id
int64
0
42.5k
qid
stringlengths
1
4
pmid
stringlengths
4
8
question
stringlengths
13
215
text
stringlengths
81
10.1k
3,585
300
19450518
Is alternative splicing of apoptotic genes playing a role in the response to DNA or mitochondrial damage?
DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. DNA damage induces apoptosis and many apoptotic genes are regulated via alternative splicing (AS), but little is known about the control mechanisms. Here we show that ultraviolet irradiation (UV) affects cotranscriptional AS in a p53-independent way, through the hyperphosphorylation of RNA polymerase II carboxy-terminal domain (CTD) and a subsequent inhibition of transcriptional elongation, estimated in vivo and in real time. Phosphomimetic CTD mutants not only display lower elongation but also duplicate the UV effect on AS. Consistently, nonphosphorylatable mutants prevent the UV effect. Apoptosis promoted by UV in cells lacking p53 is prevented when the change in AS of the apoptotic gene bcl-x is reverted, confirming the relevance of this mechanism. Splicing-sensitive microarrays revealed a significant overlap of the subsets of genes that have changed AS with UV and those that have reduced expression, suggesting that transcriptional coupling to AS is a key feature of the DNA-damage response.
3,597
301
23216904
Which oncogenes are able to induce cellular senescence?
ROS-generating oxidases Nox1 and Nox4 contribute to oncogenic Ras-induced premature senescence. Activated oncogenes induce premature cellular senescence, a permanent state of proliferative arrest in primary rodent and human fibroblasts. Recent studies suggest that generation of reactive oxygen species (ROS) is involved in oncogenic Ras-induced premature senescence. However, the signaling mechanism controlling this oxidant-mediated irreversible growth arrest is not fully understood. Here, we show that through the Ras/MEK pathway, Ras oncogene up-regulated the expression of superoxide-generating oxidases, Nox1 in rat REF52 cells and Nox4 in primary human lung TIG-3 cells, leading to an increase in intracellular level of ROS. Ablation of Nox1 and Nox4 by small interfering RNAs (siRNAs) blocked the RasV12 senescent phenotype including β-galactosidase activity, growth arrest and accumulation of tumor suppressors such as p53 and p16Ink4a. This suggests that Nox-generated ROS transduce senescence signals by activating the p53 and p16Ink4a pathway. Furthermore, Nox1 and Nox4 siRNAs inhibited both Ras-induced DNA damage response and p38MAPK activation, whereas overexpression of Nox1 and Nox4 alone was able to induce senescence. The involvement of Nox1 in Ras-induced senescence was also confirmed with embryonic fibroblasts derived from Nox1 knockout mice. Together, these findings suggest that Nox1- and Nox4-generated ROS play an important role in Ras-induced premature senescence, which may involve DNA damage response and p38MAPK signaling pathways.
3,613
302
17221864
What is HbVar?
HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update. HbVar (http://globin.bx.psu.edu/hbvar) is a locus-specific database (LSDB) developed in 2001 by a multi-center academic effort to provide timely information on the genomic sequence changes leading to hemoglobin variants and all types of thalassemia and hemoglobinopathies. Database records include extensive phenotypic descriptions, biochemical and hematological effects, associated pathology, and ethnic occurrence, accompanied by mutation frequencies and references. In addition to the regular updates to entries, we report significant advances and updates, which can be useful not only for HbVar users but also for other LSDB development and curation in general. The query page provides more functionality but in a simpler, more user-friendly format and known single nucleotide polymorphisms in the human alpha- and beta-globin loci are provided automatically. Population-specific beta-thalassemia mutation frequencies for 31 population groups have been added and/or modified and the previously reported delta- and alpha-thalassemia mutation frequency data from 10 population groups have also been incorporated. In addition, an independent flat-file database, named XPRbase (http://www.goldenhelix.org/xprbase), has been developed and linked to the main HbVar web page to provide a succinct listing of 51 experimental protocols available for globin gene mutation screening. These updates significantly augment the database profile and quality of information provided, which should increase the already high impact of the HbVar database, while its combination with the UCSC powerful genome browser and the ITHANET web portal paves the way for drawing connections of clinical importance, that is from genome to function to phenotype.
3,618
303
18393531
Can DMSO as an additive improve proteomic analysis results?
Quantitative analysis of HIV-1 protease inhibitors in cell lysates using MALDI-FTICR mass spectrometry. In this report we explore the use of MALDI-FTICR mass spectrometry for the quantitative analysis of five HIV-1 protease inhibitors in cell lysates. 2,5-Dihydroxybenzoic acid (DHB) was used as the matrix. From a quantitative perspective, DHB is usually a poor matrix due to its poor shot-to-shot and poor spot-to-spot reproducibilities. We found that the quantitative precisions improved significantly when DMSO (dimethylsulfoxide) was added to the matrix solution. For lopinavir and ritonavir, currently the most frequently prescribed HIV-1 protease inhibitors, the signal-to-noise ratios improved significantly when potassium iodide was added to the matrix solution. The mean quantitative precisions, expressed as % relative standard deviation, were 6.4% for saquinavir, 7.3% for lopinavir, 8.5% for ritonavir, 11.1% for indinavir, and 7.2% for nelfinavir. The mean quantitative accuracies, expressed as % deviation, were 4.5% for saquinavir, 6.0% for lopinavir, 5.9% for ritonavir, 6.6% for indinavir, and 8.0% for nelfinavir. The concentrations measured for the individual quality control samples were all within 85-117% of the theoretical concentrations. The lower limits of quantification in cell lysates were 4 fmol/microL for saquinavir, 16 fmol/microL for lopinavir, 31 fmol/microL for ritonavir, and 100 fmol/microL for indinavir and nelfinavir. The mean mass accuracies for the protease inhibitors were 0.28 ppm using external calibration. Our results show that MALDI-FTICR mass spectrometry can be successfully used for precise, accurate, and selective quantitative analyses of HIV-1 protease inhibitors in cell lysates. In addition, the lower limits of quantification obtained allow clinical applications of the technique.
3,621
304
23460532
The antibodies MK-3475 and CT-011 have shown promising results in treating malignancies. Which protein are they targeting?
Biomarkers for immunostimulatory monoclonal antibodies in combination strategies for melanoma and other tumor types. Modulation of the immune system by targeting coinhibitory and costimulatory receptors has become a promising new approach of immunotherapy for cancer. The recent approval of the CTLA-4-blocking antibody ipilimumab for the treatment of melanoma was a watershed event, opening up a new era in the field of immunotherapy. Ipilimumab was the first treatment to ever show enhanced overall survival (OS) for patients with stage IV melanoma. However, measuring response rates using standard Response Evaluation Criteria in Solid Tumors (RECIST) or modified World Health Organization criteria or progression-free survival does not accurately capture the potential for clinical benefit for ipilimumab-treated patients. As immunotherapy approaches are translated into more tumor types, it is important to study biomarkers, which may be more predictive of OS to identify the patients most likely to have clinical benefit. Ipilimumab is the first-in-class of a series of immunomodulating antibodies that are in clinical development. Anti-PD1 (nivolumab and MK-3475), anti-PD-L1 (BMS-936 559, RG7446, and MEDI4736), anti-CD137 (urelumab), anti-OX40, anti-GITR, and anti-CD40 monoclonal antibodies are just some of the agents that are being actively investigated in clinical trials, each having the potential for combination with the ipilimumab to enhance its effectiveness. Development of rational combinations of immunomodulatory antibodies with small-molecule pathway inhibitor therapies such as vemurafenib makes the discovery of predictive biomarkers even more important. Identifying reliable biomarkers is a necessary step in personalizing the treatment of each patient's cancer through a baseline assessment of tumor gene expression and/or immune profile to optimize therapy for the best chance of therapeutic success.
3,627
305
17706594
Which are the different proteins/isoforms encoded but the ASPH (aspartate beta-hydroxylase) gene in humans?
Multiple functions of junctin and junctate, two distinct isoforms of aspartyl beta-hydroxylase. The single genomic locus, AbetaH-J-J, encodes three functionally distinct proteins aspartyl beta-hydroxylase, junctin and junctate by alternative splicing. Among these three proteins, junctin and junctate could play important roles in the regulation of intracellular Ca(2+) by regulating either Ca(2+) release from intracellular Ca(2+) stores or Ca(2+) influx in various biological processes. Here we review recent findings concerning the expressional regulations and the proposed functions of junctin and junctate.
3,635
306
26109050
List processes which are under the control of the YAP protein.
A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are major downstream effectors of the Hippo pathway that influences tissue homeostasis, organ size, and cancer development. Aberrant hyperactivation of YAP/TAZ causes tissue overgrowth and tumorigenesis, whereas their inactivation impairs tissue development and regeneration. Dynamic and precise control of YAP/TAZ activity is thus important to ensure proper physiological regulation and homeostasis of the cells. Here, we show that YAP/TAZ activation results in activation of their negative regulators, LATS1/2 (large tumor suppressor 1/2) kinases, to constitute a negative feedback loop of the Hippo pathway in both cultured cells and mouse tissues. YAP/TAZ in complex with the transcription factor TEAD (TEA domain family member) directly induce LATS2 expression. Furthermore, YAP/TAZ also stimulate the kinase activity of LATS1/2 through inducing NF2 (neurofibromin 2). This feedback regulation is responsible for the transient activation of YAP upon lysophosphatidic acid (LPA) stimulation and the inhibition of YAP-induced cell migration. Thus, this LATS-mediated feedback loop provides an efficient mechanism to establish the robustness and homeostasis of YAP/TAZ regulation.
3,643
307
18230650
What family do mDia proteins belong in?
Functional interactions between phosphatase POPX2 and mDia modulate RhoA pathways. Rho GTPases and their downstream effectors regulate changes in the actin cytoskeleton that underlie cell motility and adhesion. They also participate, with RhoA, in the regulation of gene transcription by activating serum response factor (SRF)-mediated transcription from the serum response element (SRE). SRF-mediated transcription is also promoted by several proteins that regulate the polymerization or stability of actin. We have previously identified a family of PP2C phosphatases, POPXs, which can dephosphorylate the CDC42/RAC-activated kinase PAK and downregulate its enzymatic and actin cytoskeletal activity. We now report that POPX2 interacts with the formin protein mDia1 (DIAPH1). This interaction is enhanced when mDia1 is activated by RhoA. The binding of POPX2 to mDia1 or to an mDia-containing complex greatly decreases the ability of mDia1 to activate transcription from the SRE. We propose that the interaction between mDia1 and POPX2 (PPM1F) serves to regulate both the actin cytoskeleton and SRF-mediated transcription, and to link the CDC42/RAC1 pathways with those of RhoA.
3,677
308
24068556
Is nucleosome eviction ATP-dependent?
Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence. We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted 'barriers' co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that 'statistical' positioning of nucleosomes against 'barriers', hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy.
3,686
309
23391427
Is TREM2 associated with Alzheimer's disease in humans?
TREM2 is associated with the risk of Alzheimer's disease in Spanish population. Two recent studies have reported the association of rs75932628-T in the TREM2 gene with the risk for Alzheimer's disease (AD). Rs75932628-T is a rare nonsynonymous variant (p.R47H) that confers a high risk of AD with an effect size similar to that of the APOE ɛ4 allele. However, this association has not been replicated in any independent studies to date. The allelic frequency of rs75932628 varies according to the population from 0.02% to 0.63% among healthy controls. In an attempt to replicate the association between rs75932628-T and AD risk, we genotyped rs75932628 in a cohort of 504 AD subjects and 550 healthy controls from a Spanish population. Rs75932628-T showed a minor allele frequency of 0.3% among this cohort. Interestingly, in our study, rs75932628-T was found exclusively in 1.4% of AD cases (7/504), including 4 early-onset AD cases, and in none of the controls (n = 0/550). Here, we report the first positive replication study in a Spanish population and confirm that TREM2 rs75932628-T is associated with the risk for AD.
3,693
310
12171605
Which is the most common measure of differences between dinucleotide relative abundance "genomic signatures"
Pervasive properties of the genomic signature. BACKGROUND: The dinucleotide relative abundance profile can be regarded as a genomic signature because, despite diversity between species, it varies little between 50 kilobase or longer windows on a given genome. Both the causes and the functional significance of this phenomenon could be illuminated by determining if it persists on smaller scales. The profile is computed from the base step "odds ratios" that compare dinucleotide frequencies to those expected under the assumption of stochastic equilibrium (thorough shuffling). Analysis is carried out on 22 sequences, representing 19 species and comprised of about 53 million bases all together, to assess stability of the signature in windows ranging in size from 50 kilobases down to 125 bases. RESULTS: Dinucleotide relative abundance distance from the global signature is computed locally for all non-overlapping windows on each sequence. These distances are log-normally distributed with nearly constant variance and with means that tend to zero slower than reciprocal square root of window size. The mean distance within genomes is larger for protist, plant, and human chromosomes, and smaller for archaea, bacteria, and yeast, for any window size. CONCLUSIONS: The imprint of the global signature is locally pervasive on all scales considered in the sequences (either genomes or chromosomes) that were scanned.
3,703
311
24129315
Name a method for enrichment of arginine-methylated peptides.
Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins.
3,704
312
23745983
Why do we use "N-terminal proteomics"?
Improved N(α)-acetylated peptide enrichment following dimethyl labeling and SCX. Protein N-terminal acetylation is one of the most common modifications occurring co- and post-translationally on either eukaryote or prokaryote proteins. However, compared to other protein modifications, the physiological role of protein N-terminal acetylation is relatively unclear. To explore the biological functions of protein N-terminal acetylation, a robust and large-scale method for qualitative and quantitative analysis of this modification is required. Enrichment of N(α)-acetylated peptides or depletion of the free N-terminal and internal tryptic peptides prior to analysis by mass spectrometry are necessary based on current technologies. This study demonstrated a simple strong cation exchange (SCX) fractionation method to selectively enrich N(α)-acetylated tryptic peptides via dimethyl labeling without the need for tedious protective labeling and depleting procedures. This method was introduced for the comprehensive analysis of N-terminal acetylated proteins from HepG2 cells. Several hundred N-terminal acetylation sites were readily identified in a single SCX flow-through fraction. Moreover, the N(α)-acetylated peptides of some protein isoforms were simultaneously observed in the SCX flow-through fraction, which indicated that this approach can be utilized to discriminate protein isoforms with very similar full sequences but different N-terminal sequences, such as β-actin/γ-actin, ERK1/ERK2, α-centractin/β-centractin, and ADP/ATP translocase 2 and 3. Compared to other methods, this method is relatively simple and can be directly implemented in a two-dimensional separation (SCX-RP)-mass spectrometry scheme for quantitative N-terminal proteomics using stable-isotope dimethyl labeling.
3,710
313
23294434
List omics technologies comprised in system biology.
Biomedical data integration in computational drug design and bioinformatics. In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.
3,719
314
25186601
Rindopepimut is an analog of which growth factor?
