id
stringlengths 14
15
| text
stringlengths 49
2.47k
| source
stringlengths 61
166
|
---|---|---|
cffb9fdd9dcf-1 | minimum: 0
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param temperature: Optional[float] = 0.6¶
Temperature value.
exclusiveMinimum: 0
param tfs: Optional[float] = 0.9¶
Tail free sampling value.
maximum: 1
minimum: 0
param top_a: Optional[float] = 0.9¶
Top-a sampling value.
minimum: 0
param top_k: Optional[int] = 0¶
Top-k sampling value.
minimum: 0
param top_p: Optional[float] = 0.95¶
Top-p sampling value.
maximum: 1
minimum: 0
param typical: Optional[float] = 0.5¶
Typical sampling value.
maximum: 1
minimum: 0
param use_authors_note: Optional[bool] = False¶
Whether to use the author’s note from the KoboldAI GUI when generating text.
This has no effect unless use_story is also enabled.
param use_memory: Optional[bool] = False¶
Whether to use the memory from the KoboldAI GUI when generating text.
param use_story: Optional[bool] = False¶
Whether or not to use the story from the KoboldAI GUI when generating text.
param use_world_info: Optional[bool] = False¶
Whether to use the world info from the KoboldAI GUI when generating text.
param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html |
cffb9fdd9dcf-2 | Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models). | https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html |
cffb9fdd9dcf-3 | text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings. | https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html |
cffb9fdd9dcf-4 | first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data | https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html |
cffb9fdd9dcf-5 | the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_orm(obj: Any) → Model¶
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings. | https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html |
cffb9fdd9dcf-6 | first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html |
cffb9fdd9dcf-7 | json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string. | https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html |
cffb9fdd9dcf-8 | to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html |
cffb9fdd9dcf-9 | classmethod validate(value: Any) → Model¶
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
Examples using KoboldApiLLM¶
KoboldAI API | https://api.python.langchain.com/en/latest/llms/langchain.llms.koboldai.KoboldApiLLM.html |
c6df5242049b-0 | langchain.llms.octoai_endpoint.OctoAIEndpoint¶
class langchain.llms.octoai_endpoint.OctoAIEndpoint[source]¶
Bases: LLM
OctoAI LLM Endpoints.
OctoAIEndpoint is a class to interact with OctoAICompute Service large language model endpoints.
To use, you should have the octoai python package installed, and the
environment variable OCTOAI_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Example
from langchain.llms.octoai_endpoint import OctoAIEndpoint
OctoAIEndpoint(
octoai_api_token="octoai-api-key",
endpoint_url="https://mpt-7b-demo-kk0powt97tmb.octoai.cloud/generate",
model_kwargs={
"max_new_tokens": 200,
"temperature": 0.75,
"top_p": 0.95,
"repetition_penalty": 1,
"seed": None,
"stop": [],
},
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param endpoint_url: Optional[str] = None¶
Endpoint URL to use.
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param model_kwargs: Optional[dict] = None¶
Key word arguments to pass to the model.
param octoai_api_token: Optional[str] = None¶
OCTOAI API Token | https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html |
c6df5242049b-1 | OCTOAI API Token
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API. | https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html |
c6df5242049b-2 | This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns | https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html |
c6df5242049b-3 | to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values | https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html |
c6df5242049b-4 | Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_orm(obj: Any) → Model¶
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations. | https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html |
c6df5242049b-5 | Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters | https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html |
c6df5242049b-6 | Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction. | https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html |
c6df5242049b-7 | Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html |
c6df5242049b-8 | stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
Examples using OctoAIEndpoint¶
OctoAI Compute Service | https://api.python.langchain.com/en/latest/llms/langchain.llms.octoai_endpoint.OctoAIEndpoint.html |
a5a2eda802fb-0 | langchain.llms.azureml_endpoint.AzureMLEndpointClient¶
class langchain.llms.azureml_endpoint.AzureMLEndpointClient(endpoint_url: str, endpoint_api_key: str, deployment_name: str = '')[source]¶
AzureML Managed Endpoint client.
Initialize the class.
Methods
__init__(endpoint_url, endpoint_api_key[, ...])
Initialize the class.
call(body, **kwargs)
call.
__init__(endpoint_url: str, endpoint_api_key: str, deployment_name: str = '') → None[source]¶
Initialize the class.
call(body: bytes, **kwargs: Any) → bytes[source]¶
call.
