brain-structure / brain-structure.py
jesse-radiata's picture
Add files using upload-large-folder tool
3e3f6c5 verified
import os
import json
import logging
import datasets
from pathlib import Path
logger = logging.getLogger(__name__)
_DESCRIPTION = """
A collection of T1-weighted .nii.gz structural MRI scans in a BIDS-like arrangement,
with JSON sidecar metadata indicating train/validation/test splits.
"""
_CITATION = """
@dataset{Radiata-Brain-Structure,
author = {Jesse Brown and Clayton Young},
title = {Brain-Structure: Processed Structural MRI Brain Scans Across the Lifespan},
year = {2025},
url = {https://huggingface.co/datasets/radiata-ai/brain-structure},
note = {Version 1.0},
publisher = {Hugging Face}
}
"""
_HOMEPAGE = "https://huggingface.co/datasets/radiata-ai/brain-structure"
_LICENSE = "ODC-By v1.0"
# The "resolve/main/data.zip" part ensures it grabs data.zip from your 'main' branch.
_DATA_URL = "https://huggingface.co/datasets/radiata-ai/brain-structure/resolve/main/data.zip"
class BrainStructureConfig(datasets.BuilderConfig):
"""Configuration for Brain-Structure dataset (if you need multiple, define them here)."""
def __init__(self, **kwargs):
super().__init__(**kwargs)
class BrainStructure(datasets.GeneratorBasedBuilder):
"""
A dataset loader for T1 .nii.gz files plus JSON sidecars stored in a single ZIP.
Usage:
ds_train = load_dataset("radiata-ai/brain-structure", split="train", trust_remote_code=True)
"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
BrainStructureConfig(
name="default",
version=VERSION,
description="Structural MRIs with sidecar metadata. Splits (train/val/test) indicated in the sidecars.",
)
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"nii_filepath": datasets.Value("string"),
"metadata": {
"split": datasets.Value("string"),
"participant_id": datasets.Value("string"),
"session_id": datasets.Value("string"),
"study": datasets.Value("string"),
"age": datasets.Value("int32"),
"sex": datasets.Value("string"),
"clinical_diagnosis": datasets.Value("string"),
"scanner_manufacturer": datasets.Value("string"),
"scanner_model": datasets.Value("string"),
"field_strength": datasets.Value("string"),
"image_quality_rating": datasets.Value("float"),
"total_intracranial_volume": datasets.Value("float"),
"license": datasets.Value("string"),
"website": datasets.Value("string"),
"citation": datasets.Value("string"),
"t1_file_name": datasets.Value("string"),
"radiata_id": datasets.Value("int32"),
},
}
),
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""
Downloads and extracts 'data.zip', then defines train/validation/test splits
by matching sidecars with 'split': 'train'/'validation'/'test'.
"""
# Download and extract your single ZIP containing all subfolders
extracted_dir = dl_manager.download_and_extract(_DATA_URL)
# The ZIP will typically unzip into a folder named "data" or similar. We'll just scan everything inside.
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_dir": extracted_dir, "desired_split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data_dir": extracted_dir, "desired_split": "validation"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data_dir": extracted_dir, "desired_split": "test"},
),
]
def _generate_examples(self, data_dir, desired_split):
"""
Recursively find sidecar JSONs with 'split' matching desired_split.
For each, yield an example containing the .nii.gz path + metadata.
"""
id_ = 0
data_path = Path(data_dir)
for json_path in data_path.rglob("*_scandata.json"):
with open(json_path, "r") as f:
sidecar = json.load(f)
# Only yield if sidecar["split"] matches
if sidecar.get("split") == desired_split:
# Build a base prefix from the JSON filename (minus "_scandata")
# e.g. "msub-OASIS20133_ses-03"
base_prefix = json_path.stem.replace("_scandata", "")
# Search for a NIfTI that starts with that prefix and includes '_T1w'
nii_path = None
for potential_nii in json_path.parent.glob(f"{base_prefix}*_T1w*.nii.gz"):
nii_path = potential_nii
break
if not nii_path or not nii_path.is_file():
logger.warning(f"No .nii.gz found for {json_path}")
continue
yield id_, {
"id": str(id_),
"nii_filepath": str(nii_path),
"metadata": {
"split": sidecar.get("split", ""),
"participant_id": sidecar.get("participant_id", ""),
"session_id": sidecar.get("session_id", ""),
"study": sidecar.get("study", ""),
"age": sidecar.get("age", 0),
"sex": sidecar.get("sex", ""),
"clinical_diagnosis": sidecar.get("clinical_diagnosis", ""),
"scanner_manufacturer": sidecar.get("scanner_manufacturer", ""),
"scanner_model": sidecar.get("scanner_model", ""),
"field_strength": sidecar.get("field_strength", ""),
"image_quality_rating": float(sidecar.get("image_quality_rating", 0.0)),
"total_intracranial_volume": float(sidecar.get("total_intracranial_volume", 0.0)),
"license": sidecar.get("license", ""),
"website": sidecar.get("website", ""),
"citation": sidecar.get("citation", ""),
"t1_file_name": sidecar.get("t1_file_name", ""),
"radiata_id": sidecar.get("radiata_id", 0),
},
}
id_ += 1