File size: 8,277 Bytes
e948260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import json
import datasets
import logging

logger = logging.getLogger(__name__)

_DESCRIPTION = """
This dataset contains 3D MRI scans in NIfTI (.nii.gz) format, organized in a BIDS-like structure,
alongside JSON sidecar files with metadata. The data represents structural brain MRI scans from
multiple studies. For each scan, a `.nii.gz` file is provided, along with a `.json` file containing
subject/session metadata, scanner information, clinical diagnoses, etc.
"""

_CITATION = """
@article{exampleCitation2024,
  title={Example Brain MRI Dataset Citation},
  author={Your Name and Others},
  journal={Journal of Great Datasets},
  year={2024},
}
"""

_HOMEPAGE = "https://huggingface.co/datasets/radiata-ai/brains-structure"

_LICENSE = "Multiple study-specific licenses; see JSON sidecars for details."

class BrainsStructureConfig(datasets.BuilderConfig):
    """BuilderConfig for the Brains-Structure dataset."""
    def __init__(self, **kwargs):
        super(BrainsStructureConfig, self).__init__(**kwargs)


class BrainsStructure(datasets.GeneratorBasedBuilder):
    """
    A Hugging Face dataset loader for the "Brains Structure" dataset
    containing .nii.gz MRI scans plus JSON sidecar metadata.

    Users must pass `trust_remote_code=True` to load, e.g.:
        ds = load_dataset("radiata-ai/brains-structure", name="all", split="train", trust_remote_code=True)
    """

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        BrainsStructureConfig(
            name="all",
            version=VERSION,
            description="All structural MRI data from multiple studies in a BIDS-like arrangement.",
        ),
    ]
    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        """
        Return the dataset metadata: features, description, homepage, citation, etc.
        """
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "nii_filepath": datasets.Value("string"),
                    "metadata": {
                        "participant_id": datasets.Value("string"),
                        "session_id": datasets.Value("string"),
                        "study": datasets.Value("string"),
                        "age": datasets.Value("int32"),
                        "sex": datasets.Value("string"),
                        "clinical_diagnosis": datasets.Value("string"),
                        "scanner_manufacturer": datasets.Value("string"),
                        "scanner_model": datasets.Value("string"),
                        "field_strength": datasets.Value("string"),
                        "image_quality_rating": datasets.Value("string"),
                        "total_intracranial_volume": datasets.Value("string"),
                        "split": datasets.Value("string"),
                        "license": datasets.Value("string"),
                        "website": datasets.Value("string"),
                        "citation": datasets.Value("string"),
                    },
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        """
        If your data needs to be downloaded, you'd do that here.
        However, we assume the data is already in the repository.
        We'll discover the data locally.
        """
        # We can get the data_dir from config/data_dir or from the repository local path
        # By default, _split_generators receives a `dl_manager` that references the local dataset folder
        data_dir = dl_manager.manual_dir if dl_manager.manual_dir else dl_manager.dataset_dir

        # We'll just generate a single "train"/"validation"/"test" split
        # based on the sidecar "split" field. 
        # Alternatively, you could create three separate splits if you want them enumerated automatically.
        # For now, let's do a single "train" containing everything, or "all" approach.

        # The simplest approach is to define them as separate splits:
        # We'll parse the entire directory, grouping by sidecar "split" field.

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir, "split_key": "train"}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": data_dir, "split_key": "validation"}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_dir": data_dir, "split_key": "test"}),
        ]

    def _generate_examples(self, data_dir, split_key):
        """
        This function loads the .nii.gz + .json sidecar files from data_dir,
        yields a tuple (id_, example).
        The "split" field in the JSON sidecar indicates train/val/test.
        We'll filter only those sidecars whose "split" matches `split_key`.
        """
        # We'll do a recursive walk of data_dir. For each JSON sidecar, read it,
        # check if "split" == split_key. If so, yield the example.
        
        id_ = 0
        for root, dirs, files in os.walk(data_dir):
            # For each JSON file in the directory, attempt to pair it with the corresponding .nii.gz
            for fname in files:
                if fname.endswith("_scandata.json"):
                    sidecar_path = os.path.join(root, fname)
                    with open(sidecar_path, "r") as f:
                        metadata = json.load(f)
                    
                    if metadata.get("split", None) == split_key:
                        # Build the .nii.gz path
                        # Typically, it's sub-XYZ_ses-XYZ_T1w.nii.gz or similar
                        # We'll guess it's in the same folder with a name that starts the same except `_scandata.json`
                        possible_nii_prefix = fname.replace("_scandata.json", "_T1w")
                        # Find any .nii.gz that starts with that prefix
                        nii_filepath = None
                        for possible_nii in files:
                            if possible_nii.startswith(possible_nii_prefix) and possible_nii.endswith(".nii.gz"):
                                nii_filepath = os.path.join(root, possible_nii)
                                break

                        # If not found, skip
                        if not nii_filepath:
                            logger.warning(f"No corresponding .nii.gz file found for {sidecar_path}")
                            continue

                        # Build the example
                        yield id_, {
                            "id": str(id_),
                            "nii_filepath": nii_filepath,
                            "metadata": {
                                "participant_id": str(metadata.get("participant_id", "")),
                                "session_id": str(metadata.get("session_id", "")),
                                "study": str(metadata.get("study", "")),
                                "age": metadata.get("age", None),
                                "sex": str(metadata.get("sex", "")),
                                "clinical_diagnosis": str(metadata.get("clinical_diagnosis", "")),
                                "scanner_manufacturer": str(metadata.get("scanner_manufacturer", "")),
                                "scanner_model": str(metadata.get("scanner_model", "")),
                                "field_strength": str(metadata.get("field_strength", "")),
                                "image_quality_rating": str(metadata.get("image_quality_rating", "")),
                                "total_intracranial_volume": str(metadata.get("total_intracranial_volume", "")),
                                "split": str(metadata.get("split", "")),
                                "license": str(metadata.get("license", "")),
                                "website": str(metadata.get("website", "")),
                                "citation": str(metadata.get("citation", "")),
                            },
                        }
                        id_ += 1