Examples using AzureMLEndpointClient¶
AzureML Online Endpoint | https://api.python.langchain.com/en/latest/llms/langchain.llms.azureml_endpoint.AzureMLEndpointClient.html |
f81a969caba4-0 | langchain.llms.base.get_prompts¶
langchain.llms.base.get_prompts(params: Dict[str, Any], prompts: List[str]) → Tuple[Dict[int, List], str, List[int], List[str]][source]¶
Get prompts that are already cached. | https://api.python.langchain.com/en/latest/llms/langchain.llms.base.get_prompts.html |
6372edc8f252-0 | langchain.llms.clarifai.Clarifai¶
class langchain.llms.clarifai.Clarifai[source]¶
Bases: LLM
Clarifai large language models.
To use, you should have an account on the Clarifai platform,
the clarifai python package installed, and the
environment variable CLARIFAI_PAT set with your PAT key,
or pass it as a named parameter to the constructor.
Example
from langchain.llms import Clarifai
clarifai_llm = Clarifai(pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_base: str = 'https://api.clarifai.com'¶
param app_id: Optional[str] = None¶
Clarifai application id to use.
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param model_id: Optional[str] = None¶
Model id to use.
param model_version_id: Optional[str] = None¶
Model version id to use.
param pat: Optional[str] = None¶
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param userDataObject: Any = None¶
param user_id: Optional[str] = None¶
Clarifai user id to use.
param verbose: bool [Optional]¶
Whether to print out response text. | https://api.python.langchain.com/en/latest/llms/langchain.llms.clarifai.Clarifai.html |
6372edc8f252-1 | param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value, | https://api.python.langchain.com/en/latest/llms/langchain.llms.clarifai.Clarifai.html |
6372edc8f252-2 | need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.clarifai.Clarifai.html |
6372edc8f252-3 | Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters | https://api.python.langchain.com/en/latest/llms/langchain.llms.clarifai.Clarifai.html |
6372edc8f252-4 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_orm(obj: Any) → Model¶
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters | https://api.python.langchain.com/en/latest/llms/langchain.llms.clarifai.Clarifai.html |
6372edc8f252-5 | Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.clarifai.Clarifai.html |
6372edc8f252-6 | json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string. | https://api.python.langchain.com/en/latest/llms/langchain.llms.clarifai.Clarifai.html |
6372edc8f252-7 | to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.clarifai.Clarifai.html |
6372edc8f252-8 | classmethod validate(value: Any) → Model¶
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
Examples using Clarifai¶
Clarifai | https://api.python.langchain.com/en/latest/llms/langchain.llms.clarifai.Clarifai.html |
0a93c780e045-0 | langchain.llms.writer.Writer¶
class langchain.llms.writer.Writer[source]¶
Bases: LLM
Writer large language models.
To use, you should have the environment variable WRITER_API_KEY and
WRITER_ORG_ID set with your API key and organization ID respectively.
Example
from langchain import Writer
writer = Writer(model_id="palmyra-base")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param base_url: Optional[str] = None¶
Base url to use, if None decides based on model name.
param best_of: Optional[int] = None¶
Generates this many completions server-side and returns the “best”.
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param logprobs: bool = False¶
Whether to return log probabilities.
param max_tokens: Optional[int] = None¶
Maximum number of tokens to generate.
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param min_tokens: Optional[int] = None¶
Minimum number of tokens to generate.
param model_id: str = 'palmyra-instruct'¶
Model name to use.
param n: Optional[int] = None¶
How many completions to generate.
param presence_penalty: Optional[float] = None¶
Penalizes repeated tokens regardless of frequency.
param repetition_penalty: Optional[float] = None¶
Penalizes repeated tokens according to frequency.
param stop: Optional[List[str]] = None¶
Sequences when completion generation will stop.
param tags: Optional[List[str]] = None¶
Tags to add to the run trace. | https://api.python.langchain.com/en/latest/llms/langchain.llms.writer.Writer.html |
0a93c780e045-1 | param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param temperature: Optional[float] = None¶
What sampling temperature to use.
param top_p: Optional[float] = None¶
Total probability mass of tokens to consider at each step.
param verbose: bool [Optional]¶
Whether to print out response text.
param writer_api_key: Optional[str] = None¶
Writer API key.
