Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
4
3.31k
type
stringclasses
14 values
library
stringclasses
23 values
imports
listlengths
1
59
filename
stringlengths
20
105
symbolic_name
stringlengths
1
89
docstring
stringlengths
0
1.75k
abgr : UU := abelian_group_category.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr
null
make_abgr (X : setwithbinop) (is : isabgrop (@op X)) : abgr := X ,, is.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
make_abgr
null
abgrconstr (X : abmonoid) (inv0 : X → X) (is : isinv (@op X) 0 inv0) : abgr.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrconstr
null
abgrtogr : abgr → gr := λ X, make_gr (pr1 X) (pr1 (pr2 X)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrtogr
null
abgrtoabmonoid : abgr → abmonoid := λ X, make_abmonoid (pr1 X) (pr1 (pr1 (pr2 X)) ,, pr2 (pr2 X)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrtoabmonoid
null
abgr_of_gr (X : gr) (H : iscomm (@op X)) : abgr := make_abgr X (make_isabgrop (pr2 X) H).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_of_gr
null
abelian_group_morphism (X Y : abgr) : UU := abelian_group_category⟦X, Y⟧%cat.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abelian_group_morphism
null
abelian_group_morphism_to_group_morphism {X Y : abgr} (f : abelian_group_morphism X Y) : group_morphism X Y := pr1 f ,, pr12 f.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abelian_group_morphism_to_group_morphism
null
abelian_group_to_monoid_morphism {X Y : abgr} (f : abelian_group_morphism X Y) : abelian_monoid_morphism X Y.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abelian_group_to_monoid_morphism
null
make_abelian_group_morphism {X Y : abgr} (f : X → Y) (H : isbinopfun f) : abelian_group_morphism X Y := (f ,, H) ,, (((tt ,, binopfun_preserves_unit f H) ,, binopfun_preserves_inv f H) ,, tt).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
make_abelian_group_morphism
null
binopfun_to_abelian_group_morphism {X Y : abgr} (f : binopfun X Y) : abelian_group_morphism X Y := make_abelian_group_morphism f (binopfunisbinopfun f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
binopfun_to_abelian_group_morphism
null
abelian_group_morphism_paths {X Y : abgr} (f g : abelian_group_morphism X Y) (H : (f : X → Y) = g) : f = g.
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abelian_group_morphism_paths
null
abelian_group_morphism_eq {X Y : abgr} {f g : abelian_group_morphism X Y} : (f = g) ≃ (∏ x, f x = g x).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abelian_group_morphism_eq
null
identity_abelian_group_morphism (X : abgr) : abelian_group_morphism X X := identity X.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
identity_abelian_group_morphism
null
composite_abelian_group_morphism {X Y Z : abgr} (f : abelian_group_morphism X Y) (g : abelian_group_morphism Y Z) : abelian_group_morphism X Z := (f · g)%cat.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
composite_abelian_group_morphism
null
unitabgr_isabgrop : isabgrop (@op unitabmonoid).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
unitabgr_isabgrop
*** Construction of the trivial abgr consisting of one element given by unit.
unitabgr : abgr := make_abgr unitabmonoid unitabgr_isabgrop.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
unitabgr
null
unel_abelian_group_morphism (X Y : abgr) : abelian_group_morphism X Y := binopfun_to_abelian_group_morphism (unelmonoidfun X Y).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
unel_abelian_group_morphism
null
abgrshombinop {X Y : abgr} (f g : abelian_group_morphism X Y) : abelian_group_morphism X Y.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshombinop
*** Abelian group structure on morphism between abelian groups
abgrshombinop_inv_isbinopfun {X Y : abgr} (f : abelian_group_morphism X Y) : isbinopfun (λ x : X, grinv Y (f x)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshombinop_inv_isbinopfun
null
abgrshombinop_inv {X Y : abgr} (f : abelian_group_morphism X Y) : abelian_group_morphism X Y := make_abelian_group_morphism _ (abgrshombinop_inv_isbinopfun f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshombinop_inv
null
abgrshombinop_linvax {X Y : abgr} (f : abelian_group_morphism X Y) : abgrshombinop (abgrshombinop_inv f) f = unel_abelian_group_morphism X Y.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshombinop_linvax
null
abgrshombinop_rinvax {X Y : abgr} (f : abelian_group_morphism X Y) : abgrshombinop f (abgrshombinop_inv f) = unel_abelian_group_morphism X Y.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshombinop_rinvax
null
abgrshomabgr_isabgrop (X Y : abgr) : isabgrop (abgrshombinop (X := X) (Y := Y)).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshomabgr_isabgrop
null
abgrshomabgr (X Y : abgr) : abgr.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrshomabgr
null
subabgr (X : abgr) := subgr X.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
subabgr
* 2. Subobjects
