|
--- |
|
license: apache-2.0 |
|
--- |
|
# MFQEv2 Dataset |
|
|
|
For some video enhancement/restoration tasks, lossless reference videos are necessary. |
|
|
|
We open-source the dataset used in our [MFQEv2 paper](https://arxiv.org/abs/1902.09707), which includes 108 lossless YUV videos for training and 18 test videos recommended by [ITU-T](https://ieeexplore.ieee.org/document/6317156). |
|
|
|
## 1. Content |
|
|
|
- 108 lossless YUV videos for training. |
|
- 18 lossless YUV videos for test, recommended by ITU-T. |
|
- An HEVC compression tool box. |
|
|
|
43.1 GB in total. |
|
|
|
## 2. Download Raw Videos |
|
|
|
[[Dropbox]](https://www.dropbox.com/sh/tphdy1lmlpz7zq3/AABR4Qim-P-3xGtouWk6ohi5a?dl=0) |
|
|
|
or [[百度网盘 (key: mfqe)]](https://pan.baidu.com/s/1oBZf75bFGRanLmQQLAg4Ew) |
|
|
|
## 3. Compress Videos |
|
|
|
We compress both training and test videos by [HM](https://hevc.hhi.fraunhofer.de/) 16.5 at low delay P (LDP) mode with QP=37. The video compression toolbox is provided at the dataset folder. |
|
|
|
We will get: |
|
|
|
```tex |
|
MFQEv2_dataset/ |
|
├── train_108/ |
|
│ ├── raw/ |
|
│ └── HM16.5_LDP/ |
|
│ └── QP37/ |
|
├── test_18/ |
|
│ ├── raw/ |
|
│ └── HM16.5_LDP/ |
|
│ └── QP37/ |
|
├── video_compression/ |
|
│ └── ... |
|
└── README.md |
|
``` |
|
|
|
### Ubuntu |
|
|
|
1. `cd video_compression/` |
|
2. Edit `option.yml`. |
|
3. `chmod +x TAppEncoderStatic` |
|
4. `python unzip_n_compress.py` |
|
|
|
### Windows |
|
|
|
1. Unzip `train_108.zip` and `test_18.zip` manually! |
|
2. `cd video_compression\` |
|
3. Edit `option.yml` (e.g., `system: windows`). |
|
4. `python unzip_n_compress.py` |
|
|
|
## 4. Citation |
|
|
|
If you find this helpful, please star and cite: |
|
|
|
```tex |
|
@article{2019xing, |
|
doi = {10.1109/tpami.2019.2944806}, |
|
url = {https://doi.org/10.1109%2Ftpami.2019.2944806}, |
|
year = 2021, |
|
month = {mar}, |
|
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})}, |
|
volume = {43}, |
|
number = {3}, |
|
pages = {949--963}, |
|
author = {Zhenyu Guan and Qunliang Xing and Mai Xu and Ren Yang and Tie Liu and Zulin Wang}, |
|
title = {{MFQE} 2.0: A New Approach for Multi-Frame Quality Enhancement on Compressed Video}, |
|
journal = {{IEEE} Transactions on Pattern Analysis and Machine Intelligence} |
|
} |
|
``` |
|
|