dtype: string sample_values: ', , Tokyo Prefecture' - COUNTRY_ID: dtype: string sample_values: IT, IT, JP ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'. Column 'country_id' in dataframe 'locations' has a foreign key relation to column 'country_id' in dataframe 'countries'.
3,523
FIRST_NAME,LAST_NAME,EMPLOYEE_ID,COUNTRY_NAME Steven,King,100,United States of America Neena,Kochhar,101,United States of America Lex,De Haan,102,United States of America Alexander,Hunold,103,United States of America Bruce,Ernst,104,United States of America David,Austin,105,United States of America Valli,Pataballa,106,United States of America Diana,Lorentz,107,United States of America Nancy,Greenberg,108,United States of America Daniel,Faviet,109,United States of America John,Chen,110,United States of America Ismael,Sciarra,111,United States of America Jose Manuel,Urman,112,United States of America Luis,Popp,113,United States of America Den,Raphaely,114,United States of America Alexander,Khoo,115,United States of America Shelli,Baida,116,United States of America Sigal,Tobias,117,United States of America Guy,Himuro,118,United States of America Karen,Colmenares,119,United States of America Matthew,Weiss,120,United States of America Adam,Fripp,121,United States of America Payam,Kaufling,122,United States of America Shanta,Vollman,123,United States of America Kevin,Mourgos,124,United States of America Julia,Nayer,125,United States of America Irene,Mikkilineni,126,United States of America James,Landry,127,United States of America Steven,Markle,128,United States of America Laura,Bissot,129,United States of America Mozhe,Atkinson,130,United States of America James,Marlow,131,United States of America TJ,Olson,132,United States of America Jason,Mallin,133,United States of America Michael,Rogers,134,United States of America Ki,Gee,135,United States of America Hazel,Philtanker,136,United States of America Renske,Ladwig,137,United States of America Stephen,Stiles,138,United States of America John,Seo,139,United States of America Joshua,Patel,140,United States of America Trenna,Rajs,141,United States of America Curtis,Davies,142,United States of America Randall,Matos,143,United States of America Peter,Vargas,144,United States of America Winston,Taylor,180,United States of America Jean,Fleaur,181,United States of America Martha,Sullivan,182,United States of America Girard,Geoni,183,United States of America Nandita,Sarchand,184,United States of America Alexis,Bull,185,United States of America Julia,Dellinger,186,United States of America Anthony,Cabrio,187,United States of America Kelly,Chung,188,United States of America Jennifer,Dilly,189,United States of America Timothy,Gates,190,United States of America Randall,Perkins,191,United States of America Sarah,Bell,192,United States of America Britney,Everett,193,United States of America Samuel,McCain,194,United States of America Vance,Jones,195,United States of America Alana,Walsh,196,United States of America Kevin,Feeney,197,United States of America Donald,OConnell,198,United States of America Douglas,Grant,199,United States of America Jennifer,Whalen,200,United States of America Michael,Hartstein,201,Canada Pat,Fay,202,Canada Susan,Mavris,203,United Kingdom Hermann,Baer,204,Germany Shelley,Higgins,205,United States of America William,Gietz,206,United States of America
Give the first name and job id for all employees in the Finance department.
SELECT T1.first_name, T1.job_id FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id WHERE T2.department_name = 'Finance'
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'.
3,494
FIRST_NAME,JOB_ID Nancy,FI_MGR Daniel,FI_ACCOUNT John,FI_ACCOUNT Ismael,FI_ACCOUNT Jose Manuel,FI_ACCOUNT Luis,FI_ACCOUNT
What are the unique ids of those departments where any manager is managing 4 or more employees.
SELECT DISTINCT department_id FROM employees GROUP BY department_id, manager_id HAVING COUNT(employee_id) >= 4
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,487
DEPARTMENT_ID 30 50 60 80 100
Return the full names and salaries of employees with null commissions.
