metadata
dataset_info:
features:
- name: image
dtype: image
- name: messages
list:
- name: content
list:
- name: index
dtype: int64
- name: text
dtype: string
- name: type
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 2393634762.584
num_examples: 6378
download_size: 2975326101
dataset_size: 2393634762.584
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
original_dataset_id: Voxel51/MPII_Human_Pose_Dataset
processing_description: >-
Filtered missing body keypoint annotations, reformatted keypoint coordinates
for Molmo
source_datasets:
- extended
tags:
- remyx
pretty_name: PoseText
size_categories:
- 1K<n<10K
Dataset Card for the PoseText Dataset
The PoseText Dataset can be used to enhance vision-language model performance in the task of human pose estimation.
Dataset Details
Dataset Description
Parsing body keypoints from the Voxel51/MPII_Human_Pose_Dataset, parsing into a text-based format used in Molmo
import re
import numpy as np
def extract_points(molmo_output, image_w, image_h):
all_points = []
for match in re.finditer(r'x\d*="\s*([0-9]+(?:\.[0-9]+)?)"\s+y\d*="\s*([0-9]+(?:\.[0-9]+)?)"', molmo_output):
try:
point = [float(match.group(i)) for i in range(1, 3)]
except ValueError:
pass
else:
point = np.array(point)
if np.max(point) > 100:
# Treat as an invalid output
continue
point /= 100.0
point = point * np.array([image_w, image_h])
all_points.append(point)
return all_points
- Curated by: [remyx.ai]
- Language(s) (NLP): [en]
Citation
If you found this resource useful, please consider citing:
@misc{posetext2024,
title={PoseText},
author={Terry Rodriguez and Salma Mayorquin},
organization={Remyx AI},
year={2024},
month={September},
note = {Dataset},
url = {https://huggingface.co/datasets/salma-remyx/PoseText}
}