Rindopepimut: a promising immunotherapeutic for the treatment of glioblastoma multiforme. Glioblastoma multiforme (GBM) is the most common and aggressive glial cell-derived primary tumor. Current standard of care for patients with GBM includes maximal tumor resection plus adjuvant radiotherapy and temozolomide chemotherapy, increasing median overall survival to a mere 15 months from diagnosis. Because these therapies are inherently nonspecific, there is an increased likelihood of off-target and incomplete effects; therefore, targeted modalities are required for enhanced safety and efficacy. Rindopepimut is emerging as a safe and potentially effective drug for the treatment of GBM. Rindopepimut consists of a 14-mer peptide that spans the length of EGF receptor variant III, a mutant variant of EGF receptor found on approximately 30% of primary GBM, conjugated to the carrier protein keyhole limpet hemocyanin. Vaccination with rindopepimut has been shown to specifically eliminate cells expressing EGF receptor variant III. Phase II clinical trials have suggested that vaccination of newly diagnosed GBM patients with rindopepimut plus adjuvant granulocyte-macrophage colony-stimulating factor results in prolonged progression-free and overall survival with minimal toxicity. This review will outline the development of rindopepimut, as well as the current status of this vaccine.
3,723
315
21285074
Which gene mutations are responsible for isolated Non-compaction cardiomyopathy?
Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Non-compaction of the left ventricular myocardium (LVNC) has gained increasing recognition during the last 25 years. There is a morphological trait of the myocardial structure with a spectrum from normal variants to the pathological phenotype of LVNC, which reflects the embryogenic structure of the human heart due to an arrest in the compaction process during the first trimester. It must be cautioned not to overdiagnose LVNC: the morphological spectrum of trabeculations, from normal variants to pathological trabeculations with the morphological feature of LVNC must be carefully considered. The classical triad of complications are heart failure, arrhythmias, including sudden cardiac death, and systemic embolic events. Non-compaction of the left ventricular myocardium can occur in isolation or in association with congenital heart defects (CHDs), genetic syndromes, and neuromuscular disorders among others. The clinical spectrum is wide and the outcome is more favourable than in previously described populations with a negative selection bias. Familial occurrence is frequent with autosomal dominant and X-linked transmissions. Different mutations in sarcomere protein genes were identified and there seems to be a shared molecular aetiology of different cardiomyopathic phenotypes, including LVNC, hypertrophic and dilated cardiomyopathies. Thus, genetic heterogeneity, with an overlap of different phenotypes, and the variability of hereditary patterns, raise the questions whether there is a morphological trait from dilated/hypertrophic cardiomyopathy to LVNC and what are the triggers and modifiers to develop either dilated, hypertrophic cardiomyopathy, or LVNC in patients with the same mutation. The variety in clinical presentation, the genetic heterogeneity, and the phenotype of the first transgenetic animal model of an LVNC-associated mutation question the hypothesis that LVNC be a distinct cardiomyopathy: it seems to be rather a distinct phenotype or phenotypic, morphological expression of different underlying diseases than a distinct cardiomyopathy.
3,747
316
20219072
From which tissue was the NCI-H520 cell-line derived?
Imaging and biodistribution of Her2/neu expression in non-small cell lung cancer xenografts with Cu-labeled trastuzumab PET. Non-small cell lung carcinomas (NSCLC) overexpress the Her2/neu gene in approximately 59% of cases. Trastuzumab, a humanized monoclonal antibody, interferes with Her2 signaling and is approved for the treatment of Her2/neu overexpressing breast cancer. However, its therapeutic use in Her2/neu overexpressing NSCLC remains obscure. The present study aimed to determine the role of (64)Cu-labeled trastuzumab positron emission tomography (PET) for non-invasive imaging of Her2/neu expression in NSCLC. Trastuzumab was conjugated with the bifunctional chelator 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA) and radiolabeled with (64)Cu. The molecular specificity of DOTA-trastuzumab was determined in NSCLC cell lines with Her2/neu overexpression (NCI-H2170) and negative expression (NCI-H520). Imaging of Her2/neu expression was performed in NCI-H2170 tumor-bearing mice with (64)Cu-DOTA-trastuzumab PET and (64)Cu-DOTA-IgG. In vitro studies revealed specific binding of DOTA-trastuzumab in the Her2/neu positive NCI-H2170 cells, while no binding was seen in the Her2/neu negative NCI-H520 cell line. Biodistribution and PET studies revealed a significantly high accumulation of (64)Cu-DOTA-trastuzumab in the Her2/neu overexpressing NCI-H2170 tumor at 24 and 48 h post-injection (21.4 +/- 1.4% and 23.2 +/- 5.1% injection dose/gram (% ID/g), respectively). PET imaging of Her2/neu negative NCI-H520 tumors showed much less uptake of (64)Cu-DOTA-trastuzumab (4.0% ID/g). The NCI-H2170 tumor uptake of (64)Cu-DOTA-trastuzumab was significantly higher than that of (64)Cu-DOTA-IgG (P < 0.0001). (64)Cu-DOTA-trastuzumab showed a very clear image of a Her2/neu positive tumor and appeared to be effective as a PET tracer for imaging of Her2/neu gene expression in NSCLC, suggesting its potential clinical use for identifying patients that might benefit from trastuzumab-based therapy.
3,778
317
22869879
Have mutations in the Polycomb group been found in human diseases?
Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. PURPOSE: A subset of patients with myelodysplastic syndromes (MDS) who are predicted to have lower-risk disease as defined by the International Prognostic Scoring System (IPSS) demonstrate more aggressive disease and shorter overall survival than expected. The identification of patients with greater-than-predicted prognostic risk could influence the selection of therapy and improve the care of patients with lower-risk MDS. PATIENTS AND METHODS: We performed an independent validation of the MD Anderson Lower-Risk Prognostic Scoring System (LR-PSS) in a cohort of 288 patients with low- or intermediate-1 IPSS risk MDS and examined bone marrow samples from these patients for mutations in 22 genes, including SF3B1, SRSF2, U2AF1, and DNMT3A. RESULTS: The LR-PSS successfully stratified patients with lower-risk MDS into three risk categories with significant differences in overall survival (20% in category 1 with median of 5.19 years [95% CI, 3.01 to 10.34 years], 56% in category 2 with median of 2.65 years [95% CI, 2.18 to 3.30 years], and 25% in category 3 with median of 1.11 years [95% CI, 0.82 to 1.51 years]), thus validating this prognostic model. Mutations were identified in 71% of all samples, and mutations associated with a poor prognosis were enriched in the highest-risk LR-PSS category. Mutations of EZH2, RUNX1, TP53, and ASXL1 were associated with shorter overall survival independent of the LR-PSS. Only EZH2 mutations retained prognostic significance in a multivariable model that included LR-PSS and other mutations (hazard ratio, 2.90; 95% CI, 1.85 to 4.52). CONCLUSION: Combining the LR-PSS and EZH2 mutation status identifies 29% of patients with lower-risk MDS with a worse-than-expected prognosis. These patients may benefit from earlier initiation of disease-modifying therapy.
3,792
318
25209738
Describe the mechanism of action of drisapersen
Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. BACKGROUND: Duchenne muscular dystrophy is caused by dystrophin deficiency and muscle deterioration and preferentially affects boys. Antisense-oligonucleotide-induced exon skipping allows synthesis of partially functional dystrophin. We investigated the efficacy and safety of drisapersen, a 2'-O-methyl-phosphorothioate antisense oligonucleotide, given for 48 weeks. METHODS: In this exploratory, double-blind, placebo-controlled study we recruited male patients (≥5 years of age; time to rise from floor ≤7 s) with Duchenne muscular dystrophy from 13 specialist centres in nine countries between Sept 1, 2010, and Sept 12, 2012. By use of a computer-generated randomisation sequence, we randomly allocated patients (2:2:1:1; block size of six; no stratification) to drisapersen 6 mg/kg or placebo, each given subcutaneously and either continuously (once weekly) or intermittently (nine doses over 10 weeks). The primary endpoint was change in 6-min walk distance (6MWD) at week 25 in patients in the intention-to-treat population for whom data were available. Safety assessments included renal, hepatic, and haematological monitoring and recording of adverse events. This trial is registered with ClinicalTrials.gov, number NCT01153932. FINDINGS: We recruited 53 patients: 18 were given continuous drisapersen, 17 were given intermittent drisapersen, and 18 were given placebo (continuous and intermittent groups combined). At week 25, mean 6MWD had increased by 31·5 m (SE 9·8) from baseline for continuous drisapersen, with a mean difference in change from baseline of 35·09 m (95% CI 7·59 to 62·60; p=0·014) versus placebo. We recorded no difference in 6MWD changes from baseline between intermittent drisapersen (mean change -0·1 [SE 10·3]) and placebo (mean difference 3·51 m [-24·34 to 31·35]) at week 25. The most common adverse events in drisapersen-treated patients were injection-site reactions (14 patients given continuous drisapersen, 15 patients given intermittent drisapersen, and six given placebo) and renal events (13 for continuous drisapersen, 12 for intermittent drisapersen, and seven for placebo), most of which were subclinical proteinuria. None of the serious adverse events reported (one for continuous, two for intermittent, and two for placebo) resulted in withdrawal from the study. INTERPRETATION: Continuous drisapersen resulted in some benefit in 6MWD versus placebo at week 25. The safety findings are similar to those from previous studies. Ambulation improvements in this young population with early-stage Duchenne muscular dystrophy are encouraging but need to be confirmed in larger studies. FUNDING: GlaxoSmithKline, Prosensa Therapeutics BV (a subsidiary of Prosensa Holding NV).
3,798
319
20971881
Is microRNA(miRNA) 29 involved in post-ischemic cardiac remodeling?
miR-29 is a major regulator of genes associated with pulmonary fibrosis. MicroRNAs (miRNA) are small regulatory RNAs that control gene expression by translational suppression and destabilization of target mRNAs. There is increasing evidence that miRNAs regulate genes associated with fibrosis in organs, such as the heart, kidney, liver, and the lung. In a large-scale screening for miRNAs potentially involved in bleomycin-induced fibrosis, we found expression of miR-29 family members significantly reduced in fibrotic lungs. Analysis of normal lungs showed the presence of miR-29 in subsets of interstitial cells of the alveolar wall, pleura, and at the entrance of the alveolar duct, known sites of pulmonary fibrosis. miR-29 levels inversely correlated with the expression levels of profibrotic target genes and the severity of the fibrosis. To study the impact of miR-29 down-regulation in the lung interstitium, we characterized gene expression profiles of human fetal lung fibroblast IMR-90 cells in which endogenous miR-29 was knocked down. This confirmed the derepression of reported miR-29 targets, including several collagens, but also revealed up-regulation of a large number of previously unrecognized extracellular matrix-associated and remodeling genes. Moreover, we found that miR-29 is suppressed by transforming growth factor (TGF)-β1 in these cells, and that many fibrosis-associated genes up-regulated by TGF-β1 are derepressed by miR-29 knockdown. Interestingly, a comparison of TGF-β1 and miR-29 targets revealed that miR-29 controls an additional subset of fibrosis-related genes, including laminins and integrins, independent of TGF-β1. Together, these strongly suggest a role of miR-29 in the pathogenesis of pulmonary fibrosis. miR-29 may be a potential new therapeutic target for this disease.
3,803
320
19911411
What is the incidence of Edwards syndrom in the european population?
The maternal age-specific live birth prevalence of trisomies 13 and 18 compared to trisomy 21 (Down syndrome). OBJECTIVE: To estimate the maternal age-specific live birth prevalence (in the absence of prenatal diagnosis and selective termination) of trisomy 13 (Patau syndrome) and trisomy 18 (Edwards syndrome) and compare it with that of trisomy 21 (Down syndrome). METHODS: Records of prenatal and postnatal diagnoses from seven UK regional congenital anomaly registers and two Australian registers covering 4.5 million births included 975 diagnoses of trisomy 13 and 2254 of trisomy 18. Prevalence at birth in the absence of prenatal diagnosis and selective termination was calculated by adjusting for prenatally diagnosed pregnancies that were terminated according to their likelihood of surviving to term. RESULTS: The live birth prevalence in the absence of prenatal screening and selective termination in England and Wales from 1997 to 2004 was 1.4 (95% CI: 1.2-1.6) per 10 000 births for trisomy 13 and 2.3 (95% CI: 2.1-2.5) for trisomy 18. It has increased since 1989-1996, by 13% for trisomy 13 and 25% for trisomy 18. These increases are consistent with those predicted due to increases in maternal age. CONCLUSION: This study provides the first estimates of maternal age-specific prevalence of trisomies 13 and 18 for women aged 16-45.
3,813
321
19729507
Is exonuclease Xrn1 a component of the P-bodies?
A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay. Importin-beta family members, which shuttle between the nucleus and the cytoplasm, are essential for nucleocytoplasmic transport of macromolecules. We attempted to explore whether importin-beta family proteins change their cellular localization in response to environmental change. In this report, we show that transportin (TRN) was minimally detected in cytoplasmic processing bodies (P-bodies) under normal cell conditions but largely translocated to stress granules (SGs) in stressed cells. Fluorescence recovery after photobleaching analysis indicated that TRN moves rapidly in and out of cytoplasmic granules. Depletion of TRN greatly enhanced P-body formation but did not affect the number or size of SGs, suggesting that TRN or its cargo(es) participates in cellular function of P-bodies. Accordingly, TRN associated with tristetraprolin (TTP) and its AU-rich element (ARE)-containing mRNA substrates. Depletion of TRN increased the number of P-bodies and stabilized ARE-containing mRNAs, as observed with knockdown of the 5'-3' exonuclease Xrn1. Moreover, depletion of TRN retained TTP in P-bodies and meanwhile reduced the fraction of mobile TTP to SGs. Therefore, our data together suggest that TRN plays a role in trafficking of TTP between the cytoplasmic granules and whereby modulates the stability of ARE-containing mRNAs.
3,831
322
22622836
What is the substrate of the microbial enzyme inulinase?
Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1(T). A novel extracellular exoinulinase was purified and characterized from a new yeast strain KRF1(T), and the gene encoding the enzyme was successfully cloned. The enzyme was stable at low pH between 3.0 and 6.5. The K (m) and V (max) values of the purified enzyme for inulin were 2.3 mg/mL and 4.8 mg/min, respectively. The optimum temperature of the inulinase was 50 °C, and the enzyme remained 78 % of activity at 60 °C for 2 h. The inulinase showed an amino acid sequence identity of 58 % to its closest homolog in Meyerozyma (Pichia) guilliermondii. In the secondary structure, the domain G (VMEVH) of the enzyme contained three unique residues (V, M, and H). Compared with previously reported inulinases, the enzyme from strain KRF1(T) displayed strong acid resistance, notable thermostability, and high affinity for the substrate of inulin. Based on sequence analysis of the 26S rDNA D1/D2 domain and phenotypic characterization, the yeast strain KRF1(T) was found to represent a novel anamorphic, ascomycetous yeast species. A complete description of the species is given and the name Candida kutaonensis sp. nov (type strain = KRF1(T) = AS 2.4027(T) = CBS 11388(T)) is proposed.
3,854
323
19214293
What is the treatment of acute myocarditis?
Canadian Cardiovascular Society Consensus Conference guidelines on heart failure, update 2009: diagnosis and management of right-sided heart failure, myocarditis, device therapy and recent important clinical trials. The Canadian Cardiovascular Society published a comprehensive set of recommendations on the diagnosis and management of heart failure in January 2006. Based on feedback obtained through a national program of heart failure workshops and through active solicitation of stakeholders, several topics were identified because of their importance to the practicing clinician. Topics chosen for the present update include best practices for the diagnosis and management of right-sided heart failure, myocarditis and device therapy, and a review of recent important or landmark clinical trials. These recommendations were developed using the structured approach for the review and assessment of evidence adopted and previously described by the Society. The present update has been written from a clinical perspective to provide a user-friendly and practical approach. Specific clinical questions that are addressed include: What is right-sided heart failure and how should one approach the diagnostic work-up? What other clinical entities may masquerade as this nebulous condition and how can we tell them apart? When should we be concerned about the presence of myocarditis and how quickly should patients with this condition be referred to an experienced centre? Among the myriad of recently published landmark clinical trials, which ones will impact our standards of clinical care? The goals are to aid physicians and other health care providers to optimally treat heart failure patients, resulting in a measurable impact on patient health and clinical outcomes in Canada.