SELECT first_name, last_name, salary FROM employees WHERE commission_pct = "null"
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,426
FIRST_NAME,LAST_NAME,SALARY
display job title and average salary of employees.
SELECT job_title, AVG(salary) FROM employees AS T1 JOIN jobs AS T2 ON T1.job_id = T2.job_id GROUP BY T2.job_title
``` yaml jobs: # name of dataframe - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_ASST - JOB_TITLE: dtype: string sample_values: President, Administration Vice President, Administration Assistant - MIN_SALARY: dtype: int64 sample_values: 20000, 15000, 3000 - MAX_SALARY: dtype: int64 sample_values: 40000, 30000, 6000 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'job_id' in dataframe 'employees' has a foreign key relation to column 'job_id' in dataframe 'jobs'.
3,467
JOB_TITLE,AVG(salary) Accountant,7920.0 Accounting Manager,12000.0 Administration Assistant,4400.0 Administration Vice President,17000.0 Finance Manager,12000.0 Human Resources Representative,6500.0 Marketing Manager,13000.0 Marketing Representative,6000.0 President,24000.0 Programmer,5760.0 Public Accountant,8300.0 Public Relations Representative,10000.0 Purchasing Clerk,2780.0 Purchasing Manager,11000.0 Sales Manager,12200.0 Sales Representative,8350.0 Shipping Clerk,3215.0 Stock Clerk,2785.0 Stock Manager,7280.0
display the employee number, name( first name and last name ), and salary for all employees who earn more than the average salary and who work in a department with any employee with a 'J' in their first name.
SELECT employee_id, first_name, last_name, salary FROM employees WHERE salary > (SELECT AVG(salary) FROM employees) AND department_id IN (SELECT department_id FROM employees WHERE first_name LIKE '%J%')
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,505
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,SALARY 108,Nancy,Greenberg,12000 109,Daniel,Faviet,9000 110,John,Chen,8200 111,Ismael,Sciarra,7700 112,Jose Manuel,Urman,7800 113,Luis,Popp,6900 120,Matthew,Weiss,8000 121,Adam,Fripp,8200 122,Payam,Kaufling,7900 123,Shanta,Vollman,6500 145,John,Russell,14000 146,Karen,Partners,13500 147,Alberto,Errazuriz,12000 148,Gerald,Cambrault,11000 149,Eleni,Zlotkey,10500 150,Peter,Tucker,10000 151,David,Bernstein,9500 152,Peter,Hall,9000 153,Christopher,Olsen,8000 154,Nanette,Cambrault,7500 155,Oliver,Tuvault,7000 156,Janette,King,10000 157,Patrick,Sully,9500 158,Allan,McEwen,9000 159,Lindsey,Smith,8000 160,Louise,Doran,7500 161,Sarath,Sewall,7000 162,Clara,Vishney,10500 163,Danielle,Greene,9500 164,Mattea,Marvins,7200 165,David,Lee,6800 168,Lisa,Ozer,11500 169,Harrison,Bloom,10000 170,Tayler,Fox,9600 171,William,Smith,7400 172,Elizabeth,Bates,7300 174,Ellen,Abel,11000 175,Alyssa,Hutton,8800 176,Jonathon,Taylor,8600 177,Jack,Livingston,8400
display all the information of the employees whose salary if within the range of smallest salary and 2500.