isabgrcarrier {X : abgr} (A : subgr X) : isabgrop (@op A).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isabgrcarrier
null
carrierofasubabgr {X : abgr} (A : subabgr X) : abgr.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
carrierofasubabgr
null
subabgr_incl {X : abgr} (A : subabgr X) : abelian_group_morphism A X := binopfun_to_abelian_group_morphism (X := A) (submonoid_incl A).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
subabgr_incl
null
abgr_kernel_hsubtype {A B : abgr} (f : abelian_group_morphism A B) : hsubtype A := monoid_kernel_hsubtype f.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_kernel_hsubtype
null
abgr_image_hsubtype {A B : abgr} (f : abelian_group_morphism A B) : hsubtype B := (λ y : B, ∃ x : A, (f x) = y).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_image_hsubtype
null
f : X → Y be a morphism of abelian groups.
Let
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
f
null
abgr_Kernel_subabgr_issubgr {A B : abgr} (f : abelian_group_morphism A B) : issubgr (abgr_kernel_hsubtype f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_Kernel_subabgr_issubgr
** Kernel as abelian group
abgr_Kernel_subabgr {A B : abgr} (f : abelian_group_morphism A B) : @subabgr A := subgrconstr (@abgr_kernel_hsubtype A B f) (abgr_Kernel_subabgr_issubgr f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_Kernel_subabgr
null
abgr_Kernel_abelian_group_morphism_isbinopfun {A B : abgr} (f : abelian_group_morphism A B) : isbinopfun (X := abgr_Kernel_subabgr f) (make_incl (pr1carrier (abgr_kernel_hsubtype f)) (isinclpr1carrier (abgr_kernel_hsubtype f))).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_Kernel_abelian_group_morphism_isbinopfun
** The inclusion Kernel f --> X is a morphism of abelian groups
abgr_image_issubgr {A B : abgr} (f : abelian_group_morphism A B) : issubgr (abgr_image_hsubtype f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_image_issubgr
** Image of f is a subgroup
abgr_image {A B : abgr} (f : abelian_group_morphism A B) : @subabgr B := @subgrconstr B (@abgr_image_hsubtype A B f) (abgr_image_issubgr f).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgr_image
null
isabgrquot {X : abgr} (R : binopeqrel X) : isabgrop (@op (setwithbinopquot R)).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isabgrquot
* 4. Quotient objects
abgrquot {X : abgr} (R : binopeqrel X) : abgr.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrquot
null
isabgrdirprod (X Y : abgr) : isabgrop (@op (setwithbinopdirprod X Y)).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isabgrdirprod
* 5. Direct products
abgrdirprod (X Y : abgr) : abgr.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdirprod
null
hrelabgrdiff (X : abmonoid) : hrel (X × X) := λ xa1 xa2, ∃ (x0 : X), (pr1 xa1 + pr2 xa2) + x0 = (pr1 xa2 + pr2 xa1) + x0.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
hrelabgrdiff
null
abgrdiffphi (X : abmonoid) (xa : X × X) : X × (totalsubtype X) := pr1 xa ,, make_carrier (λ x : X, htrue) (pr2 xa) tt.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffphi
null
hrelabgrdiff' (X : abmonoid) : hrel (X × X) := λ xa1 xa2, eqrelabmonoidfrac X (totalsubmonoid X) (abgrdiffphi X xa1) (abgrdiffphi X xa2).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
hrelabgrdiff
null
logeqhrelsabgrdiff (X : abmonoid) : hrellogeq (hrelabgrdiff' X) (hrelabgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
logeqhrelsabgrdiff
null
iseqrelabgrdiff (X : abmonoid) : iseqrel (hrelabgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iseqrelabgrdiff
null
eqrelabgrdiff (X : abmonoid) : @eqrel (abmonoiddirprod X X) := make_eqrel _ (iseqrelabgrdiff X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
eqrelabgrdiff
null
isbinophrelabgrdiff (X : abmonoid) : @isbinophrel (abmonoiddirprod X X) (hrelabgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isbinophrelabgrdiff
null
binopeqrelabgrdiff (X : abmonoid) : binopeqrel (abmonoiddirprod X X) := make_binopeqrel (eqrelabgrdiff X) (isbinophrelabgrdiff X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
binopeqrelabgrdiff
null
abgrdiffcarrier (X : abmonoid) : abmonoid := @abmonoidquot (abmonoiddirprod X X) (binopeqrelabgrdiff X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffcarrier
null
abgrdiffinvint (X : abmonoid) : X × X → X × X := λ xs, pr2 xs ,, pr1 xs.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffinvint
null
abgrdiffinvcomp (X : abmonoid) : iscomprelrelfun (hrelabgrdiff X) (eqrelabgrdiff X) (abgrdiffinvint X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffinvcomp
null
abgrdiffinv (X : abmonoid) : abgrdiffcarrier X → abgrdiffcarrier X := setquotfun (hrelabgrdiff X) (eqrelabgrdiff X) (abgrdiffinvint X) (abgrdiffinvcomp X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffinv
null
abgrdiffisinv (X : abmonoid) : isinv (@op (abgrdiffcarrier X)) 0 (abgrdiffinv X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffisinv
null
abgrdiff (X : abmonoid) : abgr := abgrconstr (abgrdiffcarrier X) (abgrdiffinv X) (abgrdiffisinv X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiff
null
prabgrdiff (X : abmonoid) : X → X → abgrdiff X := λ x x' : X, setquotpr (eqrelabgrdiff X) (x ,, x').
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
prabgrdiff
null
weqabgrdiffint (X : abmonoid) : weq (X × X) (X × totalsubtype X) := weqdirprodf (idweq X) (invweq (weqtotalsubtype X)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
weqabgrdiffint
* 7. Abelian group of fractions and abelian monoid of fractions
weqabgrdiff (X : abmonoid) : weq (abgrdiff X) (abmonoidfrac X (totalsubmonoid X)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
weqabgrdiff
null
toabgrdiff (X : abmonoid) (x : X) : abgrdiff X := setquotpr _ (x ,, 0).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
toabgrdiff
* 8. Canonical homomorphism to the abelian group of fractions
isbinopfuntoabgrdiff (X : abmonoid) : isbinopfun (toabgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isbinopfuntoabgrdiff
null
isinclprabgrdiff (X : abmonoid) (iscanc : ∏ x : X, isrcancelable (@op X) x) : ∏ x' : X, isincl (λ x, prabgrdiff X x x').
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isinclprabgrdiff
* 9. Abelian group of fractions in the case when all elements are cancelable
isincltoabgrdiff (X : abmonoid) (iscanc : ∏ x : X, isrcancelable (@op X) x) : isincl (toabgrdiff X) := isinclprabgrdiff X iscanc 0.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isincltoabgrdiff
null
isdeceqabgrdiff (X : abmonoid) (iscanc : ∏ x : X, isrcancelable (@op X) x) (is : isdeceq X) : isdeceq (abgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isdeceqabgrdiff
null
abgrdiffrelint (X : abmonoid) (L : hrel X) : hrel (setwithbinopdirprod X X) := λ xa yb, ∃ (c0 : X), L ((pr1 xa + pr2 yb) + c0) ((pr1 yb + pr2 xa) + c0).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrelint
* 10. Relations on the abelian group of fractions
abgrdiffrelint' (X : abmonoid) (L : hrel X) : hrel (setwithbinopdirprod X X) := λ xa1 xa2, abmonoidfracrelint _ (totalsubmonoid X) L (abgrdiffphi X xa1) (abgrdiffphi X xa2).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrelint
null
logeqabgrdiffrelints (X : abmonoid) (L : hrel X) : hrellogeq (abgrdiffrelint' X L) (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
logeqabgrdiffrelints
null
iscomprelabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) : iscomprelrel (eqrelabgrdiff X) (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iscomprelabgrdiffrelint
null
abgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) := quotrel (iscomprelabgrdiffrelint X is).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrel
null
abgrdiffrel' (X : abmonoid) {L : hrel X} (is : isbinophrel L) : hrel (abgrdiff X) := λ x x', abmonoidfracrel X (totalsubmonoid X) (isbinoptoispartbinop _ _ is) (weqabgrdiff X x) (weqabgrdiff X x').
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrel
null
logeqabgrdiffrels (X : abmonoid) {L : hrel X} (is : isbinophrel L) : hrellogeq (abgrdiffrel' X is) (abgrdiffrel X is).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
logeqabgrdiffrels
null
istransabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : istrans L) : istrans (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
istransabgrdiffrelint
null
istransabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : istrans L) : istrans (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
istransabgrdiffrel
null
issymmabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : issymm L) : issymm (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
issymmabgrdiffrelint
null
issymmabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : issymm L) : issymm (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
issymmabgrdiffrel
null
isreflabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isrefl L) : isrefl (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isreflabgrdiffrelint
null
isreflabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isrefl L) : isrefl (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isreflabgrdiffrel
null
ispoabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : ispreorder L) : ispreorder (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
ispoabgrdiffrelint
null
ispoabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : ispreorder L) : ispreorder (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
ispoabgrdiffrel
null
iseqrelabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : iseqrel L) : iseqrel (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iseqrelabgrdiffrelint
null
iseqrelabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : iseqrel L) : iseqrel (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iseqrelabgrdiffrel
null
isantisymmnegabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isantisymmneg L) : isantisymmneg (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isantisymmnegabgrdiffrel
null
isantisymmabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isantisymm L) : isantisymm (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isantisymmabgrdiffrel
null
isirreflabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isirrefl L) : isirrefl (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isirreflabgrdiffrel
null
isasymmabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : isasymm L) : isasymm (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isasymmabgrdiffrel
null
iscoasymmabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : iscoasymm L) : iscoasymm (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iscoasymmabgrdiffrel
null
istotalabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : istotal L) : istotal (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
istotalabgrdiffrel
null
iscotransabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isl : iscotrans L) : iscotrans (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iscotransabgrdiffrel
null
isStrongOrder_abgrdiff {X : abmonoid} (gt : hrel X) (Hgt : isbinophrel gt) : isStrongOrder gt → isStrongOrder (abgrdiffrel X Hgt).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isStrongOrder_abgrdiff
null
StrongOrder_abgrdiff {X : abmonoid} (gt : StrongOrder X) (Hgt : isbinophrel gt) : StrongOrder (abgrdiff X) := abgrdiffrel X Hgt,, isStrongOrder_abgrdiff gt Hgt (pr2 gt).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
StrongOrder_abgrdiff
null
abgrdiffrelimpl (X : abmonoid) {L L' : hrel X} (is : isbinophrel L) (is' : isbinophrel L') (impl : ∏ x x', L x x' → L' x x') (x x' : abgrdiff X) (ql : abgrdiffrel X is x x') : abgrdiffrel X is' x x'.
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrelimpl
null
abgrdiffrellogeq (X : abmonoid) {L L' : hrel X} (is : isbinophrel L) (is' : isbinophrel L') (lg : ∏ x x', L x x' <-> L' x x') (x x' : abgrdiff X) : (abgrdiffrel X is x x') <-> (abgrdiffrel X is' x x').
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
abgrdiffrellogeq
null
isbinopabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isbinophrel L) : @isbinophrel (setwithbinopdirprod X X) (abgrdiffrelint X L).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isbinopabgrdiffrelint
null
isbinopabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) : @isbinophrel (abgrdiff X) (abgrdiffrel X is).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isbinopabgrdiffrel
null
isdecabgrdiffrelint (X : abmonoid) {L : hrel X} (is : isinvbinophrel L) (isl : isdecrel L) : isdecrel (abgrdiffrelint X L).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isdecabgrdiffrelint
null
isdecabgrdiffrel (X : abmonoid) {L : hrel X} (is : isbinophrel L) (isi : isinvbinophrel L) (isl : isdecrel L) : isdecrel (abgrdiffrel X is).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
isdecabgrdiffrel
null
iscomptoabgrdiff (X : abmonoid) {L : hrel X} (is : isbinophrel L) : iscomprelrelfun L (abgrdiffrel X is) (toabgrdiff X).
Lemma
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianGroups.v
iscomptoabgrdiff
* 11. Relations and the canonical homomorphism to [abgrdiff]
abmonoid : UU := abelian_monoid_category.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianMonoids.v
abmonoid
null
make_abmonoid (t : setwithbinop) (H : isabmonoidop (@op t)) : abmonoid := t ,, H.
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianMonoids.v
make_abmonoid
null
abmonoidtomonoid : abmonoid → monoid := λ X, make_monoid (pr1 X) (pr1 (pr2 X)).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianMonoids.v
abmonoidtomonoid
null
commax (X : abmonoid) : iscomm (@op X) := pr2 (pr2 X).
Definition
Algebra
[ "UniMath", "UniMath", "UniMath", "UniMath", "UniMath" ]
UniMath/Algebra/AbelianMonoids.v
commax
null
End of preview. Expand in Data Studio

Coq-UniMath

Structured dataset of formalizations from the UniMath library (Univalent Mathematics in Coq).

Schema

Column Type Description
fact string Full declaration (name, signature, body)
type string Definition, Lemma, Theorem, Proposition, etc.
library string Sub-library (Algebra, CategoryTheory, Foundations, etc.)
imports list Require Import statements
filename string Source file path
symbolic_name string Declaration identifier
docstring string Documentation comment (13% coverage)

Statistics

By Type

Type Count
Definition 30,272
Lemma 10,231
Proposition 3,807
Let 2,878
Theorem 359
Notation 233
Ltac 229
Corollary 181
Other 50

Docstring Coverage

  • 6,648 entries (13%) have documentation

Example Entry

Use Cases

  • Retrieval / RAG for Coq theorem proving
  • Univalent mathematics research
  • Training embeddings for formal mathematics
  • Documentation generation

Citation

Changelog

  • v2.0 (Jan 2025): Re-extraction with improved schema
    • 38,661 -> 48,240 entries (+25%)
    • Added docstring column (13% coverage)
    • Changed imports from string to list
    • Removed index_level column
    • fact now includes full signature
  • v1.0 (Dec 2024): Initial release
Downloads last month
38

Collection including phanerozoic/Coq-UniMath