File size: 4,775 Bytes
877a3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Author: Roman Janík
# Script for local loading PONER 1.0 CoNNL dataset and converting it to Hugging Face dataset format.
#
# This script if a modified version of conll2003/conll2003.py script by HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """
-
"""

_DESCRIPTION = """\
This is a Pero OCR NER 1.0 dataset in the CoNLL format. Each line in
the corpus contains information about one word/token. The first column is the actual
word, the second column is a Named Entity class in a BIO format. An empty line is a sentence separator.
"""

_TRAINING_FILE = "poner_train.conll"
_DEV_FILE = "poner_dev.conll"
_TEST_FILE = "poner_test.conll"


class Poner1_0ConllConfig(datasets.BuilderConfig):
    """BuilderConfig for PONER 1.0 CoNNL"""

    def __init__(self, **kwargs):
        """BuilderConfig for PONER 1.0 CoNNL.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(Poner1_0ConllConfig, self).__init__(**kwargs)


class Poner1_0Conll(datasets.GeneratorBasedBuilder):
    """PONER 1.0 CoNNL dataset."""

    BUILDER_CONFIGS = [
        Poner1_0ConllConfig(name="poner1_0conll", version=datasets.Version("1.0.0"),
                            description="PONER 1.0 CoNNL dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-p",
                                "I-p",
                                "B-i",
                                "I-i",
                                "B-g",
                                "I-g",
                                "B-t",
                                "I-t",
                                "B-o",
                                "I-o"
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://pero-ocr.fit.vutbr.cz",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager, dataset_path="../../../datasets/poner1.0"):
        """Returns SplitGenerators."""
        data_files = {
            "train": os.path.join(dataset_path, _TRAINING_FILE),
            "dev": os.path.join(dataset_path, _DEV_FILE),
            "test": os.path.join(dataset_path, _TEST_FILE),
        }

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    # conll2003 tokens are space separated
                    splits = line.split(" ")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())
            # last example
            if tokens:
                yield guid, {
                    "id": str(guid),
                    "tokens": tokens,
                    "ner_tags": ner_tags,
                }