SELECT * FROM employees WHERE salary BETWEEN (SELECT MIN(salary) FROM employees) AND 2500
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,495
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID 119,Karen,Colmenares,KCOLMENA,515.127.4566,1987-07-06,PU_CLERK,2500,0,114,30 127,James,Landry,JLANDRY,650.124.1334,1987-07-14,ST_CLERK,2400,0,120,50 128,Steven,Markle,SMARKLE,650.124.1434,1987-07-15,ST_CLERK,2200,0,120,50 131,James,Marlow,JAMRLOW,650.124.7234,1987-07-18,ST_CLERK,2500,0,121,50 132,TJ,Olson,TJOLSON,650.124.8234,1987-07-19,ST_CLERK,2100,0,121,50 135,Ki,Gee,KGEE,650.127.1734,1987-07-22,ST_CLERK,2400,0,122,50 136,Hazel,Philtanker,HPHILTAN,650.127.1634,1987-07-23,ST_CLERK,2200,0,122,50 140,Joshua,Patel,JPATEL,650.121.1834,1987-07-27,ST_CLERK,2500,0,123,50 144,Peter,Vargas,PVARGAS,650.121.2004,1987-07-31,ST_CLERK,2500,0,124,50 182,Martha,Sullivan,MSULLIVA,650.507.9878,1987-09-07,SH_CLERK,2500,0,120,50 191,Randall,Perkins,RPERKINS,650.505.4876,1987-09-16,SH_CLERK,2500,0,122,50
What are the employee ids for those who had two or more jobs.
SELECT employee_id FROM job_history GROUP BY employee_id HAVING COUNT(*) >= 2
``` yaml job_history: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 102, 101, 101 - START_DATE: dtype: datetime sample_values: 1993-01-13, 1989-09-21, 1993-10-28 - END_DATE: dtype: datetime sample_values: 1998-07-24, 1993-10-27, 1997-03-15 - JOB_ID: dtype: string sample_values: IT_PROG, AC_ACCOUNT, AC_MGR - DEPARTMENT_ID: dtype: int64 sample_values: 60, 110, 110 ```
3,486
EMPLOYEE_ID 101 176 200
Return the phone numbers of employees with salaries between 8000 and 12000.
SELECT phone_number FROM employees WHERE salary BETWEEN 8000 AND 12000
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,422
PHONE_NUMBER 590.423.4567 515.124.4569 515.124.4169 515.124.4269 515.127.4561 650.123.1234 650.123.2234 011.44.1344.429278 011.44.1344.619268 011.44.1344.429018 011.44.1344.129268 011.44.1344.345268 011.44.1344.478968 011.44.1344.498718 011.44.1345.429268 011.44.1345.929268 011.44.1345.829268 011.44.1345.729268 011.44.1346.129268 011.44.1346.229268 011.44.1343.929268 011.44.1343.829268 011.44.1343.729268 011.44.1644.429267 011.44.1644.429266 011.44.1644.429265 011.44.1644.429264 515.123.8888 515.123.8080 515.123.8181
display the employee number and job id for all employees whose salary is smaller than any salary of those employees whose job title is MK_MAN.
SELECT employee_id, job_id FROM employees WHERE salary < (SELECT MIN(salary) FROM employees WHERE job_id = 'MK_MAN')
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,507
