|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ |
|
- |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This is a Pero OCR NER 1.0 dataset in the CoNLL format. Each line in |
|
the corpus contains information about one word/token. The first column is the actual |
|
word, the second column is a Named Entity class in a BIO format. An empty line is a sentence separator. |
|
""" |
|
|
|
_TRAINING_FILE = "poner_train.conll" |
|
_DEV_FILE = "poner_dev.conll" |
|
_TEST_FILE = "poner_test.conll" |
|
|
|
|
|
class Poner1_0ConllConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for PONER 1.0 CoNNL""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for PONER 1.0 CoNNL. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Poner1_0ConllConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Poner1_0Conll(datasets.GeneratorBasedBuilder): |
|
"""PONER 1.0 CoNNL dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
Poner1_0ConllConfig(name="poner1_0conll", version=datasets.Version("1.0.0"), |
|
description="PONER 1.0 CoNNL dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-p", |
|
"I-p", |
|
"B-i", |
|
"I-i", |
|
"B-g", |
|
"I-g", |
|
"B-t", |
|
"I-t", |
|
"B-o", |
|
"I-o" |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://pero-ocr.fit.vutbr.cz", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager, dataset_path="../../../datasets/poner1.0"): |
|
"""Returns SplitGenerators.""" |
|
data_files = { |
|
"train": os.path.join(dataset_path, _TRAINING_FILE), |
|
"dev": os.path.join(dataset_path, _DEV_FILE), |
|
"test": os.path.join(dataset_path, _TEST_FILE), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
else: |
|
|
|
splits = line.split(" ") |
|
tokens.append(splits[0]) |
|
ner_tags.append(splits[1].rstrip()) |
|
|
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
|