File size: 1,808 Bytes
3487f40 c9ff6bd 4ecadde c9ff6bd 4ecadde c9ff6bd 4ecadde c9ff6bd 4ecadde c9ff6bd 4ecadde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
# Criteo_x1
+ **Dataset description:**
The Criteo dataset is a widely-used benchmark dataset for CTR prediction, which contains about one week of click-through data for display advertising. It has 13 numerical feature fields and 26 categorical feature fields. Following the [AFN](https://ojs.aaai.org/index.php/AAAI/article/view/5768) work, we randomly split the data into 7:2:1\* as the training set, validation set, and test set, respectively.
The dataset statistics are summarized as follows:
| Dataset Split | Total | #Train | #Validation | #Test |
| :--------: | :-----: |:-----: | :----------: | :----: |
| Criteo_x1 | 45,840,617 | 33,003,326 | 8,250,124 | 4,587,167 |
+ **Source:** https://www.kaggle.com/c/criteo-display-ad-challenge/data
+ **Download:** https://huggingface.co/datasets/reczoo/Criteo_x1/tree/main
+ **Repository:** https://github.com/reczoo/Datasets
+ **Used by papers:**
- Weiyu Cheng, Yanyan Shen, Linpeng Huang. [Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://ojs.aaai.org/index.php/AAAI/article/view/5768). In AAAI 2020.
- Kelong Mao, Jieming Zhu, Liangcai Su, Guohao Cai, Yuru Li, Zhenhua Dong. [FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction](https://arxiv.org/abs/2304.00902). In AAAI 2023.
- Jieming Zhu, Qinglin Jia, Guohao Cai, Quanyu Dai, Jingjie Li, Zhenhua Dong, Ruiming Tang, Rui Zhang. [FINAL: Factorized Interaction Layer for CTR Prediction](https://dl.acm.org/doi/10.1145/3539618.3591988). In SIGIR 2023.
+ **Check the md5sum for data integrity:**
```bash
$ md5sum train.csv valid.csv test.csv
30b89c1c7213013b92df52ec44f52dc5 train.csv
f73c71fb3c4f66b6ebdfa032646bea72 valid.csv
2c48b26e84c04a69b948082edae46f8c test.csv
```
|