EMPLOYEE_ID,JOB_ID 103,IT_PROG 104,IT_PROG 105,IT_PROG 106,IT_PROG 107,IT_PROG 108,FI_MGR 109,FI_ACCOUNT 110,FI_ACCOUNT 111,FI_ACCOUNT 112,FI_ACCOUNT 113,FI_ACCOUNT 114,PU_MAN 115,PU_CLERK 116,PU_CLERK 117,PU_CLERK 118,PU_CLERK 119,PU_CLERK 120,ST_MAN 121,ST_MAN 122,ST_MAN 123,ST_MAN 124,ST_MAN 125,ST_CLERK 126,ST_CLERK 127,ST_CLERK 128,ST_CLERK 129,ST_CLERK 130,ST_CLERK 131,ST_CLERK 132,ST_CLERK 133,ST_CLERK 134,ST_CLERK 135,ST_CLERK 136,ST_CLERK 137,ST_CLERK 138,ST_CLERK 139,ST_CLERK 140,ST_CLERK 141,ST_CLERK 142,ST_CLERK 143,ST_CLERK 144,ST_CLERK 147,SA_MAN 148,SA_MAN 149,SA_MAN 150,SA_REP 151,SA_REP 152,SA_REP 153,SA_REP 154,SA_REP 155,SA_REP 156,SA_REP 157,SA_REP 158,SA_REP 159,SA_REP 160,SA_REP 161,SA_REP 162,SA_REP 163,SA_REP 164,SA_REP 165,SA_REP 166,SA_REP 167,SA_REP 168,SA_REP 169,SA_REP 170,SA_REP 171,SA_REP 172,SA_REP 173,SA_REP 174,SA_REP 175,SA_REP 176,SA_REP 177,SA_REP 178,SA_REP 179,SA_REP 180,SH_CLERK 181,SH_CLERK 182,SH_CLERK 183,SH_CLERK 184,SH_CLERK 185,SH_CLERK 186,SH_CLERK 187,SH_CLERK 188,SH_CLERK 189,SH_CLERK 190,SH_CLERK 191,SH_CLERK 192,SH_CLERK 193,SH_CLERK 194,SH_CLERK 195,SH_CLERK 196,SH_CLERK 197,SH_CLERK 198,SH_CLERK 199,SH_CLERK 200,AD_ASST 202,MK_REP 203,HR_REP 204,PR_REP 205,AC_MGR 206,AC_ACCOUNT
Find the job ID for those jobs which average salary is above 8000.
SELECT job_id FROM employees GROUP BY job_id HAVING AVG(salary) > 8000
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,489
JOB_ID AC_ACCOUNT AC_MGR AD_PRES AD_VP FI_MGR MK_MAN PR_REP PU_MAN SA_MAN SA_REP
What is all the information regarding employees who are managers?
SELECT DISTINCT * FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id WHERE T1.employee_id = T2.manager_id
``` yaml departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'.
3,482
EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID,DEPARTMENT_ID,DEPARTMENT_NAME,MANAGER_ID,LOCATION_ID 100,Steven,King,SKING,515.123.4567,1987-06-17,AD_PRES,24000,0.0,0,90,90,Executive,100,1700 103,Alexander,Hunold,AHUNOLD,590.423.4567,1987-06-20,IT_PROG,9000,0.0,102,60,60,IT,103,1400 108,Nancy,Greenberg,NGREENBE,515.124.4569,1987-06-25,FI_MGR,12000,0.0,101,100,100,Finance,108,1700 114,Den,Raphaely,DRAPHEAL,515.127.4561,1987-07-01,PU_MAN,11000,0.0,100,30,30,Purchasing,114,1700 121,Adam,Fripp,AFRIPP,650.123.2234,1987-07-08,ST_MAN,8200,0.0,100,50,50,Shipping,121,1500 145,John,Russell,JRUSSEL,011.44.1344.429268,1987-08-01,SA_MAN,14000,0.4,100,80,80,Sales,145,2500 200,Jennifer,Whalen,JWHALEN,515.123.4444,1987-09-25,AD_ASST,4400,0.0,101,10,10,Administration,200,1700 201,Michael,Hartstein,MHARTSTE,515.123.5555,1987-09-26,MK_MAN,13000,0.0,100,20,20,Marketing,201,1800 203,Susan,Mavris,SMAVRIS,515.123.7777,1987-09-28,HR_REP,6500,0.0,101,40,40,Human Resources,203,2400 204,Hermann,Baer,HBAER,515.123.8888,1987-09-29,PR_REP,10000,0.0,101,70,70,Public Relations,204,2700 205,Shelley,Higgins,SHIGGINS,515.123.8080,1987-09-30,AC_MGR,12000,0.0,101,110,110,Accounting,205,1700
display the country ID and number of cities for each country.