3,861
324
24167038
List causative genes for autosomal recessive forms of monogenic Parkinson's disease
PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity. Homozygous or compound heterozygous mutations in the phosphatase and tensin homolog-induced putative kinase 1 (PINK1) gene are causative of autosomal recessive, early onset Parkinson's disease. Single heterozygous mutations have been detected repeatedly both in a subset of patients and in unaffected individuals, and the significance of these mutations has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have demonstrated the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. We performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-) ) mice using a multidisciplinary approach and observed that, despite normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, a significantly lower dopamine release was measured in the striatum of PINK1(+/-) mice compared with control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored normal LTP in heterozygous mice. Moreover, monoamine oxidase B inhibitors rescued physiological LTP and normal dopamine release. Our results provide novel evidence for striatal plasticity abnormalities, even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of Parkinson's disease and a valid tool with which to characterize early disease stage and design possible disease-modifying therapies.
3,886
325
21741479
How does ranolazine affect calcium handling in the heart
Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Ranolazine is a clinically approved drug for treating cardiac ventricular dysrhythmias and angina. Its mechanism(s) of protection is not clearly understood but evidence points to blocking the late Na+ current that arises during ischemia, blocking mitochondrial complex I activity, or modulating mitochondrial metabolism. Here we tested the effect of ranolazine treatment before ischemia at the mitochondrial level in intact isolated hearts and in mitochondria isolated from hearts at different times of reperfusion. Left ventricular (LV) pressure (LVP), coronary flow (CF), and O2 metabolism were measured in guinea pig isolated hearts perfused with Krebs-Ringer's solution; mitochondrial (m) superoxide (O2·-), Ca2+, NADH/FAD (redox state), and cytosolic (c) Ca2+ were assessed on-line in the LV free wall by fluorescence spectrophotometry. Ranolazine (5 μM), infused for 1 min just before 30 min of global ischemia, itself did not change O2·-, cCa2+, mCa2+ or redox state. During late ischemia and reperfusion (IR) O2·- emission and m[Ca2+] increased less in the ranolazine group vs. the control group. Ranolazine decreased c[Ca2+] only during ischemia while NADH and FAD were not different during IR in the ranolazine vs. control groups. Throughout reperfusion LVP and CF were higher, and ventricular fibrillation was less frequent. Infarct size was smaller in the ranolazine group than in the control group. Mitochondria isolated from ranolazine-treated hearts had mild resistance to permeability transition pore (mPTP) opening and less cytochrome c release than control hearts. Ranolazine may provide functional protection of the heart during IR injury by reducing cCa2+ and mCa2+ loading secondary to its effect to block the late Na+ current. Subsequently it indirectly reduces O2·- emission, preserves bioenergetics, delays mPTP opening, and restricts loss of cytochrome c, thereby reducing necrosis and apoptosis.
3,902
326
19923890
Which is the primary distinction between the Reverse Warburg effect and the conventional Warburg effect?
The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis). Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis. In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the "Reverse Warburg Effect." In this scenario, the epithelial tumor cells "corrupt" the normal stroma, turning it into a factory for the production of energy-rich metabolites. This alternative model is still consistent with Warburg's original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts (caveolin-1 (Cav-1) deficient stromal cells), shows the upregulation of both (1) myo-fibroblast markers and (2) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the "Reverse Warburg Effect," explaining its powerful predictive value.
3,917
327
16596306
What is the role of per genes in circadian rhythm control?
Tumor suppression by the mammalian Period genes. The Period (Per) genes are key circadian rhythm regulators in mammals. Expression of the mouse Per (mPer) genes have diurnal pattern in the suprachiamstic nuclei and in peripheral tissues. Genetic ablation mPER1 and mPER2 function results in a complete loss of circadian rhythm control based on wheel running activity in mice. In addition, these animals also display apparent premature aging and significant increase in neoplastic and hyperplastic phenotypes. When challenged by gamma-radiation, mPer2 deficient mice response by rapid hair graying, are deficient in p53-mediated apoptosis in thymocytes and have robust tumor occurrences. Our studies have demonstrated that the circadian clock function is very important for cell cycle, DNA damage response and tumor suppression in vivo. Temporal expression of genes involved in cell cycle regulation and tumor suppression, such as c-Myc, Cyclin D1, Cyclin A, Mdm-2 and Gadd45alpha is deregulated in mPer2 mutant mice. In addition, genetic studies have demonstrated that many key regulators of cell cycle and growth control are also important circadian clock regulators confirming the critical role of circadian function in organismal homeostasis. Recently studies of human breast and endometrial cancers revealed that the loss and deregulation of PERIOD proteins is common in the tumor cells.
3,919
328
23963659
Can sorafenib activate AMPK?
Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. In this study, we investigated the effects and the underlying molecular mechanisms of the multi-kinase inhibitor sorafenib in a panel of breast cancer cell lines. Sorafenib inhibited cell proliferation and induced apoptosis through the mitochondrial pathway. These effects were neither correlated with modulation of MAPK and AKT pathways nor dependent on the ERα status. Sorafenib promoted an early perturbation of mitochondrial function, inducing a deep depolarization of mitochondrial membrane, associated with drop of intracellular ATP levels and increase of ROS generation. As a response to this stress condition, the energy sensor AMPK was rapidly activated in all the cell lines analyzed. In MCF-7 and SKBR3 cells, AMPK enhanced glucose uptake by up-regulating the expression of GLUT-1 glucose transporter, as also demonstrated by AMPKα1 RNA interference, and stimulated aerobic glycolysis thus increasing lactate production. Moreover, the GLUT-1 inhibitor fasentin blocked sorafenib-induced glucose uptake and potentiated its cytotoxic activity in SKBR3 cells. Persistent activation of AMPK by sorafenib finally led to the impairment of glucose metabolism both in MCF-7 and SKBR3 cells as well as in the highly glycolytic MDA-MB-231 cells, resulting in cell death. This previously unrecognized long-term effect of sorafenib was mediated by AMPK-dependent inhibition of the mTORC1 pathway. Suppression of mTORC1 activity was sufficient for sorafenib to hinder glucose utilization in breast cancer cells, as demonstrated by the observation that the mTORC1 inhibitor rapamycin induced a comparable down-regulation of GLUT-1 expression and glucose uptake. The key role of AMPK-dependent inhibition of mTORC1 in sorafenib mechanisms of action was confirmed by AMPKα1 silencing, which restored mTORC1 activity conferring a significant protection from cell death. This study provides insights into the molecular mechanisms driving sorafenib anti-tumoral activity in breast cancer, and supports the need for going on with clinical trials aimed at proving the efficacy of sorafenib for breast cancer treatment.
3,922
329
16757427
What tyrosine kinase, involved in a Philadelphia- chromosome positive chronic myelogenous leukemia, is the target of Imatinib (Gleevec)?
The second generation of BCR-ABL tyrosine kinase inhibitors. Imatinib was developed as the first molecularly targeted therapy to specifically inhibit the BCR-ABL kinase in Philadelphia chromosome (Ph)-positive chronic myeloid leukemia (CML). Because of the excellent hematologic and cytogenetic responses, imatinib has moved toward first-line treatment for newly diagnosed CML. However, the emergence of resistance to imatinib remains a major problem in the treatment of Ph-positive leukemia. Several mechanisms of imatinib resistance have been identified, including BCR-ABL gene amplification that leads to overexpression of the BCR-ABL protein, point mutations in the BCR-ABL kinase domain that interfere with imatinib binding, and point mutations outside of the kinase domain that allosterically inhibit imatinib binding to BCR-ABL. The need for alternative or additional treatment for imatinib-resistant BCR-ABL-positive leukemia has guided the way to the design of a second generation of targeted therapies, which has resulted mainly in the development of novel small-molecule inhibitors such as AMN107, dasatinib, NS-187, and ON012380. The major goal of these efforts is to create new compounds that are more potent than imatinib and/or more effective against imatinib-resistant BCR-ABL clones. In this review, we discuss the next generation of BCR-ABL kinase inhibitors for overcoming imatinib resistance.
4,001
330
25712444
When was empagliflozin FDA approved?
Empagliflozin, an SGLT2 inhibitor for the treatment of type 2 diabetes mellitus: a review of the evidence. OBJECTIVE: To review available studies of empagliflozin, a sodium glucose co-transporter-2 (SGLT2) inhibitor approved in 2014 by the European Commission and the United States Food and Drug Administration for the treatment of type 2 diabetes mellitus (T2DM). DATA SOURCES: PubMed was searched using the search terms empagliflozin, BI 10773, and BI10773, for entries between January 1, 2000, and December 1, 2014. Reference lists from retrieved articles were searched manually for additional peer-reviewed publications. STUDY SELECTION AND DATA EXTRACTION: All publications reporting clinical trials of empagliflozin were eligible for inclusion. DATA SYNTHESIS: Empagliflozin is a new once-daily oral SGLT2 inhibitor with a mechanism of action that is independent of β-cell function and the insulin pathway. Data from a comprehensive phase III clinical trial program have demonstrated its efficacy as monotherapy, as add-on to other glucose-lowering agents, and in different patient populations. In these studies, empagliflozin resulted in improvements in blood glucose levels as well as reductions in body weight and blood pressure. Empagliflozin was well tolerated and was not associated with an increased risk of hypoglycemia versus placebo. CONCLUSION: The oral antidiabetes agent, empagliflozin, can be used as monotherapy or alongside other glucose-lowering treatments, including insulin, to treat T2DM.
4,002
331
24903420
Which R/bioconductor package is used for integrative genomics visualizations?
Sushi.R: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures. MOTIVATION: Interpretation and communication of genomic data require flexible and quantitative tools to analyze and visualize diverse data types, and yet, a comprehensive tool to display all common genomic data types in publication quality figures does not exist to date. To address this shortcoming, we present Sushi.R, an R/Bioconductor package that allows flexible integration of genomic visualizations into highly customizable, publication-ready, multi-panel figures from common genomic data formats including Browser Extensible Data (BED), bedGraph and Browser Extensible Data Paired-End (BEDPE). Sushi.R is open source and made publicly available through GitHub (https://github.com/dphansti/Sushi) and Bioconductor (http://bioconductor.org/packages/release/bioc/html/Sushi.html).
4,003
332
19744303
List symptoms of congenital toxoplasmosis triad.
A brief history and overview of Toxoplasma gondii. Toxoplasma gondii was discovered by scientists working in North Africa and Brazil around 100 years ago. The parasite has since been found to be capable of infecting all warm-blooded animals including humans making it one of the most successful parasitic organisms worldwide. The pathogenic potential of T. gondii was recognized in the 1920s and 1930s, in congenitally infected children presenting with the classic triad of symptoms, namely hydrocephalus, retinochoroiditis and encephalitis. In addition, around the same time T. gondii parasites were found to be associated with severe intraocular inflammation. In the 1980s, T. gondii emerged as a major cause of death in patients with acquired immunodeficiency syndrome, illustrating the importance of the immune system in controlling T. gondii infection. T. gondii was reported as a major cause of abortion in sheep in New Zealand in the 1950s, which raised questions about potential new transmission routes for the parasite. The discovery of the cat as the definitive host in the 1960s was a very important finding as it helped to complete our understanding of the parasite's life cycle, and the oocyst stage of T. gondii shed in the faeces of infected cats was found to be an important source of infection for many intermediate hosts and helped to explain infection in herbivorous animals and people with a vegetarian diet. In addition, this stage of the parasite was very robust and could survive in the environment, depending on the climatic conditions, for up to 12-18 months. Knowledge of the parasite's life cycle, transmission routes, risk groups and host immune responses has helped in the development of strategies to control the disease, reduce transmission of the parasite and limit environmental contamination.
4,007
333
22894909
How many genes are imprinted in the human genome?
A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Genomic imprinting characterizes genes with a monoallelic expression, which is dependent on the parental origin of each allele. Approximately 150 imprinted genes are known to date, in humans and mice but, though computational searches have tried to extract intrinsic characteristics of these genes to identify new ones, the existing list is probably far from being comprehensive. We used a high-throughput strategy by diverting the classical use of genotyping microarrays to compare the genotypes of mRNA/cDNA vs. genomic DNA to identify new genes presenting monoallelic expression, starting from human placental material. After filtering of data, we obtained a list of 1,082 putative candidate monoallelic SNPs located in more than one hundred candidate genes. Among these, we found known imprinted genes, such as IPW, GRB10, INPP5F and ZNF597, which contribute to validate the approach. We also explored some likely candidates of our list and identified seven new imprinted genes, including ZFAT, ZFAT-AS1, GLIS3, NTM, MAGI2, ZC3H12Cand LIN28B, four of which encode zinc finger transcription factors. They are, however, not imprinted in the mouse placenta, except for Magi2. We analyzed in more details the ZFAT gene, which is paternally expressed in the placenta (as ZFAT-AS1, a non-coding antisense RNA) but biallelic in other tissues. The ZFAT protein is expressed in endothelial cells, as well as in syncytiotrophoblasts. The expression of this gene is, moreover, downregulated in placentas from complicated pregnancies. With this work we increase by about 10% the number of known imprinted genes in humans.
4,014
334
24102379
Is exome sequencing efficient for the detection of germline mutations?
Whole exome sequencing is an efficient and sensitive method for detection of germline mutations in patients with phaeochromcytomas and paragangliomas. BACKGROUND: Genetic testing is recommended when the probability of a disease-associated germline mutation exceeds 10%. Germline mutations are found in approximately 25% of individuals with phaeochromcytoma (PCC) or paraganglioma (PGL); however, genetic heterogeneity for PCC/PGL means many genes may require sequencing. A phenotype-directed iterative approach may limit costs but may also delay diagnosis, and will not detect mutations in genes not previously associated with PCC/PGL. OBJECTIVE: To assess whether whole exome sequencing (WES) was efficient and sensitive for mutation detection in PCC/PGL. METHODS: Whole exome sequencing was performed on blinded samples from eleven individuals with PCC/PGL and known mutations. Illumina TruSeq (Illumina Inc, San Diego, CA, USA) was used for exome capture of seven samples, and NimbleGen SeqCap EZ v3.0 (Roche NimbleGen Inc, Basel, Switzerland) for five samples (one sample was repeated). Massive parallel sequencing was performed on multiplexed samples. Sequencing data were called using Genome Analysis Toolkit and annotated using annovar. Data were assessed for coding variants in RET, NF1, VHL, SDHD, SDHB, SDHC, SDHA, SDHAF2, KIF1B, TMEM127, EGLN1 and MAX. Target capture of five exome capture platforms was compared. RESULTS: Six of seven mutations were detected using Illumina TruSeq exome capture. All five mutations were detected using NimbleGen SeqCap EZ v3.0 platform, including the mutation missed using Illumina TruSeq capture. Target capture for exons in known PCC/PGL genes differs substantially between platforms. Exome sequencing was inexpensive (<$A800 per sample for reagents) and rapid (results <5 weeks from sample reception). CONCLUSION: Whole exome sequencing is sensitive, rapid and efficient for detection of PCC/PGL germline mutations. However, capture platform selection is critical to maximize sensitivity.
4,018
335
19544407
Which cellular processes are regulated by Nanog?
