The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Dataset Card for CelebFaces Attributes (CelebA)
Dataset Details
Dataset Description
The CelebFaces Attributes Dataset (CelebA) consists of 202,599 facial images of 10,177 individuals, annotated with 40 binary attributes per image (e.g., smiling, eyeglasses, male/female).
In our repository, we use only the images and attributes, making the dataset suitable for multi-label classification.
Dataset Sources
- Homepage: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
- Paper: Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In Proceedings of the IEEE international conference on computer vision (pp. 3730-3738).
Dataset Structure
Total images: 202,599
Attributes: 40 binary labels per image
Splits:
Train: 162,770 images
Validation: 19,867 images
Test: 19,962 images
Image specs: JPEG format, RGB images
Example Usage
Below is a quick example of how to load this dataset via the Hugging Face Datasets library.
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("randall-lab/celeb-a", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/celeb-a", split="test", trust_remote_code=True)
# dataset = load_dataset("randall-lab/celeb-a", split="validation", trust_remote_code=True)
# Access a sample from the dataset
example = dataset[0]
image = example["image"]
attributes = example["attributes"]
image.show() # Display the image
print(f"Attributes: {attributes}")
Citation
BibTeX:
@inproceedings{liu2015faceattributes, title = {Deep Learning Face Attributes in the Wild}, author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou}, booktitle = {Proceedings of International Conference on Computer Vision (ICCV)}, month = {December}, year = {2015} }
- Downloads last month
- 7