param writer_org_id: Optional[str] = None¶
Writer organization ID.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input. | https://api.python.langchain.com/en/latest/llms/langchain.llms.writer.Writer.html |
0a93c780e045-2 | Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.writer.Writer.html |
0a93c780e045-3 | Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.writer.Writer.html |
0a93c780e045-4 | Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_orm(obj: Any) → Model¶
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input. | https://api.python.langchain.com/en/latest/llms/langchain.llms.writer.Writer.html |
0a93c780e045-5 | Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.writer.Writer.html |
0a93c780e045-6 | get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.writer.Writer.html |
0a93c780e045-7 | classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”) | https://api.python.langchain.com/en/latest/llms/langchain.llms.writer.Writer.html |
0a93c780e045-8 | .. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable. | https://api.python.langchain.com/en/latest/llms/langchain.llms.writer.Writer.html |
0a93c780e045-9 | property lc_serializable: bool¶
Return whether or not the class is serializable.
Examples using Writer¶
Writer | https://api.python.langchain.com/en/latest/llms/langchain.llms.writer.Writer.html |
da1cf760a791-0 | langchain.llms.sagemaker_endpoint.LLMContentHandler¶
class langchain.llms.sagemaker_endpoint.LLMContentHandler[source]¶
Content handler for LLM class.
Attributes
accepts
The MIME type of the response data returned from endpoint
content_type
The MIME type of the input data passed to endpoint
Methods
__init__()
transform_input(prompt, model_kwargs)
Transforms the input to a format that model can accept as the request Body.
transform_output(output)
Transforms the output from the model to string that the LLM class expects.
__init__()¶
abstract transform_input(prompt: INPUT_TYPE, model_kwargs: Dict) → bytes¶
Transforms the input to a format that model can accept
as the request Body. Should return bytes or seekable file
like object in the format specified in the content_type
request header.
abstract transform_output(output: bytes) → OUTPUT_TYPE¶
Transforms the output from the model to string that
the LLM class expects.
Examples using LLMContentHandler¶
SageMaker Endpoint
SageMakerEndpoint | https://api.python.langchain.com/en/latest/llms/langchain.llms.sagemaker_endpoint.LLMContentHandler.html |
14ad1dfa45d2-0 | langchain.llms.baseten.Baseten¶
class langchain.llms.baseten.Baseten[source]¶
Bases: LLM
Baseten models.
To use, you should have the baseten python package installed,
and run baseten.login() with your Baseten API key.
The required model param can be either a model id or model
version id. Using a model version ID will result in
slightly faster invocation.
Any other model parameters can also
be passed in with the format input={model_param: value, …}
The Baseten model must accept a dictionary of input with the key
“prompt” and return a dictionary with a key “data” which maps
to a list of response strings.
Example
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param input: Dict[str, Any] [Optional]¶
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param model: str [Required]¶
param model_kwargs: Dict[str, Any] [Optional]¶
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.baseten.Baseten.html |
14ad1dfa45d2-1 | Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models). | https://api.python.langchain.com/en/latest/llms/langchain.llms.baseten.Baseten.html |
14ad1dfa45d2-2 | text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings. | https://api.python.langchain.com/en/latest/llms/langchain.llms.baseten.Baseten.html |
14ad1dfa45d2-3 | first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data | https://api.python.langchain.com/en/latest/llms/langchain.llms.baseten.Baseten.html |
14ad1dfa45d2-4 | the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_orm(obj: Any) → Model¶
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings. | https://api.python.langchain.com/en/latest/llms/langchain.llms.baseten.Baseten.html |
14ad1dfa45d2-5 | first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.baseten.Baseten.html |
14ad1dfa45d2-6 | json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string. | https://api.python.langchain.com/en/latest/llms/langchain.llms.baseten.Baseten.html |
14ad1dfa45d2-7 | to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.baseten.Baseten.html |
14ad1dfa45d2-8 | classmethod validate(value: Any) → Model¶
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
Examples using Baseten¶
Baseten | https://api.python.langchain.com/en/latest/llms/langchain.llms.baseten.Baseten.html |
49616fcf6ba0-0 | langchain.llms.pipelineai.PipelineAI¶
class langchain.llms.pipelineai.PipelineAI[source]¶
Bases: LLM, BaseModel
PipelineAI large language models.