Nanog regulates proliferation during early fish development. Nanog is involved in controlling pluripotency and differentiation of stem cells in vitro. However, its function in vivo has been studied only in mouse embryos and various reports suggest that Nanog may not be required for the regulation of differentiation. To better understand endogenous Nanog function, more animal models should be introduced to complement the murine model. Here, we have identified the homolog of the mammalian Nanog gene in teleost fish and describe the endogenous expression of Ol-Nanog mRNA and protein during medaka (Oryzias latipes) embryonic development and in the adult gonads. Using medaka fish as a vertebrate model to study Nanog function, we demonstrate that Ol-Nanog is necessary for S-phase transition and proliferation in the developing embryo. Moreover, inhibition or overexpression of Ol-Nanog does not affect gene expression of various pluripotency and differentiation markers, suggesting that this transcription factor may not play a direct role in embryonic germ layer differentiation. STEM CELLS 2009;27:2081-2091.
4,031
336
24213377
In which cells are A-type lamins expressed?
Nuclear lamins: making contacts with promoters. The nuclear lamina guards the genome and in many ways contributes to regulating nuclear function. Increasing evidence indicates that the lamina dynamically interacts with chromatin mainly through large repressive domains, and recent data suggest that at least some of the lamin-genome contacts may be developmentally significant. In an attempt to provide an additional meaning to lamin-genome contacts, a recent study characterized the association of gene promoters with A-type lamins in progenitor and differentiated cells. Here, we discuss how A-type lamins interact with spatially defined promoter regions, and the relationship between these interactions, associated chromatin marks and gene expression outputs. We discuss the impact of A-type lamins on nucleus-wide and local chromatin organization. We also address how lamin-promoter interactions are redistributed during differentiation of adipocyte progenitors into adipocytes. Finally, we propose a model of lineage-specific "unlocking" of developmentally regulated loci and its significance in cellular differentiation.
4,046
337
24308968
What is the definition of autophagy?
The role of cell signalling in the crosstalk between autophagy and apoptosis. Not surprisingly, the death of a cell is a complex and well controlled process. For several decades, apoptosis, the first genetically programmed death process to be identified has taken centre stage as the principal mechanism of programmed cell death (type I cell death) in mammalian tissues. Apoptosis has been extensively studied and its contribution to the pathogenesis of disease well documented. However, apoptosis does not function alone in determining the fate of a cell. More recently, autophagy, a process in which de novo formed membrane enclosed vesicles engulf and consume cellular components, has been shown to engage in complex interplay with apoptosis. As a result, cell death has been subdivided into the categories apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). The boundary between Type I and II cell death is not completely clear and as we will discuss in this review and perhaps a discrete difference does not exist, due to intrinsic factors among different cell types and crosstalk among organelles within each cell type. Apoptosis may begin with autophagy and autophagy can often end with apoptosis, inhibition or a blockade of caspase activity may lead a cell to default into Type II cell death from Type I.
4,056
338
20109154
Gene silencing can be achieved by RNA interference (RNAi) in eukaryotic organisms. What is the name of the analogous process in prokaryotic organisms?
Assessment of the evolutionary origin and possibility of CRISPR-Cas (CASS) mediated RNA interference pathway in Vibrio cholerae O395. Bacteria have developed several defense mechanisms against bacteriophages over evolutionary time, but the concept of prokaryotic RNA interference mediated defense mechanism against phages and other invading genetic elements has emerged only recently. Clustered regularly interspaced short palindromic repeats (CRISPR) together with closely associated genes (cas genes) constitute the CASS system that is believed to provide a RNAi-like defense mechanism against bacteriophages within the host bacterium. However, a CASS mediated RNAi-like pathway in enteric pathogens such as Vibrio cholerae O395 or Escherichia coli O157 have not been reported yet. This study specifically was designed to investigate the possibility and evolutionary origin of CASS mediated RNAi-like pathway in the genome of a set of enteric pathogens, especially V. cholerae. The results showed that V. cholerae O395 and also other related enteric pathogens have the essential CASS components (CRISPR and cas genes) to mediate a RNAi-like pathway. The functional domains of a V. cholerae Cas3 protein, which is believed to act as a prokaryotic Dicer, was revealed and compared with the domains of eukaryotic Dicer proteins. Extensive homology in several functional domains provides significant evidence that the Cas3 protein has the essential domains to play a vital role in RNAi like pathway in V. cholerae. The secondary structure of the pre-siRNA for V. cholerae O395 was determined and its thermodynamic stability also reinforced the previous findings and signifies the probability of a RNAi-like pathway in V. cholerae O395.
4,064
339
20838599
Between which types of DNA bases are mutational biases introduced due to directional mutation pressure?
Evidence that mutation is universally biased towards AT in bacteria. Mutation is the engine that drives evolution and adaptation forward in that it generates the variation on which natural selection acts. Mutation is a random process that nevertheless occurs according to certain biases. Elucidating mutational biases and the way they vary across species and within genomes is crucial to understanding evolution and adaptation. Here we demonstrate that clonal pathogens that evolve under severely relaxed selection are uniquely suitable for studying mutational biases in bacteria. We estimate mutational patterns using sequence datasets from five such clonal pathogens belonging to four diverse bacterial clades that span most of the range of genomic nucleotide content. We demonstrate that across different types of sites and in all four clades mutation is consistently biased towards AT. This is true even in clades that have high genomic GC content. In all studied cases the mutational bias towards AT is primarily due to the high rate of C/G to T/A transitions. These results suggest that bacterial mutational biases are far less variable than previously thought. They further demonstrate that variation in nucleotide content cannot stem entirely from variation in mutational biases and that natural selection and/or a natural selection-like process such as biased gene conversion strongly affect nucleotide content.
4,075
340
23438854
Is it feasible to determine the complete proteome of yeast?
The coming age of complete, accurate, and ubiquitous proteomes. High-resolution mass spectrometry (MS)-based proteomics has progressed tremendously over the years. For model organisms like yeast, we can now quantify complete proteomes in just a few hours. Developments discussed in this Perspective will soon enable complete proteome analysis of mammalian cells, as well, with profound impact on biology and biomedicine.
4,081
341
11827928
Which mutations of alpha-myosin heavy chain gene are implicated in hypertrophic cardiomyopathy?
Accelerated cardiomyopathy in mice with overexpression of cardiac G(s)alpha and a missense mutation in the alpha-myosin heavy chain. BACKGROUND: To understand further the pathogenesis of familial hypertrophic cardiomyopathy, we determined how the cardiomyopathy induced by an Arg403-->Gln missense mutation in the alpha-myosin heavy chain (403) is affected by chronically enhancing sympathetic drive by mating the mice with those overexpressing G(s)alpha (G(s)alpha x403). METHODS AND RESULTS: Heart rate in 3-month-old conscious mice was elevated similarly (P<0.05) in mice overexpressing G(s)alpha (G(s)alpha mice; 746 +/- 14 bpm) and G(s)alpha x403 mice (718+/- 19 bpm) compared with littermate wild-type mice (WT; 623+/- 18 bpm) and 403 mice (594+/- 16 bpm). Left ventricular ejection fraction (LVEF), as determined by echocardiography, was enhanced in G(s)alpha x403 mice (88+/- 1%, P<0.001) compared with WT (69+/- 1%), 403 (75+/- 1%), and G(s)alpha (69 +/- 2%) mice. Isolated cardiomyocytes from G(s)alpha x403 mice also exhibited higher (P<0.001) baseline percent contraction (11.9+/- 0.5%) than WT (7.0+/- 0.5%), 403 (5.5+/- 0.5%), and G(s)alpha (7.8+/- 0.3%) cardiomyocytes. Relaxation of myocytes was impaired in 403 mice compared with WT but enhanced in G(s)alpha and normalized in G(s)alpha x403 mice. This was also observed in vivo. In vivo isoproterenol (0.1 microgram . kg(-1) . min(-1)) increased LVEF to maximal levels in G(s)alpha x403 and G(s)alpha, whereas in 403, the response was attenuated compared with WT. At 10 months of age, G(s)alpha x403 had significantly depressed LVEF (57 +/- 4%). Histopathological examination demonstrated that myocyte hypertrophy and fibrosis were already present in young G(s)alpha x403 mice and that old animals had severe cardiomyopathy. By 15 months of age, the survival of G(s)alpha x403 was 0% compared with 100% for WT, 71% for G(s)alpha, and 100% for 403 mice (P<0.05). CONCLUSIONS: These results show that the cardiomyopathy developed by G(s)alpha x403 mice is synergistic rather than additive, most likely owing to the elevated baseline function combined with enhanced responsiveness to sympathetic stimulation.
4,094
342
2225986
Which are the cardiac manifestations of Marfan syndrome?
Labetalol and MRI as initial medical and diagnostic modalities in a marfanoid patient with expanding ascending aortic aneurysm. Marfan syndrome is a hereditable disorder of connective tissue that causes several distinct cardiovascular abnormalities, including aortic regurgitation, dissection, and aneurysm. These cardiac manifestations can be identified with echocardiography, computer tomography, and angiography. Standard treatment of an acute hypertensive crisis in Marfan syndrome uses propranolol and sodium nitroprusside. This patient with Marfan syndrome whose case is reported herein presented with chest pain, hypertensive crisis, and aortic insufficiency; labetalol was used successfully to treat the acute hypertensive crisis and magnetic resonance imaging (MRI) was used to differentiate between aortic dissection and an expanding aortic aneurysm. This report is unique in that labetalol was used to control the hypertensive crisis in Marfan syndrome and MRI was used as the initial diagnostic modality in an emergency setting.
4,112
343
23147248
How is connected "isolated Non-compaction cardiomyopathy" with dilated cardiomyopathy?
A novel alpha-tropomyosin mutation associates with dilated and non-compaction cardiomyopathy and diminishes actin binding. BACKGROUND: Dilated cardiomyopathy (DCM) is characterized by idiopathic dilatation and systolic contractile dysfunction of the ventricle(s) leading to an impaired systolic function. The origin of DCM is heterogeneous, but genetic transmission of the disease accounts for up to 50% of the cases. Mutations in alpha-tropomyosin (TPM1), a thin filament protein involved in structural and regulatory roles in muscle cells, are associated with hypertrophic cardiomyopathy (HCM) and very rarely with DCM. METHODS AND RESULTS: Here we present a large four-generation family in which DCM is inherited as an autosomal dominant trait. Six family members have a cardiomyopathy with the age of diagnosis ranging from 5 months to 52 years. The youngest affected was diagnosed with dilated and non-compaction cardiomyopathy (NCCM) and died at the age of five. Three additional children died young of suspected heart problems. We mapped the phenotype to chromosome 15 and subsequently identified a missense mutation in TPM1, resulting in a p.D84N amino acid substitution. In addition we sequenced 23 HCM/DCM genes using next generation sequencing. The TPM1 p.D84N was the only mutation identified. The mutation co-segregates with all clinically affected family members and significantly weakens the binding of tropomyosin to actin by 25%. CONCLUSIONS: We show that a mutation in TPM1 is associated with DCM and a lethal, early onset form of NCCM, probably as a result of diminished actin binding caused by weakened charge-charge interactions. Consequently, the screening of TPM1 in patients and families with DCM and/or (severe, early onset forms of) NCCM is warranted. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
4,114
344
23223177
What is the role of AMPK in diabetic cardiomyopathy?
Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetic cardiomyopathy is associated with suppression of cardiac autophagy, and activation of AMP-activated protein kinase (AMPK) restores cardiac autophagy and prevents cardiomyopathy in diabetic mice, albeit by an unknown mechanism. We hypothesized that AMPK-induced autophagy ameliorates diabetic cardiomyopathy by inhibiting cardiomyocyte apoptosis and examined the effects of AMPK on the interaction between Beclin1 and Bcl-2, a switch between autophagy and apoptosis, in diabetic mice and high glucose-treated H9c2 cardiac myoblast cells. Exposure of H9c2 cells to high glucose reduced AMPK activity, inhibited Jun NH2-terminal kinase 1 (JNK1)-B-cell lymphoma 2 (Bcl-2) signaling, and promoted Beclin1 binding to Bcl-2. Conversely, activation of AMPK by metformin stimulated JNK1-Bcl-2 signaling and disrupted the Beclin1-Bcl-2 complex. Activation of AMPK, which normalized cardiac autophagy, attenuated high glucose-induced apoptosis in cultured H9c2 cells. This effect was attenuated by inhibition of autophagy. Finally, chronic administration of metformin in diabetic mice restored cardiac autophagy by activating JNK1-Bcl-2 pathways and dissociating Beclin1 and Bcl-2. The induction of autophagy protected against cardiac apoptosis and improved cardiac structure and function in diabetic mice. We concluded that dissociation of Bcl-2 from Beclin1 may be an important mechanism for preventing diabetic cardiomyopathy via AMPK activation that restores autophagy and protects against cardiac apoptosis.
4,123
345
26052092
Are circRNAs associated with diseases and traits?
Circular RNA: A new star of noncoding RNAs. Circular RNAs (circRNAs) are a novel type of RNA that, unlike linear RNAs, form a covalently closed continuous loop and are highly represented in the eukaryotic transcriptome. Recent studies have discovered thousands of endogenous circRNAs in mammalian cells. CircRNAs are largely generated from exonic or intronic sequences, and reverse complementary sequences or RNA-binding proteins (RBPs) are necessary for circRNA biogenesis. The majority of circRNAs are conserved across species, are stable and resistant to RNase R, and often exhibit tissue/developmental-stage-specific expression. Recent research has revealed that circRNAs can function as microRNA (miRNA) sponges, regulators of splicing and transcription, and modifiers of parental gene expression. Emerging evidence indicates that circRNAs might play important roles in atherosclerotic vascular disease risk, neurological disorders, prion diseases and cancer; exhibit aberrant expression in colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC); and serve as diagnostic or predictive biomarkers of some diseases. Similar to miRNAs and long noncoding RNAs (lncRNAs), circRNAs are becoming a new research hotspot in the field of RNA and could be widely involved in the processes of life. Herein, we review the formation and properties of circRNAs, their functions, and their potential significance in disease.
4,125
346
15929462
Which is the most common cause of sudden cardiac death in young athletes?
Hypertrophic cardiomyopathy and arrhythmogenic right ventricular dysplasia in young patients. The annual incidence of sudden cardiac death in young athletes is approximately 1 in 200,000. The most common causes include hypertrophic cardiomyopathy and arrhythmogenic right ventricular dysplasia/cardiomyopathy. These genetic disorders typically manifest in the second decade of life and have the potential for sudden death as the first symptom. Medical care providers must be aware of these disease entities when evaluating patients with seizures, syncope, and/or palpitations. The purpose of this article is to describe their genetics, clinical presentation, and diagnosis.
4,159
347
25503672
Could the Menzerath-Altmann law be proved mathematically trivial in genomes?
When is Menzerath-Altmann law mathematically trivial? A new approach. Menzerath's law, the tendency of Z (the mean size of the parts) to decrease as X (the number of parts) increases, is found in language, music and genomes. Recently, it has been argued that the presence of the law in genomes is an inevitable consequence of the fact that Z=Y/X, which would imply that Z scales with X as Z ∼ 1/X. That scaling is a very particular case of Menzerath-Altmann law that has been rejected by means of a correlation test between X and Y in genomes, being X the number of chromosomes of a species, Y its genome size in bases and Z the mean chromosome size. Here we review the statistical foundations of that test and consider three non-parametric tests based upon different correlation metrics and one parametric test to evaluate if Z ∼ 1/X in genomes. The most powerful test is a new non-parametric one based upon the correlation ratio, which is able to reject Z ∼ 1/X in nine out of 11 taxonomic groups and detect a borderline group. Rather than a fact, Z ∼ 1/X is a baseline that real genomes do not meet. The view of Menzerath-Altmann law as inevitable is seriously flawed.
