Datasets:

Modalities:
Tabular
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
zhujiem commited on
Commit
c9ff6bd
·
1 Parent(s): cdaa44d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -0
README.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ The Criteo dataset is a widely-used benchmark dataset for CTR prediction, which contains about one week of click-through data for display advertising. It has 13 numerical feature fields and 26 categorical feature fields. We provide the reusable, processed dataset released by [the BARS benchmark](https://openbenchmark.github.io), which are randomly split into 7:2:1 as the training set, validation set, and test set, respectively.
3
+
4
+ ### Dataset Details
5
+
6
+ + **Repository:** https://github.com/reczoo/BARS/tree/main/datasets/Criteo#criteo_x1
7
+
8
+ + **Used by papers:**
9
+ - Kelong Mao, Jieming Zhu, Liangcai Su, Guohao Cai, Yuru Li, Zhenhua Dong. [FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction](https://arxiv.org/abs/2304.00902). In AAAI 2023.
10
+ - Jieming Zhu, Qinglin Jia, Guohao Cai, Quanyu Dai, Jingjie Li, Zhenhua Dong, Ruiming Tang, Rui Zhang. [FINAL: Factorized Interaction Layer for CTR Prediction](https://dl.acm.org/doi/10.1145/3539618.3591988). In SIGIR 2023.
11
+ - Weiyu Cheng, Yanyan Shen, Linpeng Huang. [Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://ojs.aaai.org/index.php/AAAI/article/view/5768). In AAAI 2020.
12
+
13
+ + **Check the md5sum for data integrity:**
14
+ ```bash
15
+ $ md5sum train.csv valid.csv test.csv
16
+ 30b89c1c7213013b92df52ec44f52dc5 train.csv
17
+ f73c71fb3c4f66b6ebdfa032646bea72 valid.csv
18
+ 2c48b26e84c04a69b948082edae46f8c test.csv
19
+ ```