SELECT country_id, COUNT(*) FROM locations GROUP BY country_id
``` yaml locations: # name of dataframe - LOCATION_ID: dtype: int64 sample_values: 1000, 1100, 1200 - STREET_ADDRESS: dtype: string sample_values: 1297 Via Cola di Rie, 93091 Calle della Testa, 2017 Shinjuku-ku - POSTAL_CODE: dtype: numeric sample_values: 989, 10934, 1689 - CITY: dtype: string sample_values: Roma, Venice, Tokyo - STATE_PROVINCE: dtype: string sample_values: ', , Tokyo Prefecture' - COUNTRY_ID: dtype: string sample_values: IT, IT, JP ```
3,455
COUNTRY_ID,COUNT(*) """",1 AU,1 BR,1 CA,2 CH,2 CN,1 DE,1 IN,1 IT,2 JP,2 NL,1 Ox,1 SG,1 UK,2 US,4
What the full names, ids of each employee and the name of the country they are in?
SELECT T1.first_name, T1.last_name, T1.employee_id, T4.country_name FROM employees AS T1 JOIN departments AS T2 ON T1.department_id = T2.department_id JOIN locations AS T3 ON T2.location_id = T3.location_id JOIN countries AS T4 ON T3.country_id = T4.country_id
``` yaml countries: # name of dataframe - COUNTRY_ID: dtype: string sample_values: AR, AU, BE - COUNTRY_NAME: dtype: string sample_values: Argentina, Australia, Belgium - REGION_ID: dtype: int64 sample_values: 2, 3, 1 departments: # name of dataframe - DEPARTMENT_ID: dtype: int64 sample_values: 10, 20, 30 - DEPARTMENT_NAME: dtype: string sample_values: Administration, Marketing, Purchasing - MANAGER_ID: dtype: int64 sample_values: 200, 201, 114 - LOCATION_ID: dtype: int64 sample_values: 1700, 1800, 1700 employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 locations: # name of dataframe - LOCATION_ID: dtype: int64 sample_values: 1000, 1100, 1200 - STREET_ADDRESS: dtype: string sample_values: 1297 Via Cola di Rie, 93091 Calle della Testa, 2017 Shinjuku-ku - POSTAL_CODE: dtype: numeric sample_values: 989, 10934, 1689 - CITY: dtype: string sample_values: Roma, Venice, Tokyo - STATE_PROVINCE: dtype: string sample_values: ', , Tokyo Prefecture' - COUNTRY_ID: dtype: string sample_values: IT, IT, JP ``` Foreign Key constraints: Column 'department_id' in dataframe 'employees' has a foreign key relation to column 'department_id' in dataframe 'departments'. Column 'country_id' in dataframe 'locations' has a foreign key relation to column 'country_id' in dataframe 'countries'.
3,524
FIRST_NAME,LAST_NAME,EMPLOYEE_ID,COUNTRY_NAME Steven,King,100,United States of America Neena,Kochhar,101,United States of America Lex,De Haan,102,United States of America Alexander,Hunold,103,United States of America Bruce,Ernst,104,United States of America David,Austin,105,United States of America Valli,Pataballa,106,United States of America Diana,Lorentz,107,United States of America Nancy,Greenberg,108,United States of America Daniel,Faviet,109,United States of America John,Chen,110,United States of America Ismael,Sciarra,111,United States of America Jose Manuel,Urman,112,United States of America Luis,Popp,113,United States of America Den,Raphaely,114,United States of America Alexander,Khoo,115,United States of America Shelli,Baida,116,United States of America Sigal,Tobias,117,United States of America Guy,Himuro,118,United States of America Karen,Colmenares,119,United States of America Matthew,Weiss,120,United States of America Adam,Fripp,121,United States of America Payam,Kaufling,122,United States of America Shanta,Vollman,123,United States of America Kevin,Mourgos,124,United States of America Julia,Nayer,125,United States of America Irene,Mikkilineni,126,United States of America James,Landry,127,United States of America Steven,Markle,128,United States of America Laura,Bissot,129,United States of America Mozhe,Atkinson,130,United States of America