4,160
348
23107651
What is the rate of survival after commotio cordis?
Increasing survival rate from commotio cordis. BACKGROUND: Commotio cordis events due to precordial blows triggering ventricular fibrillation are a cause of sudden death (SD) during sports and also daily activities. Despite the absence of structural cardiac abnormalities, these events have been considered predominantly fatal with low survival rates. OBJECTIVE: To determine whether expected mortality rates for commotio cordis have changed over time, associated with greater public visibility. METHODS: US Commotio Cordis Registry was accessed to tabulate frequency of reported SD or resuscitated cardiac arrest over 4 decades. RESULTS: At their commotio cordis event, 216 study patients were 0.2-51 years old (mean age 15±9 years); 95% were males. Death occurred in 156 individuals (72%), while the other 60 (28%) survived. Proportion of survivors increased steadily with concomitant decrease in fatal events. For the initial years (1970-1993), 6 of 59 cases survived (10%), while during 1994-2012, 54 of 157 (34%) survived (P = .001). The most recent 6 years, survival from commotio cordis was 31 of 53 (58%), with survivor and nonsurvivor curves ultimately crossing. Higher survival rates were associated with more prompt resuscitation (40%<3 minutes vs 5%>3 minutes; P<.001) and participation in competitive sports (39%; P<.001), but with lower rates in African Americans (1 of 24; 4%) than in whites (54 of 166; 33%; P = .004). Independent predictors of mortality were black race (P = .045) and participation in noncompetitive sports (P = .002), with an on-site automated external defibrillator use protective against SD (P = .01). CONCLUSIONS: Survival from commotio cordis has increased, likely owing to more rapid response times and access to defibrillation, as well as greater public awareness of this condition.
4,166
349
18720427
What is the oldest human sample analysed by paleontology proteomics?
Species identification of Oetzi's clothing with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on peptide pattern similarities of hair digests. Identification of ancient biological samples from the 1991-discovered and more than 5300-year-old Tyrolean mummy, also called iceman or Oetzi, is very difficult. The species of origins of four animal-hair-bearing samples of the accoutrement of the mummy not yet diagnosed were identified by a special proteomics method. Ha 43/91/130 and Ha 6/91, two samples from his coat, and Ha 5/91, a sample from his leggings, were assigned to sheep. The upper leather of his moccasins, Ha 2/91, was made from cattle. Despite the enormous age of these samples with partial (bio)chemical alterations, reliable identification was possible using a recently developed matrix-assisted laser desorption/ionization time-of-flight mass spectrometric ((MALDI-TOF MS)-based analytical method. The method is exclusively based on the analysis of proteins and uses minute amounts of peptides directly derived from tryptic hair digests without any separation or enrichment steps. Unknown species are identified by comparison of their peptide ion patterns with known spectra stored in existing databases. Hereby, the correlation distance, a form of Euclidean distance, and deduced parameters are used to measure similarities. If more than one potential hit remains, specific diagnostic peptide ions are used to stepwise exclude incorrect matches. These ions are specific for orders, families, subfamilies/genera and/or even species. Peptide mass fingerprinting data combined with those from collision-induced dissociation spectra (combined MS & MS/MS) were used for interpretation with the MASCOT search engine and the NCBI database to find the potential parentage of hair proteins. For this technique, selected precursor ions were identified as specific diagnostic peptide ions.
4,171
350
19076295
What are the results of loss of the protein Lon1 in the plant Arabidopsis?
Role of Lon1 protease in post-germinative growth and maintenance of mitochondrial function in Arabidopsis thaliana. Maintenance of protein quality control and turnover is essential for cellular homeostasis. In plant organelles this biological process is predominantly performed by ATP-dependent proteases. Here, a genetic screen was performed that led to the identification of Arabidopsis thaliana Lon1 protease mutants that exhibit a post-embryonic growth retardation phenotype. Translational fusion to yellow fluorescent protein revealed AtLon1 subcellular localization in plant mitochondria, and the AtLon1 gene could complement the respiratory-deficient phenotype of the yeast PIM1 gene homolog. AtLon1 is highly expressed in rapidly growing plant organs of embryonic origin, including cotyledons and primary roots, and in inflorescences, which have increased mitochondria numbers per cell to fulfill their high energy requirements. In lon1 mutants, the expression of both mitochondrial and nuclear genes encoding respiratory proteins was normal. However, mitochondria isolated from lon1 mutants had a lower capacity for respiration of succinate and cytochrome c via complexes II and IV, respectively. Furthermore, the activity of key enzymes of the tricarboxylic acid (TCA) cycle was significantly reduced. Additionally, mitochondria in lon1 mutants had an aberrant morphology. These results shed light on the developmental mechanisms of selective proteolysis in plant mitochondria and suggest a critical role for AtLon1 protease in organelle biogenesis and seedling establishment.
4,174
351
23248352
Which gene is involved in Giant Axonal Neuropathy?
Giant axonal neuropathy caused by a novel compound heterozygous mutation in the gigaxonin gene. Giant axonal neuropathy is a rare autosomal recessive disorder, which typically involves both central and peripheral nervous system. Yet the phenotypic-genotypic correlation remains obscure. We report a novel compound heterozygous mutation with the c. 805C>T in exon 4(Arg545His missense mutation) and the c. 1634G>A in exon 11(Arg269Trp missense mutation) in an 11-year-old Chinese giant axonal neuropathy case. This patient had an atypical giant axonal neuropathy phenotype rather similar to Charcot-Marie-Tooth disease, without tightly curled hair and mental retardation. The patient had a slowly progressive sensory motor neuropathy since age 3 years, and she also had nystagmus, feet deformities, scoliosis, and cerebellar tonsillar protrusion. Electrophysiological studies indicated a predominantly axonal sensory-motor neuropathy. The diagnosis was confirmed by sural nerve biopsy and direct sequencing of all the 11 gigaxonin exons. The proband's parents are heterozygotes of the disease without symptoms. Our findings extend the number of gigaxonin mutations that cause giant axonal neuropathy.
4,190
352
17981814
Are there studies representing the involvement of Notch mutations in neurodegenerative diseases such as Down syndrome, Pick's and Prion's disease, and cadasil syndrome?
Interference with splicing of Presenilin transcripts has potent dominant negative effects on Presenilin activity. Missense mutations in the PRESENILIN1 (PSEN1) gene frequently underlie familial Alzheimer's disease (FAD). Nonsense and most splicing mutations result in the synthesis of truncated peptides, and it has been assumed that truncated PSEN1 protein is functionless so that heterozygotes for these mutations are unaffected. Some FAD mutations affecting PSEN1 mRNA splicing cause loss of exon 8 or 9 sequences while maintaining the reading frame. We attempted to model these exon-loss mutations in zebrafish embryos by injecting morpholino antisense oligonucleotides (morpholinos) directed against splice acceptor sites in zebrafish psen1 transcripts. However, this produced cryptic changes in splicing potentially forming mRNAs encoding truncated presenilin proteins. Aberrant splicing in the region between exons 6 and 8 produces potent dominant negative effects on Psen1 protein activity, including Notch signalling, and causes a hydrocephalus phenotype. Reductions in Psen1 activity feedback positively to increase psen1 transcription through a mechanism apparently independent of gamma-secretase. We present evidence that the dominant negative effects are mediated through production of truncated Psen1 peptides that interfere with the normal activity of both Psen1 and Psen2. Mutations causing such truncations would be dominant lethal in embryo development. Somatic cellular changes in ageing cells that interfere with PSEN1 splicing, or otherwise cause protein truncation, might contribute to sporadic Alzheimer's disease, cancer and other diseases.
4,207
353
22427630
Are there any functional differences between Mfd and its human Cocaine syndrome protein B (CSB) homolog?
Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli. Transcription-coupled repair (TCR) is a cellular process by which some forms of DNA damage are repaired more rapidly from transcribed strands of active genes than from nontranscribed strands or the overall genome. In humans, the TCR coupling factor, CSB, plays a critical role in restoring transcription following both UV-induced and oxidative DNA damage. It also contributes indirectly to the global repair of some forms of oxidative DNA damage. The Escherichia coli homolog, Mfd, is similarly required for TCR of UV-induced lesions. However, its contribution to the restoration of transcription and to global repair of oxidative damage has not been examined. Here, we report the first direct study of transcriptional recovery following UV-induced and oxidative DNA damage in E. coli. We observed that mutations in mfd or uvrA reduced the rate that transcription recovered following UV-induced damage. In contrast, no difference was detected in the rate of transcription recovery in mfd, uvrA, fpg, nth, or polB dinB umuDC mutants relative to wild-type cells following oxidative damage. mfd mutants were also fully resistant to hydrogen peroxide (H(2)O(2)) and removed oxidative lesions from the genome at rates comparable to wild-type cells. The results demonstrate that Mfd promotes the rapid recovery of gene expression following UV-induced damage in E. coli. In addition, these findings imply that Mfd may be functionally distinct from its human CSB homolog in that it does not detectably contribute to the recovery of gene expression or global repair following oxidative damage.
4,209
354
25429432
What is membrane scission?
ESCRT function in cytokinesis: location, dynamics and regulation by mitotic kinases. Mammalian cytokinesis proceeds by constriction of an actomyosin ring and furrow ingression, resulting in the formation of the midbody bridge connecting two daughter cells. At the centre of the midbody resides the Flemming body, a dense proteinaceous ring surrounding the interlocking ends of anti-parallel microtubule arrays. Abscission, the terminal step of cytokinesis, occurs near the Flemming body. A series of broad processes govern abscission: the initiation and stabilisation of the abscission zone, followed by microtubule severing and membrane scission-The latter mediated by the endosomal sorting complex required for transport (ESCRT) proteins. A key goal of cell and developmental biologists is to develop a clear understanding of the mechanisms that underpin abscission, and how the spatiotemporal coordination of these events with previous stages in cell division is accomplished. This article will focus on the function and dynamics of the ESCRT proteins in abscission and will review recent work, which has begun to explore how these complex protein assemblies are regulated by the cell cycle machinery.
4,224
355
21946516
How many TAp73 isoforms have been identified in humans?
TAp73 is downregulated in oocytes from women of advanced reproductive age. Studies on oocyte transcriptome are important to understand the biological pathways involved in oogenesis, totipotence and early embryonic development. Moreover, genes regulating physiological pathways in gametes could represent potential candidates for reproductive disorders. In addition to oocyte specific transcription factors, also the members of the p53 family could be etiologically involved due to their biological functions. In fact, their role in the control of cell cycle, apoptosis, and germ-line genome stability is well known. Female reproductive aging is one of the causes of fertility reduction and it is often associated with egg aneuploidy increase. In order to verify the potential involvement of p73 in reproductive aging, we determined its expression in single mature MII oocytes from two groups of women, younger than 35 or older than 38 years, respectively. We found that TAp73 isoforms are down regulated in oocytes from women older than 38 years. We confirmed these data in pools of mouse oocytes. TAp73 down regulation in oocytes from women of advanced reproductive age could explain both the reduction of fertility and the increase of newborns with chromosomal abnormalities.
4,311
356
22445756
Is the yeast Μac1 transcription factor induced upon copper deficiency?
Low-affinity copper transporter CTR2 is regulated by copper-sensing transcription factor Mac1p in Saccharomyces cerevisiae. Copper is an indispensable metal for life. For convenience of genetic manipulation and sharing similar metabolic pathway of metals with mammalian cells, the yeast Saccharomyces cerevisiae is widely used for metal homeostasis studies. Storage and mobilization of copper ions in yeast vacuoles or mammalian lysosomes are important for cells to avoid their toxicity and elevate their utility. Though regulation of other genes involved in copper homeostasis is well understood, the regulation of gene encoding low-affinity copper transporter Ctr2p, which mediates mobilization of vacuolar or lysosomal stored copper ions, is still unclear. In this study, we found that copper depletion can upregulate yeast CTR2 gene transcription while copper overload downregulate it. The copper-depletion induced CTR2 transcription can be abrogated by genetic deletion of copper-sensing transcription factor Mac1p. Though absent of consensus Mac1p binding sequences, CTR2 promoter region is demonstrated to be occupied by Mac1p, according to our results of chromatin immunoprecipitation (ChIP) assay. Overexpression of Mac1p can upregulate CTR2 transcription and partially complement the growth defect of copper-deficient yeast strain. Taken together, our results suggest that Mac1p can activate the expression of vacuolar copper transporter Ctr2p in response to copper deficiency, resulting in yeast resistance to copper starvation.
4,318
357
26322582
What is the mechanism of DNA replication termination in vertebrates?
The mechanism of DNA replication termination in vertebrates. Eukaryotic DNA replication terminates when replisomes from adjacent replication origins converge. Termination involves local completion of DNA synthesis, decatenation of daughter molecules and replisome disassembly. Termination has been difficult to study because termination events are generally asynchronous and sequence nonspecific. To overcome these challenges, we paused converging replisomes with a site-specific barrier in Xenopus egg extracts. Upon removal of the barrier, forks underwent synchronous and site-specific termination, allowing mechanistic dissection of this process. We show that DNA synthesis does not slow detectably as forks approach each other, and that leading strands pass each other unhindered before undergoing ligation to downstream lagging strands. Dissociation of the replicative CMG helicase (comprising CDC45, MCM2-7 and GINS) occurs only after the final ligation step, and is not required for completion of DNA synthesis, strongly suggesting that converging CMGs pass one another and dissociate from double-stranded DNA. This termination mechanism allows rapid completion of DNA synthesis while avoiding premature replisome disassembly.
4,319
358
24194124
Which are the different members/isoforms of the Ras oncogenes?
Identification of a farnesol analog as a Ras function inhibitor using both an in vivo Ras activation sensor and a phenotypic screening approach. Mutations in Ras isoforms such as K-Ras, N-Ras, and H-Ras contribute to roughly 85, 15, and 1% of human cancers, respectively. Proper membrane targeting of these Ras isoforms, a prerequisite for Ras activity, requires farnesylation or geranylgeranylation at the C-terminal CAAX box. We devised an in vivo screening strategy based on monitoring Ras activation and phenotypic physiological outputs for assaying synthetic Ras function inhibitors (RFI). Ras activity was visualized by the translocation of RBD Raf1 -GFP to activated Ras at the plasma membrane. By using this strategy, we screened one synthetic farnesyl substrate analog (AGOH) along with nine putative inhibitors and found that only m-CN-AGOH inhibited Ras activation. Phenotypic analysis of starving cells could be used to monitor polarization, motility, and the inability of these treated cells to aggregate properly during fruiting body formation. Incorporation of AGOH and m-CN-AGOH to cellular proteins was detected by western blot. These screening assays can be incorporated into a high throughput screening format using Dictyostelium discoideum and automated microscopy to determine effective RFIs. These RFI candidates can then be further tested in mammalian systems.
4,332
359
23988446
Which is the subcellular localization of ERAP2?