To use, you should have the pipeline-ai python package installed,
and the environment variable PIPELINE_API_KEY set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example
from langchain import PipelineAI
pipeline = PipelineAI(pipeline_key="")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param pipeline_api_key: Optional[str] = None¶
param pipeline_key: str = ''¶
The id or tag of the target pipeline
param pipeline_kwargs: Dict[str, Any] [Optional]¶
Holds any pipeline parameters valid for create call not
explicitly specified.
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Check Cache and run the LLM on the given prompt and input. | https://api.python.langchain.com/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html |
49616fcf6ba0-1 | Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models). | https://api.python.langchain.com/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html |
49616fcf6ba0-2 | text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings. | https://api.python.langchain.com/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html |
49616fcf6ba0-3 | first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data | https://api.python.langchain.com/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html |
49616fcf6ba0-4 | the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_orm(obj: Any) → Model¶
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings. | https://api.python.langchain.com/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html |
49616fcf6ba0-5 | first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html |
49616fcf6ba0-6 | json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string. | https://api.python.langchain.com/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html |
49616fcf6ba0-7 | to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html |
49616fcf6ba0-8 | classmethod validate(value: Any) → Model¶
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
Examples using PipelineAI¶
PipelineAI | https://api.python.langchain.com/en/latest/llms/langchain.llms.pipelineai.PipelineAI.html |
a2a1c0b8973f-0 | langchain.llms.forefrontai.ForefrontAI¶
class langchain.llms.forefrontai.ForefrontAI[source]¶
Bases: LLM
ForefrontAI large language models.
To use, you should have the environment variable FOREFRONTAI_API_KEY
set with your API key.
Example
from langchain.llms import ForefrontAI
forefrontai = ForefrontAI(endpoint_url="")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param base_url: Optional[str] = None¶
Base url to use, if None decides based on model name.
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param endpoint_url: str = ''¶
Model name to use.
param forefrontai_api_key: Optional[str] = None¶
param length: int = 256¶
The maximum number of tokens to generate in the completion.
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param repetition_penalty: int = 1¶
Penalizes repeated tokens according to frequency.
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param temperature: float = 0.7¶
What sampling temperature to use.
param top_k: int = 40¶
The number of highest probability vocabulary tokens to
keep for top-k-filtering.
param top_p: float = 1.0¶
Total probability mass of tokens to consider at each step.
param verbose: bool [Optional]¶
Whether to print out response text. | https://api.python.langchain.com/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html |
a2a1c0b8973f-1 | param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value, | https://api.python.langchain.com/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html |
a2a1c0b8973f-2 | need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html |
a2a1c0b8973f-3 | Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters | https://api.python.langchain.com/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html |
a2a1c0b8973f-4 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_orm(obj: Any) → Model¶
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters | https://api.python.langchain.com/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html |
a2a1c0b8973f-5 | Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html |
a2a1c0b8973f-6 | json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string. | https://api.python.langchain.com/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html |
a2a1c0b8973f-7 | to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html |
a2a1c0b8973f-8 | classmethod validate(value: Any) → Model¶
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
Examples using ForefrontAI¶
ForefrontAI | https://api.python.langchain.com/en/latest/llms/langchain.llms.forefrontai.ForefrontAI.html |
60030d3df3ac-0 | langchain.llms.base.create_base_retry_decorator¶
langchain.llms.base.create_base_retry_decorator(error_types: List[Type[BaseException]], max_retries: int = 1, run_manager: Optional[Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]] = None) → Callable[[Any], Any][source]¶
Create a retry decorator for a given LLM and provided list of error types. | https://api.python.langchain.com/en/latest/llms/langchain.llms.base.create_base_retry_decorator.html |
963f0a2e269d-0 | langchain.llms.promptlayer_openai.PromptLayerOpenAIChat¶
class langchain.llms.promptlayer_openai.PromptLayerOpenAIChat[source]¶
Bases: OpenAIChat
Wrapper around OpenAI large language models.
To use, you should have the openai and promptlayer python
package installed, and the environment variable OPENAI_API_KEY
and PROMPTLAYER_API_KEY set with your openAI API key and
promptlayer key respectively.
All parameters that can be passed to the OpenAIChat LLM can also
be passed here. The PromptLayerOpenAIChat adds two optional
Parameters
pl_tags – List of strings to tag the request with.
return_pl_id – If True, the PromptLayer request ID will be
returned in the generation_info field of the
Generation object.