James,Marlow,131,United States of America TJ,Olson,132,United States of America Jason,Mallin,133,United States of America Michael,Rogers,134,United States of America Ki,Gee,135,United States of America Hazel,Philtanker,136,United States of America Renske,Ladwig,137,United States of America Stephen,Stiles,138,United States of America John,Seo,139,United States of America Joshua,Patel,140,United States of America Trenna,Rajs,141,United States of America Curtis,Davies,142,United States of America Randall,Matos,143,United States of America Peter,Vargas,144,United States of America Winston,Taylor,180,United States of America Jean,Fleaur,181,United States of America Martha,Sullivan,182,United States of America Girard,Geoni,183,United States of America Nandita,Sarchand,184,United States of America Alexis,Bull,185,United States of America Julia,Dellinger,186,United States of America Anthony,Cabrio,187,United States of America Kelly,Chung,188,United States of America Jennifer,Dilly,189,United States of America Timothy,Gates,190,United States of America Randall,Perkins,191,United States of America Sarah,Bell,192,United States of America Britney,Everett,193,United States of America Samuel,McCain,194,United States of America Vance,Jones,195,United States of America Alana,Walsh,196,United States of America Kevin,Feeney,197,United States of America Donald,OConnell,198,United States of America Douglas,Grant,199,United States of America Jennifer,Whalen,200,United States of America Michael,Hartstein,201,Canada Pat,Fay,202,Canada Susan,Mavris,203,United Kingdom Hermann,Baer,204,Germany Shelley,Higgins,205,United States of America William,Gietz,206,United States of America
display the department ID, full name (first and last name), salary for those employees who is highest salary in every department.
SELECT first_name, last_name, salary, department_id, MAX(salary) FROM employees GROUP BY department_id
``` yaml employees: # name of dataframe - EMPLOYEE_ID: dtype: int64 sample_values: 100, 101, 102 - FIRST_NAME: dtype: string sample_values: Steven, Neena, Lex - LAST_NAME: dtype: string sample_values: King, Kochhar, De Haan - EMAIL: dtype: string sample_values: SKING, NKOCHHAR, LDEHAAN - PHONE_NUMBER: dtype: string sample_values: 515.123.4567, 515.123.4568, 515.123.4569 - HIRE_DATE: dtype: datetime sample_values: 1987-06-17, 1987-06-18, 1987-06-19 - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_VP - SALARY: dtype: int64 sample_values: 24000, 17000, 17000 - COMMISSION_PCT: dtype: float64 sample_values: 0.0, 0.0, 0.0 - MANAGER_ID: dtype: int64 sample_values: 0, 100, 100 - DEPARTMENT_ID: dtype: int64 sample_values: 90, 90, 90 ```
3,515
FIRST_NAME,LAST_NAME,SALARY,DEPARTMENT_ID,MAX(salary) Kimberely,Grant,7000,0,7000 Jennifer,Whalen,4400,10,4400 Michael,Hartstein,13000,20,13000 Den,Raphaely,11000,30,11000 Susan,Mavris,6500,40,6500 Adam,Fripp,8200,50,8200 Alexander,Hunold,9000,60,9000 Hermann,Baer,10000,70,10000 John,Russell,14000,80,14000 Steven,King,24000,90,24000 Nancy,Greenberg,12000,100,12000 Shelley,Higgins,12000,110,12000
Which job titles correspond to jobs with salaries over 9000?
SELECT job_title FROM jobs WHERE min_salary > 9000
``` yaml jobs: # name of dataframe - JOB_ID: dtype: string sample_values: AD_PRES, AD_VP, AD_ASST - JOB_TITLE: dtype: string sample_values: President, Administration Vice President, Administration Assistant - MIN_SALARY: dtype: int64 sample_values: 20000, 15000, 3000 - MAX_SALARY: dtype: int64 sample_values: 40000, 30000, 6000 ```
3,442
JOB_TITLE President Administration Vice President Sales Manager
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
24