EpCAM associates with endoplasmic reticulum aminopeptidase 2 (ERAP2) in breast cancer cells. Epithelial cell adhesion molecule (EpCAM) is an epithelial and cancer cell "marker" and there is a cumulative and growing evidence of its signaling role. Its importance has been recognized as part of the breast cancer stem cell phenotype, the tumorigenic breast cancer stem cell is EpCAM(+). In spite of its complex functions in normal cell development and cancer, relatively little is known about EpCAM-interacting proteins. We used breast cancer cell lines and performed EpCAM co-immunoprecipitation followed by mass spectrometry in search for novel potentially interacting proteins. The endoplasmic reticulum aminopeptidase 2 (ERAP2) was found to co-precipitate with EpCAM and to co-localize in the cytoplasm/ER and the plasma membrane. ERAP2 is a proteolytic enzyme set in the endoplasmic reticulum (ER) where it plays a central role in the trimming of peptides for presentation by MHC class I molecules. Expression of EpCAM and ERAP2 in vitro in the presence of dog pancreas rough microsomes (ER vesicles) confirmed N-linked glycosylation, processing in ER and the size of EpCAM. The association between ERAP2 and EpCAM is a unique and novel finding that provides new ideas on EpCAM processing and on how antigen presentation may be regulated in cancer.
4,335
360
17912534
Have thyronamines effects on fat tissue?
3-Iodothyronamine: a novel hormone controlling the balance between glucose and lipid utilisation. 3-Iodothyronamine is considered as a derivate of thyroid hormone as a result of enzymatic deiodination and decarboxylation. The physiological role of thyronamine (T1AM) is not known. The aim of this study was to analyze the metabolic response to T1AM in the Djungarian hamster Phodopus sungorus. We measured the influence of T1AM (50 mg/kg) on metabolic rate (VO(2)), body temperature (T (b)) and respiratory quotient (RQ) in this species and in BL/6 mice. T1AM treated hamsters as well as the mice showed a rapid decrease in VO(2) and T (b), accompanied by a reduction of RQ from normal values of about approximately 0.9 to approximately 0.70 for several hours. This indicates that carbohydrate utilisation is blocked by the injection of T1AM and that metabolic pathways are rerouted from carbohydrate to lipid utilisation in response to T1AM. This assumption was further supported by the observation that the treatment of T1AM caused ketonuria and a significant loss of body fat. Our results indicate that T1AM has the potential to control the balance between glucose and lipid utilisation in vivo.
4,347
361
23122652
What are the names of anti-CD52 monoclonal antibody that is used for treatment of multiple sclerosis patients?
Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. BACKGROUND: The anti-CD52 monoclonal antibody alemtuzumab reduced disease activity in a phase 2 trial of previously untreated patients with relapsing-remitting multiple sclerosis. We aimed to assess efficacy and safety of first-line alemtuzumab compared with interferon beta 1a in a phase 3 trial. METHODS: In our 2 year, rater-masked, randomised controlled phase 3 trial, we enrolled adults aged 18-50 years with previously untreated relapsing-remitting multiple sclerosis. Eligible participants were randomly allocated in a 2:1 ratio by an interactive voice response system, stratified by site, to receive intravenous alemtuzumab 12 mg per day or subcutaneous interferon beta 1a 44 μg. Interferon beta 1a was given three-times per week and alemtuzumab was given once per day for 5 days at baseline and once per day for 3 days at 12 months. Coprimary endpoints were relapse rate and time to 6 month sustained accumulation of disability in all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT00530348. FINDINGS: 187 (96%) of 195 patients randomly allocated interferon beta 1a and 376 (97%) of 386 patients randomly allocated alemtuzumab were included in the primary analyses. 75 (40%) patients in the interferon beta 1a group relapsed (122 events) compared with 82 (22%) patients in the alemtuzumab group (119 events; rate ratio 0·45 [95% CI 0·32-0·63]; p<0.0001), corresponding to a 54·9% improvement with alemtuzumab. Based on Kaplan-Meier estimates, 59% of patients in the interferon beta 1a group were relapse-free at 2 years compared with 78% of patients in the alemtuzumab group (p<0·0001). 20 (11%) of patients in the interferon beta 1a group had sustained accumulation of disability compared with 30 (8%) in the alemtuzumab group (hazard ratio 0·70 [95% CI 0·40-1·23]; p=0·22). 338 (90%) of patients in the alemtuzumab group had infusion-associated reactions; 12 (3%) of which were regarded as serious. Infections, predominantly of mild or moderate severity, occurred in 253 (67%) patients treated with alemtuzumab versus 85 (45%) patients treated with interferon beta 1a. 62 (16%) patients treated with alemtuzumab had herpes infections (predominantly cutaneous) compared with three (2%) patients treated with interferon beta 1a. By 24 months, 68 (18%) patients in the alemtuzumab group had thyroid-associated adverse events compared with 12 (6%) in the interferon beta 1a group, and three (1%) had immune thrombocytopenia compared with none in the interferon beta 1a group. Two patients in the alemtuzumab group developed thyroid papillary carcinoma. INTERPRETATION: Alemtuzumab's consistent safety profile and benefit in terms of reductions of relapse support its use for patients with previously untreated relapsing-remitting multiple sclerosis; however, benefit in terms of disability endpoints noted in previous trials was not observed here. FUNDING: Genzyme (Sanofi) and Bayer Schering Pharma.
4,381
362
24655717
Is there a package in R/bioconductor for classification of alternative splicing?
spliceR: an R package for classification of alternative splicing and prediction of coding potential from RNA-seq data. BACKGROUND: RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternative splicing and prediction of coding potential. RESULTS: spliceR uses the full-length transcript output from RNA-seq assemblers to detect single or multiple exon skipping, alternative donor and acceptor sites, intron retention, alternative first or last exon usage, and mutually exclusive exon events. For each of these events spliceR also annotates the genomic coordinates of the differentially spliced elements, facilitating downstream sequence analysis. For each transcript isoform fraction values are calculated to identify transcript switching between conditions. Lastly, spliceR predicts the coding potential, as well as the potential nonsense mediated decay (NMD) sensitivity of each transcript. CONCLUSIONS: spliceR is an easy-to-use tool that extends the usability of RNA-seq and assembly technologies by allowing greater depth of annotation of RNA-seq data. spliceR is implemented as an R package and is freely available from the Bioconductor repository ( http://www.bioconductor.org/packages/2.13/bioc/html/spliceR.html).
4,382
363
24112897
Which brain structures have been investigated as potential targets for deep brain stimulation of patients suffering from major depression?
Deep brain stimulation for major depression. A third of patients suffering from major depression cannot be helped by conventional treatment methods. These patients face reduced quality of life, high risk of suicide, and little hope of recovery. Deep brain stimulation (DBS) is under scientific evaluation as a new treatment option for these treatment-resistant patients. First clinical studies with small samples have been stimulated at the subgenual cingulate gyrus (Cg25/24), the anterior limb of the capsula interna (ALIC), and the nucleus accumbens (NAcc). Long-term antidepressant effects, augmentation of social functioning, and normalization of brain metabolism have been shown in about 50% of patients. Cognitive safety regarding attention, learning, and memory has been reported. Adverse events were wound infection, suicide, and hypomania, amongst others. Larger studies are under way to confirm these preliminary encouraging results. New hypothesis-guided targets (e.g., medial forebrain bundle, habenula) are about to be assessed in clinical trials. The application of DBS for other psychiatric diseases (e.g., bipolar disorder, alcohol dependency, opioid addiction, schizophrenia) is debated and single case studies are under way. Standards are needed for study registration, target selection, patient inclusion and monitoring, and publication of results to guarantee safety for the patients and scientific exchange.
4,395
364
15453953
Is alemtuzumab effective for remission induction in patients diagnosed with T-cell prolymphocytic leukemia?
Alemtuzumab in peripheral T-cell malignancies. The humanized monoclonal antibody CAMPATH-1H (alemtuzumab) binds to the CD52 antigen, a glycoprotein that is widely expressed on normal and malignant B- and T-lymphocytes. Over the past 5 years, a number of trials have demonstrated that alemtuzumab has clinical activity in mature T-cell diseases such as T-cell prolymphocytic leukemia (T-PLL) and cutaneous T-cell lymphoma (CTCL). In heavily pretreated relapsed/refractory patients alemtuzumab induced responses in more than two thirds of T-PLL and more than 50% of CTCL patients. Responding patients had improved survival compared to nonresponders. Alemtuzumab is particularly effective in clearing malignant lymphocytes from peripheral blood and bone marrow and may therefore facilitate stem-cell transplantation (SCT) in selected patients. The toxicity profile for the antibody is acceptable; the major complications are infusional reactions, which generally subside after the first 1-2 weeks of therapy, and prolonged lymphopenia associated with reactivation of viruses. These can be minimized by careful monitoring and the use of prophylactic therapy. Future studies will be directed toward: alternative routes (subcutaneous) and schedules of administration; use as first-line therapy; combination strategies with conventional chemotherapy; and use of alemtuzumab to purge minimal residual bone-marrow disease prior to SCT.
4,412
365
19101078
What is the association between moon cycle and rupture risk of intracranial aneurysms?
Impact of the lunar cycle on the incidence of aneurysmal subarachnoid haemorrhage: myth or reality? OBJECTIVE: To investigate the impact of the lunar cycle on the incidence of aneurysmal subarachnoid haemorrhages. METHODS: We retrospectively identified all patients admitted to the department of neurosurgery during 1992 and 2004 suffering from aneurysmal subarachnoid haemorrhage. The onset of bleeding was compared with the lunar phase. RESULTS: We did not observe any significant impact of the lunar cycle on the incidence of aneurysmal subarachnoid haemorrhage in 717 consecutive patients (p=0.84). CONCLUSION: The impact of the lunar cycle on aneurysmal subarachnoid haemorrhage is a myth rather than reality.
4,415
366
23393205
Is there an association between TERT promoter mutation and survival of glioblastoma patients?
Prognostic significance of telomerase-associated parameters in glioblastoma: effect of patient age. BACKGROUND: Glioblastoma multiforme (GBM) is a heterogeneous, highly aggressive primary brain tumor with strongly variable patient survival. Because reliable prognostic biomarkers are lacking, we investigated the relation between telomerase-associated parameters and the disease course. METHODS: Telomerase-associated parameters were determined in 100 GBM tissues and associated with clinical characteristics and overall survival. Expressions of telomere length, telomerase activity (TA), and human telomerase reverse transcriptase (hTERT) were analyzed by quantitative PCR, telomeric repeat amplification protocol assay, and reverse transcriptase-PCR, respectively. Mutation status of isocitrate dehydrogenase (IDH)1 was determined by direct sequencing, and O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation by methylation-specific PCR. RESULTS: Of 100 GBM tissues, 61 were positive for both hTERT mRNA and TA, with a highly significant correlation between both parameters (linear regression, P < .0001). Telomere length determination revealed a significant difference between the hTERT/TA-positive and -negative subgroups, with markedly longer telomeres in the hTERT/TA-negative cohort (unpaired Student's t-test, P = .0001). Accordingly, significantly shorter telomeres were detected in GBM tissues derived from older patients (>60 y at diagnosis, P < .0001). While no association of telomere parameters with MGMT promoter status was found, all tumors with IDH1 mutation (6/100) were negative for both hTERT expression and TA and harbored significantly longer telomeres. Patients with tumors lacking hTERT expression/TA showed a significant survival benefit (Kaplan-Meier test, both P < .01), which, however, was based exclusively on the younger patient subgroup (≤60 y, both P < .005; >60 y, both ns). CONCLUSIONS: Telomerase activation is not an independent prognostic parameter in GBM but predicts aggressive tumor behavior solely in a younger patient cohort.
4,418
367
20189881
Is bapineuzumab effective for treatment of patients with Alzheimer's disease?
11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. BACKGROUND: Carbon-11-labelled Pittsburgh compound B ((11)C-PiB) PET is a marker of cortical fibrillar amyloid-beta load in vivo. We used (11)C-PiB PET to investigate whether bapineuzumab, a humanised anti-amyloid-beta monoclonal antibody, would reduce cortical fibrillar amyloid-beta load in patients with Alzheimer's disease. METHODS: Patients with mild-to-moderate Alzheimer's disease were randomly assigned to receive intravenous bapineuzumab or placebo in a ratio of seven to three in three ascending dose groups (0.5, 1.0, or 2.0 mg/kg). Each dose group was enrolled after safety review of the previous group. Randomisation was by interactive voice response system; masking was achieved with numbered kit allocation. Patients, investigators, study site personnel, sponsor staff, and carers were masked to treatment. Patients received up to six infusions, 13 weeks apart, and had (11)C-PiB PET scans at baseline and at weeks 20, 45, and 78. The primary outcome was the difference between the pooled bapineuzumab group and the pooled placebo group in mean change from screening to week 78 in (11)C-PiB cortical to cerebellar retention ratio averaged across six cortical regions of interest. Analysis was by modified intention to treat. This study is registered with EudraCT, number 2004-004120-12; ISRCTN17517446. FINDINGS: 28 patients were assigned to bapineuzumab (n=20) or placebo (n=8). 19 patients in the bapineuzumab group and seven in the placebo group were included in the modified intention-to-treat analysis. Estimated mean (11)C-PiB retention ratio change from baseline to week 78 was -0.09 (95% CI -0.16 to -0.02; p=0.014) in the bapineuzumab group and 0.15 (95% CI 0.02 to 0.28; p=0.022) in the placebo group. Estimated mean difference in (11)C-PiB retention ratio change from baseline to week 78 between the bapineuzumab group and the placebo group was -0.24 (95% CI -0.39 to -0.09; p=0.003). Differences between the bapineuzumab group and the placebo group in the individual regions of interest were similar to the overall mean difference. Adverse events were typically mild to moderate in severity and transient. Two patients in the 2.0 mg/kg bapineuzumab group had transient cerebral vasogenic oedema. INTERPRETATION: Treatment with bapineuzumab for 78 weeks reduced cortical (11)C-PiB retention compared with both baseline and placebo. (11)C-PiB PET seems to be useful in assessing the effects of potential Alzheimer's disease treatments on cortical fibrillar amyloid-beta load in vivo. FUNDING: Elan Pharmaceuticals and Wyeth Research.
4,459
368
21415143
Which deiodinase polymorphisms are implicated in arterial hypertension?
Deiodinases: the balance of thyroid hormone: type 1 iodothyronine deiodinase in human physiology and disease. Thyroid hormone is essential for the normal function of virtually all tissues. The iodothyronine deiodinases catalyze the removal of an iodine residue from the pro-hormone thyroxine (T(4)) molecule, thus producing either the active form triiodothyronine (T(3); activation) or inactive metabolites (reverse T(3); inactivation). Type I deiodinase (D1) catalyzes both reactions. Over the last years, several studies have attempted to understand the mechanisms of D1 function, underlying its effects on normal thyroid hormone metabolism and pathological processes. Although peripheral D1-generated T(3) production contributes to a portion of plasma T(3) in euthyroid state, pathologically increased thyroidal D1 activity seems to be the main cause of the elevated T(3) concentrations observed in hyperthyroid patients. On the other hand, D1-deficient mouse models show that, in the absence of D1, inactive and lesser iodothyronines are excreted in feces with the loss of associated iodine, demonstrating the scavenging function for D1 that might be particularly important in an iodine deficiency setting. Polymorphisms in the DIO1 gene have been associated with changes in serum thyroid hormone levels, whereas decreased D1 activity has been reported in the nonthyroid illness syndrome and in several human neoplasias. The current review aims at presenting an updated picture of the recent advances made in the biochemical and molecular properties of D1 as well as its role in human physiology.
4,465
369
23559085
At which kind of individuals is pharmacological treatment of subclinical hypothyroidism effective in reducing cardiovascular events?