Example
from langchain.llms import PromptLayerOpenAIChat
openaichat = PromptLayerOpenAIChat(model_name="gpt-3.5-turbo")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_special: Union[Literal['all'], AbstractSet[str]] = {}¶
Set of special tokens that are allowed。
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param disallowed_special: Union[Literal['all'], Collection[str]] = 'all'¶
Set of special tokens that are not allowed。
param max_retries: int = 6¶
Maximum number of retries to make when generating.
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param model_kwargs: Dict[str, Any] [Optional]¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html |
963f0a2e269d-1 | param model_kwargs: Dict[str, Any] [Optional]¶
Holds any model parameters valid for create call not explicitly specified.
param model_name: str = 'gpt-3.5-turbo'¶
Model name to use.
param openai_api_base: Optional[str] = None¶
param openai_api_key: Optional[str] = None¶
param openai_proxy: Optional[str] = None¶
param pl_tags: Optional[List[str]] = None¶
param prefix_messages: List [Optional]¶
Series of messages for Chat input.
param return_pl_id: Optional[bool] = False¶
param streaming: bool = False¶
Whether to stream the results or not.
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html |
963f0a2e269d-2 | async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns | https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html |
963f0a2e269d-3 | to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html |
963f0a2e269d-4 | batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_orm(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html |
963f0a2e269d-5 | classmethod from_orm(obj: Any) → Model¶
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns | https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html |
963f0a2e269d-6 | to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Get the token IDs using the tiktoken package.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). | https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html |
963f0a2e269d-7 | classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters | https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html |
963f0a2e269d-8 | Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids. | https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html |
963f0a2e269d-9 | Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable. | https://api.python.langchain.com/en/latest/llms/langchain.llms.promptlayer_openai.PromptLayerOpenAIChat.html |
89a9e8405ff2-0 | langchain.llms.ollama.Ollama¶
class langchain.llms.ollama.Ollama[source]¶
Bases: BaseLLM, _OllamaCommon
Ollama locally run large language models.
To use, follow the instructions at https://ollama.ai/.
Example
from langchain.llms import Ollama
ollama = Ollama(model="llama2")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param base_url = 'http://localhost:11434'¶
Base url the model is hosted under.
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param mirostat: Optional[int] = None¶
Enable Mirostat sampling for controlling perplexity.
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)
param mirostat_eta: Optional[float] = None¶
Influences how quickly the algorithm responds to feedback
from the generated text. A lower learning rate will result in
slower adjustments, while a higher learning rate will make
the algorithm more responsive. (Default: 0.1)
param mirostat_tau: Optional[float] = None¶
Controls the balance between coherence and diversity
of the output. A lower value will result in more focused and
coherent text. (Default: 5.0)
param model: str = 'llama2'¶
Model name to use.
param num_ctx: Optional[int] = None¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html |
89a9e8405ff2-1 | Model name to use.
param num_ctx: Optional[int] = None¶
Sets the size of the context window used to generate the
next token. (Default: 2048)
param num_gpu: Optional[int] = None¶
The number of GPUs to use. On macOS it defaults to 1 to
enable metal support, 0 to disable.
param num_thread: Optional[int] = None¶
Sets the number of threads to use during computation.
By default, Ollama will detect this for optimal performance.
It is recommended to set this value to the number of physical
CPU cores your system has (as opposed to the logical number of cores).
param repeat_last_n: Optional[int] = None¶
Sets how far back for the model to look back to prevent
repetition. (Default: 64, 0 = disabled, -1 = num_ctx)
param repeat_penalty: Optional[float] = None¶
Sets how strongly to penalize repetitions. A higher value (e.g., 1.5)
will penalize repetitions more strongly, while a lower value (e.g., 0.9)
will be more lenient. (Default: 1.1)
param stop: Optional[List[str]] = None¶
Sets the stop tokens to use.
