PONER / scripts /poner-1_0.py
romanjanik's picture
Upload non-data
877a3f4 verified
# Author: Roman Janík
# Script for local loading PONER 1.0 CoNNL dataset and converting it to Hugging Face dataset format.
#
# This script if a modified version of conll2003/conll2003.py script by HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """
-
"""
_DESCRIPTION = """\
This is a Pero OCR NER 1.0 dataset in the CoNLL format. Each line in
the corpus contains information about one word/token. The first column is the actual
word, the second column is a Named Entity class in a BIO format. An empty line is a sentence separator.
"""
_TRAINING_FILE = "poner_train.conll"
_DEV_FILE = "poner_dev.conll"
_TEST_FILE = "poner_test.conll"
class Poner1_0ConllConfig(datasets.BuilderConfig):
"""BuilderConfig for PONER 1.0 CoNNL"""
def __init__(self, **kwargs):
"""BuilderConfig for PONER 1.0 CoNNL.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Poner1_0ConllConfig, self).__init__(**kwargs)
class Poner1_0Conll(datasets.GeneratorBasedBuilder):
"""PONER 1.0 CoNNL dataset."""
BUILDER_CONFIGS = [
Poner1_0ConllConfig(name="poner1_0conll", version=datasets.Version("1.0.0"),
description="PONER 1.0 CoNNL dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-p",
"I-p",
"B-i",
"I-i",
"B-g",
"I-g",
"B-t",
"I-t",
"B-o",
"I-o"
]
)
),
}
),
supervised_keys=None,
homepage="https://pero-ocr.fit.vutbr.cz",
citation=_CITATION,
)
def _split_generators(self, dl_manager, dataset_path="../../../datasets/poner1.0"):
"""Returns SplitGenerators."""
data_files = {
"train": os.path.join(dataset_path, _TRAINING_FILE),
"dev": os.path.join(dataset_path, _DEV_FILE),
"test": os.path.join(dataset_path, _TEST_FILE),
}
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
# conll2003 tokens are space separated
splits = line.split(" ")
tokens.append(splits[0])
ner_tags.append(splits[1].rstrip())
# last example
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}