Is subclinical hypothyroidism a cardiovascular risk factor in the elderly? CONTEXT: The negative impact of subclinical hypothyroidism (sHT) on cardiovascular risk, widely recognized in young adults (aged <55-60 y), is still debated in the elderly (>65 y), especially in the oldest olds (>80 y). EVIDENCE ACQUISITION: We searched Medline for reports published with the following search terms: "hypothyroidism," "subclinical hypothyroidism," "ageing," "elderly," "L-thyroxin," "thyroid," "guidelines," "treatment," "quality of life," "cardiovascular risk," "heart failure," "coronary heart disease" (CHD), "atherosclerosis," and "endothelial dysfunction." We limited our search to reports in English published after 1980, although we incorporated some reports published before 1980. We supplemented the search with records from personal files, textbooks, and relevant articles. Analyzed parameters included the epidemiology of thyroid failure, the effect of thyroid hormone on the aging process, cardiovascular function, and CHD risk factors. We also included the potential benefits of L-T4 therapy on the quality of life, cardiovascular events, and survival. EVIDENCE SYNTHESIS: TSH levels increase with age, even in older people without thyroid disease. Most longitudinal studies show an increased risk for CHD events and mortality in sHT participants. This increase is less evident in the elderly, mainly in cases of serum TSH values above 10 mIU/L. Lower mortality rate in a cohort of the oldest olds (>85 y) has been reported. CONCLUSIONS: sHT in older people should be not regarded as a unique condition, and moderately old patients (aged <70-75 y) could be considered clinically similar to the adult population, albeit with a higher optimal TSH target value. Conversely, the oldest old subjects should be carefully followed with a wait-and-see strategy, generally avoiding hormonal treatment. The decision to treat elderly people is still an unresolved clinical challenge--first, due to a lack of appropriately powered randomized controlled trials of L-T4 in sHT patients, examining cardiovascular hard endpoints in various classes of age; and second, because of the negative effects of possible overtreatment.
4,473
370
23449779
Is intense physical activity associated with longevity?
Longevity in male and female joggers: the Copenhagen City Heart Study. Since 1970, jogging has become an increasingly popular form of exercise, but concern about harmful effects has been raised following reports of deaths during jogging. The purpose of this study was to investigate if jogging, which can be very vigorous, is associated with increased all-cause mortality in men and women. Jogging habits were recorded in a random sample of 17,589 healthy men and women aged 20-98 years, invited between 1976 and 2003 to the Copenhagen City Heart Study. The expected lifetime was calculated by integrating the predicted survival curve estimated in the Cox model. In this study 1,878 persons (1,116 men and 762 women) were classified as joggers. During the 35-year maximum follow-up period, we registered 122 deaths among joggers and 10,158 deaths among nonjoggers. The age-adjusted hazard ratio of death among joggers was 0.56 (95% confidence interval: 0.46, 0.67) for men and 0.56 (95% confidence interval: 0.40, 0.80) for women. The age-adjusted increase in survival with jogging was 6.2 years in men and 5.6 years in women. This long-term study of joggers showed that jogging was associated with significantly lower all-cause mortality and a substantial increase in survival for both men and women.
4,479
371
8042708
How homoplasy affects phylogenetic reconstruction?
Molecular evolutionary processes and conflicting gene trees: the hominoid case. Molecular evolutionary processes modify DNA over time, creating both newly derived substitutions shared by related descendant lineages (phylogenetic signal) and "false" similarities which confound phylogenetic reconstruction (homoplasy). However, some types of DNA regions, for example those containing tandem duplicate repeats, are preferentially subject to homoplasy-inducing processes such as sporadically occurring concerted evolution and DNA insertion/deletion. This added level of homoplasic "noise" can make DNA regions with repeats less reliable in phylogenetic reconstruction than those without repeats. Most molecular datasets which distinguish among African hominoids support a human-chimpanzee clade; the most notable exception is from the involucrin gene. However, phylogenetic resolution supporting a chimpanzee-gorilla clade is based entirely on involucrin DNA repeat regions. This is problematic because (1) involucrin repeats are difficult to align, and published alignments are contradictory; (2) involucrin repeats are subject to DNA insertion/deletion; (3) gorillas are polymorphic in that some do not have repeats reported to be synapomorphies linking chimpanzees and gorillas. Gene tree/species tree conflicts can occur due to the sorting of ancestrally polymorphic alleles during speciation. Because hominoid females transfer between groups, mitochondrial and nuclear gene flow occur to the same extent, and the probability of conflict between mitochondrial and nuclear gene trees is theoretically low. When hominoid intraspecific mitochondrial variability is taken into account [based on cytochrome oxidase subunit II (COII) gene sequences], humans and chimpanzees are most closely related, showing the same relative degree of separation from gorillas as when single individuals representing species are analyzed. Conflicting molecular phylogenies can be explained in terms of molecular evolutionary processes and sorting of ancient polymorphisms. This perspective can enhance our understanding of hominoid molecular phylogenies.
4,505
372
24065914
What is known about the association between the use of selective serotonin reuptake inhibitors during pregnancy and risk for autism in offspring?
A "bottom-up" approach to aetiological research in autism spectrum disorders. Autism spectrum disorders (ASD) are currently diagnosed in the presence of impairments in social interaction and communication, and a restricted range of activities and interests. However, there is considerable variability in the behaviors of different individuals with an ASD diagnosis. The heterogeneity spans the entire range of IQ and language abilities, as well as other behavioral, communicative, and social functions. While any psychiatric condition is likely to incorporate a degree of heterogeneity, the variability in the nature and severity of behaviors observed in ASD is thought to exceed that of other disorders. The current paper aims to provide a model for future research into ASD subgroups. In doing so, we examined whether two proposed risk factors - low birth weight (LBW), and in utero exposure to selective serotonin reuptake inhibitors (SSRIs) - are associated with greater behavioral homogeneity. Using data from the Western Australian Autism Biological Registry, this study found that LBW and maternal SSRI use during pregnancy were associated with greater sleep disturbances and a greater number of gastrointestinal complaints in children with ASD, respectively. The findings from this "proof of principle" paper provide support for this "bottom-up" approach as a feasible method for creating homogenous groups.
4,513
373
19581928
Which transcription factors are involved in E-cadherin repression during EMT?
Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Breast tumor interleukin-6 (IL-6) levels increase with tumor grade, and elevated serum IL-6 correlates with poor breast cancer patient survival. Epithelial-mesenchymal transition (EMT) phenotypes such as impaired E-cadherin expression or aberrant Vimentin induction are associated with enhanced metastasis and unfavorable clinical outcome in breast cancer. Despite this fact, few tumor microenvironment-derived extracellular signaling factors capable of provoking such a phenotypic transition have been identified. In this study, we showed that IL-6 promoted E-cadherin repression among a panel of estrogen receptor-alpha-positive human breast cancer cells. Furthermore, ectopic stable IL-6 expressing MCF-7 breast adenocarcinoma cells (MCF-7(IL-6)) exhibited an EMT phenotype characterized by impaired E-cadherin expression and induction of Vimentin, N-cadherin, Snail and Twist. MCF-7(IL-6) cells formed xenograft tumors that displayed loss of E-cadherin, robust Vimentin induction, increased proliferative indices, advanced tumor grade and undifferentiated histology. Finally, we showed aberrant IL-6 production and STAT3 activation in MCF-7 cells that constitutively express Twist, a metastatic regulator and direct transcriptional repressor of E-cadherin. To our knowledge, this is the first study that shows IL-6 as an inducer of an EMT phenotype in breast cancer cells and implicates its potential to promote breast cancer metastasis.
4,525
374
24091796
Is desmin an intermediate filament protein involved in Dilated Cardiomyopathy (DCM)?
Posttranslational modifications of desmin and their implication in biological processes and pathologies. Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.
4,539
375
23724846
Is lambrolizumab effective for treatment of patients with melanoma ?
Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. BACKGROUND: The programmed death 1 (PD-1) receptor is a negative regulator of T-cell effector mechanisms that limits immune responses against cancer. We tested the anti-PD-1 antibody lambrolizumab (previously known as MK-3475) in patients with advanced melanoma. METHODS: We administered lambrolizumab intravenously at a dose of 10 mg per kilogram of body weight every 2 or 3 weeks or 2 mg per kilogram every 3 weeks in patients with advanced melanoma, both those who had received prior treatment with the immune checkpoint inhibitor ipilimumab and those who had not. Tumor responses were assessed every 12 weeks. RESULTS: A total of 135 patients with advanced melanoma were treated. Common adverse events attributed to treatment were fatigue, rash, pruritus, and diarrhea; most of the adverse events were low grade. The confirmed response rate across all dose cohorts, evaluated by central radiologic review according to the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, was 38% (95% confidence interval [CI], 25 to 44), with the highest confirmed response rate observed in the cohort that received 10 mg per kilogram every 2 weeks (52%; 95% CI, 38 to 66). The response rate did not differ significantly between patients who had received prior ipilimumab treatment and those who had not (confirmed response rate, 38% [95% CI, 23 to 55] and 37% [95% CI, 26 to 49], respectively). Responses were durable in the majority of patients (median follow-up, 11 months among patients who had a response); 81% of the patients who had a response (42 of 52) were still receiving treatment at the time of analysis in March 2013. The overall median progression-free survival among the 135 patients was longer than 7 months. CONCLUSIONS: In patients with advanced melanoma, including those who had had disease progression while they had been receiving ipilimumab, treatment with lambrolizumab resulted in a high rate of sustained tumor regression, with mainly grade 1 or 2 toxic effects. (Funded by Merck Sharp and Dohme; ClinicalTrials.gov number, NCT01295827.).
4,549
376
8565331
List human diseases involving genomic imprinting.
Imprinting of IGF2, insulin-dependent diabetes, immune function, and apoptosis: a hypothesis. Parental genomic imprinting is the phenomenon in which the behavior of a gene is modified, depending on the sex of the transmitting parent [Peterson and Sapienza (1993): Annu Rev Genet 27:7-31]. Recent observations have revealed that the inheritance patterns, age-of-onset, severity, and etiology of certain human diseases can be explained by aberrations in the establishment or the maintenance of the imprint. Examples include the Prader-Willi, Angelman, and Beckwith-Wiedemann syndromes [Nicholls (1994): Am J Hum Genet 54:733-740], malignancy [Sapienza (1990): Biochim Biophys Acta 1072:51-61; Feinberg (1993): Nat Genet 4:110-113], and insulin-dependent diabetes mellitus (IDDM) [Julier et al. (1994) Nature 354:155-159; Bennett et al. (1995) Nat Genet 9:284-292]. We review the evidence that implicates an imprinted gene in the INS-IGF2 region of chromosome 11p15 in the etiology of IDDM (referred to as the IDDM2 locus) and show that in human fetal pancreas, INS is not imprinted, thus providing an argument against INS as the candidate gene. We also examine imprinting effects on the expression of IGF2 in components of the human immune system believed to be important in IDDM and show imprinted expression in fetal thymus as early as 15 weeks gestation. We demonstrate further that in the circulating mononuclear cells of two individuals, lectin-stimulated IGF2 transcription was biallelic, indicating relaxation of imprinting, whereas in one individual, transcription was monoallelic. Finally, we review the current available data supporting a role for insulin-like growth factor-II (IGF-II) in the immune system and, more specifically, discuss the evidence supporting a role for the IGFs in the prevention of apoptosis. These data have led us to formulate a novel hypothesis that could mechanistically explain the involvement of the IDDM2 locus in the pathogenesis of IDDM.
4,559
377
21562592
Why are insulators necessary in gene therapy vectors?
CTF/NF1 transcription factors act as potent genetic insulators for integrating gene transfer vectors. Gene transfer-based therapeutic approaches have greatly benefited from the ability of some viral vectors to efficiently integrate within the cell genome and ensure persistent transmission of newly acquired transgenes to the target cell progeny. However, integration of provirus has been associated with epigenetic repercussions that may influence the expression of both the transgene and cellular genes close to vector integration loci. The exploitation of genetic insulator elements may overcome both issues through their ability to act as barriers that limit transgene silencing and/or as enhancer-blockers preventing the activation of endogenous genes by the vector enhancer. We established quantitative plasmid-based assay systems to screen enhancer-blocker and barrier genetic elements. Short synthetic insulators that bind to nuclear factor-I protein family transcription factors were identified to exert both enhancer-blocker and barrier functions, and were compared to binding sites for the insulator protein CTCF (CCCTC-binding factor). Gamma-retroviral vectors enclosing these insulator elements were produced at titers similar to their non-insulated counterparts and proved to be less genotoxic in an in vitro immortalization assay, yielding lower activation of Evi1 oncogene expression and reduced clonal expansion of bone marrow cells.
4,573
378
19935988
Which deficiency is the cause of restless leg syndrome?
Proton pump inhibitors and pain. There may be a relationship between proton pump inhibitors (PPIs) and iron absorption. PPIs may decrease the amount of iron absorbed gastrointestinally specifically due to alteration of the pH in the duodenum. Restless legs syndrome (RLS) is a sensorimotor disorder that includes an urge to move legs, accompanied or caused by uncomfortable and unpleasant sensations in the legs; the urge to move begins or worsens during periods of rest or inactivity, the urge to move is partially or totally relieved by movement, and the urge is worse or only occurs at night. In the majority of the restless leg syndrome population, the sensation is deep seated, often described as being in the shin bones, and most commonly felt between the knee and ankle. It may be described as a creepy, shock-like, tense, electric, buzzing, itchy, or even numb sensation. A subpopulation of this restless leg syndrome patient population experiences restless leg syndrome associated pain (RLSAP) that has been described as a deep "achy pain." This pain has not been found to be relieved by many of the typical over the counter analgesics. Often, constant movement of the legs appears to be the only remedy, as these sensations usually appear during periods of rest. Furthermore, there appears to be an association between iron deficiency and those suffering from Restless Leg Syndrome (RLS). The authors theorize that there may be a possible correlation between PPIs and the symptoms (e.g. pain) associated with RLS. The authors propose that PPIs, such as omeprazole, may interfere with iron absorption in certain patients and that a subpopulation of patients who develop significant iron deficiency characterized by low serum ferritin levels while on PPIs may also develop RLS-like symptoms (including RLSAP). While there is no robust direct evidence to support any associations of PPIs and iron deficiency or PPIs associated with RLS-like symptoms (including RLSAP), it is hoped that this manuscript may spark research efforts on this issue.
4,601
379
15014446
What histone modification is recognized by the bromodomain?
Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. The coordination of chromatin remodeling with chromatin modification is a central topic in gene regulation. The yeast chromatin remodeling complex RSC bears multiple bromodomains, motifs for acetyl-lysine and histone tail interaction. Here, we identify and characterize Rsc4 and show that it bears tandem essential bromodomains. Conditional rsc4 bromodomain mutations were isolated, and were lethal in combination with gcn5Delta, whereas combinations with esa1 grew well. Replacements involving Lys14 of histone H3 (the main target of Gcn5), but not other H3 or H4 lysine residues, also conferred severe growth defects to rsc4 mutant strains. Importantly, wild-type Rsc4 bound an H3 tail peptide acetylated at Lys14, whereas a bromodomain mutant derivative did not. Loss of particular histone deacetylases suppressed rsc4 bromodomain mutations, suggesting that Rsc4 promotes gene activation. Furthermore, rsc4 mutants displayed defects in the activation of genes involved in nicotinic acid biosynthesis, cell wall integrity, and other pathways. Taken together, Rsc4 bears essential tandem bromodomains that rely on H3 Lys14 acetylation to assist RSC complex for gene activation.