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param temperature: Optional[float] = None¶
The temperature of the model. Increasing the temperature will
make the model answer more creatively. (Default: 0.8)
param tfs_z: Optional[float] = None¶
Tail free sampling is used to reduce the impact of less probable
tokens from the output. A higher value (e.g., 2.0) will reduce the
impact more, while a value of 1.0 disables this setting. (default: 1) | https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html |
89a9e8405ff2-2 | param top_k: Optional[int] = None¶
Reduces the probability of generating nonsense. A higher value (e.g. 100)
will give more diverse answers, while a lower value (e.g. 10)
will be more conservative. (Default: 40)
param top_p: Optional[int] = None¶
Works together with top-k. A higher value (e.g., 0.95) will lead
to more diverse text, while a lower value (e.g., 0.5) will
generate more focused and conservative text. (Default: 0.9)
param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input. | https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html |
89a9e8405ff2-3 | Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html |
89a9e8405ff2-4 | Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html |
89a9e8405ff2-5 | Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_orm(obj: Any) → Model¶
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input. | https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html |
89a9e8405ff2-6 | Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html |
89a9e8405ff2-7 | get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html |
89a9e8405ff2-8 | classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”) | https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html |
89a9e8405ff2-9 | .. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable. | https://api.python.langchain.com/en/latest/llms/langchain.llms.ollama.Ollama.html |
038feff78cf3-0 | langchain.llms.huggingface_endpoint.HuggingFaceEndpoint¶
class langchain.llms.huggingface_endpoint.HuggingFaceEndpoint[source]¶
Bases: LLM
HuggingFace Endpoint models.
To use, you should have the huggingface_hub python package installed, and the
environment variable HUGGINGFACEHUB_API_TOKEN set with your API token, or pass
it as a named parameter to the constructor.
Only supports text-generation and text2text-generation for now.
Example
from langchain.llms import HuggingFaceEndpoint
endpoint_url = (
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud"
)
hf = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token="my-api-key"
)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param endpoint_url: str = ''¶
Endpoint URL to use.
param huggingfacehub_api_token: Optional[str] = None¶
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param model_kwargs: Optional[dict] = None¶
Key word arguments to pass to the model.
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param task: Optional[str] = None¶
Task to call the model with.
Should be a task that returns generated_text or summary_text.
param verbose: bool [Optional]¶
Whether to print out response text. | https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html |
038feff78cf3-1 | param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value, | https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html |
038feff78cf3-2 | need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html |
038feff78cf3-3 | Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[str]¶
batch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters | https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html |
038feff78cf3-4 | Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_orm(obj: Any) → Model¶
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters | https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html |
038feff78cf3-5 | Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html |
038feff78cf3-6 | json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string. | https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html |
038feff78cf3-7 | to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[str]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html |
038feff78cf3-8 | classmethod validate(value: Any) → Model¶
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.Runnable[~langchain.schema.runnable.Input, ~langchain.schema.runnable.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException]] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable. | https://api.python.langchain.com/en/latest/llms/langchain.llms.huggingface_endpoint.HuggingFaceEndpoint.html |
7bb8c64566f1-0 | langchain.llms.openai.OpenAIChat¶
class langchain.llms.openai.OpenAIChat[source]¶
Bases: BaseLLM
OpenAI Chat large language models.
To use, you should have the openai python package installed, and the
environment variable OPENAI_API_KEY set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example
from langchain.llms import OpenAIChat
openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param allowed_special: Union[Literal['all'], AbstractSet[str]] = {}¶
Set of special tokens that are allowed。
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param disallowed_special: Union[Literal['all'], Collection[str]] = 'all'¶
Set of special tokens that are not allowed。
param max_retries: int = 6¶
Maximum number of retries to make when generating.
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param model_kwargs: Dict[str, Any] [Optional]¶
Holds any model parameters valid for create call not explicitly specified.
param model_name: str = 'gpt-3.5-turbo'¶
Model name to use.
param openai_api_base: Optional[str] = None¶
param openai_api_key: Optional[str] = None¶
param openai_proxy: Optional[str] = None¶
param prefix_messages: List [Optional]¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.openai.OpenAIChat.html |
7bb8c64566f1-1 | param prefix_messages: List [Optional]¶
Series of messages for Chat input.
param streaming: bool = False¶
Whether to stream the results or not.
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Check Cache and run the LLM on the given prompt and input.
async abatch(inputs: List[Union[PromptValue, str, List[BaseMessage]]], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, max_concurrency: Optional[int] = None, **kwargs: Any) → List[str]¶
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, *, tags: Optional[Union[List[str], List[List[str]]]] = None, metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Union[List[BaseCallbackHandler], BaseCallbackManager, None, List[Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]]]] = None, **kwargs: Any) → LLMResult¶ | https://api.python.langchain.com/en/latest/llms/langchain.llms.openai.OpenAIChat.html |
7bb8c64566f1-2 | Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → str¶
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed | https://api.python.langchain.com/en/latest/llms/langchain.llms.openai.OpenAIChat.html |
Subsets and Splits