4,614
380
15251045
What memory problems are reported in the " Gulf war syndrome"?
Self-reported ill health in male UK Gulf War veterans: a retrospective cohort study. BACKGROUND: Forces deployed to the first Gulf War report more ill health than veterans who did not serve there. Many studies of post-Gulf morbidity are based on relatively small sample sizes and selection bias is often a concern. In a setting where selection bias relating to the ill health of veterans may be reduced, we: i) examined self-reported adult ill health in a large sample of male UK Gulf War veterans and a demographically similar non-deployed comparison group; and ii) explored self-reported ill health among veterans who believed that they had Gulf War syndrome. METHODS: This study uses data from a retrospective cohort study of reproduction and child health in which a validated postal questionnaire was sent to all UK Gulf War veterans (GWV) and a comparison cohort of Armed Service personnel who were not deployed to the Gulf (NGWV). The cohort for analysis comprises 42,818 males who responded to the questionnaire. RESULTS: We confirmed that GWV report higher rates of general ill health. GWV were significantly more likely to have reported at least one new medical symptom or disease since 1990 than NGWV (61% versus 37%, OR 2.7, 95% CI 2.5-2.8). They were also more likely to report higher numbers of symptoms. The strongest associations were for mood swings (OR 20.9, 95%CI 16.2-27.0), memory loss/lack of concentration (OR 19.6, 95% CI 15.5-24.8), night sweats (OR 9.9, 95% CI 6.5-15.2), general fatigue (OR 9.6, 95% CI 8.3-11.1) and sexual dysfunction (OR 4.6, 95%CI 3.2-6.6). 6% of GWV believed they had Gulf War syndrome (GWS), and this was associated with the highest symptom reporting. CONCLUSIONS: Increased levels of reported ill health among GWV were confirmed. This study was the first to use a questionnaire which did not focus specifically on the veterans' symptoms themselves. Nevertheless, the results are consistent with those of other studies of post-Gulf war illness and thus strengthen overall findings in this area of research. Further examination of the mechanisms underlying the reporting of ill health is required.
4,623
381
23355563
Is cadasil syndrome a hereditary disease?
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL): a rare cause of dementia. The clinical course of a 60-year-old gentleman with a history of atypical migraine, recurrent encephalopathic episodes and progressive cognitive impairment is presented. He was diagnosed with cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy, a rare genetic disorder of the cerebral blood vessels caused by mutations in the Notch 3 gene on chromosome 19. The diagnosis was confirmed by MRI, skin biopsy and genetic testing. His cognitive function has progressively deteriorated and he continues to receive supportive care provision. The course and review of the condition are highlighted.
4,643
382
23010473
Which neuroendocrine tumors are associated with specific tumor syndromes?
Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. Pheochromocytomas are neuroendocrine tumors of the adrenal medulla which can occur either sporadically or in the context of hereditary tumor syndromes. Whereas the genetic background of hereditary pheochromocytomas is becoming rather well-defined, very little is known about the more common sporadic form of the disease which constitutes ∼70% of all cases. In this study, we elucidate some of the molecular mechanisms behind sporadic pheochromocytoma by performing a comprehensive analysis of copy number alterations, gene expression, promoter methylation and somatic mutations in the genes RET, VHL, NF1, SDHA, SDHB, SDHC, SDHD, SDHAF2, KIF1Bβ, TMEM127 and MAX, which have been associated with hereditary pheochromocytoma or paraganglioma. Our genomic and genetic analyses of 42 sporadic pheochromocytomas reveal that a large proportion (83%) has an altered copy number in at least one of the known susceptibility genes, often in association with an altered messenger RNA (mRNA) expression. Specifically, 11 sporadic tumors (26%) displayed a loss of one allele of the NF1 gene, which significantly correlated with a reduced NF1 mRNA expression. Subsequent sequencing of NF1 mRNA, followed by confirmation in the corresponding genomic DNA (gDNA), revealed somatic truncating mutations in 10 of the 11 tumors with NF1 loss. Our results thus suggest that the NF1 gene constitutes the most frequent (24%) target of somatic mutations so far known in sporadic pheochromocytomas.
4,648
383
21852499
How many periods of regulatory innovation led to the evolution of vertebrates?
Three periods of regulatory innovation during vertebrate evolution. The gain, loss, and modification of gene regulatory elements may underlie a substantial proportion of phenotypic changes on animal lineages. To investigate the gain of regulatory elements throughout vertebrate evolution, we identified genome-wide sets of putative regulatory regions for five vertebrates, including humans. These putative regulatory regions are conserved nonexonic elements (CNEEs), which are evolutionarily conserved yet do not overlap any coding or noncoding mature transcript. We then inferred the branch on which each CNEE came under selective constraint. Our analysis identified three extended periods in the evolution of gene regulatory elements. Early vertebrate evolution was characterized by regulatory gains near transcription factors and developmental genes, but this trend was replaced by innovations near extracellular signaling genes, and then innovations near posttranslational protein modifiers.
4,649
384
25628503
Is nintedanib effective for Idiopathic Pulmonary Fibrosis?
Pharmaceutical approval update. Meningococcal group B vaccine (Trumenba) to prevent more types of invasive meningococcal disease; antihemophilic factor (recombinant), porcine sequence (Obizur) to treat bleeding from acquired hemophilia A; and pirfenidone (Esbriet) and nintedanib (Ofev) for idiopathic pulmonary fibrosis.
4,663
385
18570267
What is the role of SERCA in diabetic cardiomyopathy?
Cardioprotective effects of hydroxysafflor yellow A on diabetic cardiac insufficiency attributed to up-regulation of the expression of intracellular calcium handling proteins of sarcoplasmic reticulum in rats. Depressed sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) and Ca(2+)-release channels (ryanodine receptor RyR2) are involved in diabetic cardiomyopathy, however, the implication of intracellular calcium handling proteins in SR is undefined. It was hypothesized that the down-regulation of the intracellular calcium handling proteins of SR is closely related to an up-regulated endothelin (ET) system. Hydroxysafflor yellow A (HSYA) is expected to ameliorate cardiac insufficiency which is mediated by the depressed intracellular calcium handling system in diabetic rat heart. Diabetes was produced in male rats 8 weeks after an injection of streptozotocin (60 mg/kg i.p.) and HSYA was administered (100 mg/kg) by gavage in the last 4 weeks. Hemodynamic and echocardiographic changes, cardiac calcium handling proteins, serum biochemistry, ET system and redox were measured. The compromised cardiac function in diabetic rats was accompanied by a significant down-regulation of the expression of RyR2, FKBP12.6 as well as SERCA2a and PLB. These were closely linked with oxidative stress, an increased ET-1 and up-regulation of ECE, PropreET-1 and iNOS mRNA in diabetic cardiomyopathy. After a 4 week treatment with HSYA, all abnormalities were reversed significantly. In conclusion, diabetic cardiomyopathy was correlated with an abnormal expression of calcium handing proteins in SR and an activated ET-ROS (reactive oxygen species) system in the diabetic affected myocardium. HSYA significantly improved the cardiac function and down-regulated the ET system and ROS pathway, resulting in a reversal of the abnormalities of expression of calcium handing proteins and the cardiac performance in diabetic cardiomyopathy.
4,675
386
2158793
Is pesticide exposure associated with polyneuropathy?
The improbable association between the herbicide 2,4-D and polyneuropathy. Isolated case reports have circumstantially linked the use of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) to polyneuropathy. However, a critical review of the literature reveals numerous reasons for doubting a relationship of 2,4-D to polyneuropathy: (1) too few cases given the wide use of the chemical; (2) no valid toxicologic or epidemiologic evidence; (3) the diversity of antecedent illness; (4) an unlikely time sequence of antecedent illness to exposure (pharmacokinetics); (5) the lack of polyneuropathy in medical patients given repetitive doses of 2,4-D; (6) the lack of polyneuropathy in heavily exposed military personnel involved in operation Ranch Hand; (7) the biological properties of 2,4-D which minimize penetration of 2,4-D into the nervous system under normal exposure conditions; and (8) the lack of polyneuropathy in a variety of experimental animal species given 2,4-D by several routes of exposure and at dose levels and durations of exposure many times greater than human applicator exposure. Thus, the weight of evidence indicates that 2,4-D is an unlikely cause of polyneuropathy.
4,716
387
20181287
What is the methodological principle of ChIA-PET?
ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) is a new technology to study genome-wide long-range chromatin interactions bound by protein factors. Here we present ChIA-PET Tool, a software package for automatic processing of ChIA-PET sequence data, including linker filtering, mapping tags to reference genomes, identifying protein binding sites and chromatin interactions, and displaying the results on a graphical genome browser. ChIA-PET Tool is fast, accurate, comprehensive, user-friendly, and open source (available at http://chiapet.gis.a-star.edu.sg).
4,722
388
10483922
Is there an association between borna virus and brain tumor?
Persistent Borna disease virus infection of neonatal rats causes brain regional changes of mRNAs for cytokines, cytokine receptor components and neuropeptides. Borna disease virus (BDV) replicates in brain cells. The neonatally infected rat with BDV exhibits developmental-neuromorphological abnormalities, neuronal cytolysis, and multiple behavioral and physiological alterations. Here, we report on the levels of interleukin-1beta (IL-1beta), IL-1 receptor antagonist (IL-1Ra), tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta1 (TGF-beta1), IL-1 receptor type I (IL-1RI), IL-1 receptor accessory protein (IL-1R AcP) I and II, glycoprotein 130, and various neuropeptide mRNAs in the cerebellum, parieto-frontal cortex, hippocampus and hypothalamus of BDV-infected rats at 7 and 28 days postintracerebral BDV inoculation. The data show that cytokine and neuropeptide mRNA components are abnormal and differentially modulated in brain regions. IL-1beta, TNF-alpha and TGF-beta1 mRNA levels were up-regulated in all brain regions following BDV inoculation. The same cerebellar samples from BDV-infected animals exhibited the highest levels of IL-1beta, IL-1Ra, TNF-alpha, IL-1RI, and IL-1R AcP II mRNA expression. The profiles of IL-1beta, IL-1Ra, TNF-alpha, and TGF-beta1 mRNA induction in the cerebellar samples were highly intercorrelated, indicating an association among cytokine ligand mRNAs. Cytokine mRNA induction was differentially up-regulated among brain regions, except for TGF-beta1. Specificity of transcriptional changes in response to BDV infection is also suggested by the up-regulation of cytokine and neuropeptide Y mRNAs associated with down-regulation of pro-opiomelanocortin, and with no change of IL-1R AcPI, dynorphin and leptin receptor mRNAs in the same brain region samples. Other data also show a differential mRNA component modulation in distinct brain regions obtained from the same rats depending on the stage of BDV infection. The conclusion of these studies is that cytokines may play a role in the neuropathophysiology of neonatally BDV-infected rats.
4,736
389
18039954
List medication interfering with purine metabolism that are used for treatment of T-cell prolymphocytic leukemia?
Valganciclovir prevents cytomegalovirus reactivation in patients receiving alemtuzumab-based therapy. Alemtuzumab is an immunosuppressive antibody that depletes normal T cells and B cells. Prophylaxis for herpes virus and Pneumocystis carinii is standard with this agent. Approximately 20% to 25% of patients will experience cytomegalovirus (CMV) reactivation. We conducted a randomized trial wherein patients being treated with an alemtuzumab-containing regimen received prophylaxis with either valaciclovir 500 mg orally daily or valganciclovir 450 mg orally twice daily. The study design planned to enroll 128 patients, but stopping rules for early termination were met. Forty patients were evaluable. Median age was 58 years (range, 25-83 years); median number of prior therapies was 2 (range, 0-10). Diagnoses included chronic lymphocytic leukemia (29), T-cell prolymphocytic leukemia (3), hairy cell leukemia (1), adult T-cell leukemia/lymphoma (ATLL) (1), marginal zone leukemia (1), large granular lymphocyte leukemia (2), acute lymphoblastic leukemia (1), and T-cell lymphoma (2). Patients received various alemtuzumab-containing regimens, including single agent (5) or combined with: rituximab (2), pentostatin (6), fludarabine, cyclophosphamide, and rituximab (23), or fractionated cyclophosphamide, vincristine, adriamycin, and dexamethasone (hyper-CVAD) (4). Seven of 20 patients enrolled on the valaciclovir arm experienced CMV reactivation. None of the 20 patients randomized to valganciclovir experienced CMV reactivation (P = .004). In conclusion, this agent was highly effective for prophylaxis of CMV reactivation in patients receiving alemtuzumab. This trial was registered at www.ClinicalTrials.gov as #NCT00562770.
4,749
390
19966852
Does PU.1 (SPI1) affect NF-kB binding?
PU.1 is regulated by NF-kappaB through a novel binding site in a 17 kb upstream enhancer element. The majority of patients with acute myeloid leukemia (AML) still die of their disease, and novel therapeutic concepts are needed. Timely expression of the hematopoietic master regulator PU.1 is crucial for normal development of myeloid and lymphoid cells. Targeted disruption of an upstream regulatory element (URE) located several kb upstream in the PU.1 promoter decreases PU.1 expression thereby inducing AML in mice. In addition, suppression of PU.1 has been observed in specific subtypes of human AML. Here, we identified nuclear factor-kappaB (NF-kappaB) to activate PU.1 expression through a novel site within the URE. We found sequence variations of this particular NF-kappaB site in 4 of 120 AML patients. These variant NF-kappaB sequences failed to mediate activation of PU.1. Moreover, the synergistic activation of PU.1 together with CEBPB through these variant sequences was also lost. Finally, AML patients with such variant sequences had suppressed PU.1 mRNA expression. This study suggests that changes of a single base pair in a distal element critically affect the regulation of the tumor suppressor gene PU.1 thereby contributing to the development of AML.
4,755
391
16893615
Does the majority of the mitochondrial genomes abide to the second parity rule (PR2)?
Deviations from Chargaff's second parity rule in organellar DNA Insights into the evolution of organellar genomes. Chargaff' s second parity rule (PR2) states that complementary nucleotides are met with almost equal frequencies in single stranded DNA. This is indeed the case for all bacterial and eukaryotic genomes studied, although the genomic patterns may differ among genomes in terms of local deviations. The behaviour of organellar genomes regarding the second parity rule has not been studied in detail up to now. We tested all available organellar genomes and found that a large number of mitochondrial genomes significantly deviate from the 2nd parity rule in contrast to the eubacterial ones, although mitochondria are believed to have evolved from proteobacteria. Moreover, mitochondria may be divided into three distinct sub-groups according to their overall deviation from the aforementioned parity rule. On the other hand, chloroplast genomes share the pattern of eubacterial genomes and, interestingly, so do mitochondrial genomes originating from plants and some fungi. The deviation from the second parity is found to be weakly correlated with the overall excess of purines against pyrimidines. The behaviour of the large majority of the mitochondrial genomes may be attributed to their distinct mode of replication, which is fundamentally different from the one of the eubacteria. Differences between chloroplast and mitochondrial genomes might also be explained on the basis of different replication mechanisms and correlated to differences in the genome size and compaction. The results presented herein may provide some insight into different modes of evolution of genome structure between chloroplasts and mitochondria.
4,758
392
23820322
What is the association between h-index and academic rank in academic neurosurgery?
Academic productivity and its relationship to physician salaries in the University of California Healthcare System. OBJECTIVES: To evaluate whether physicians with higher academic productivity, as measured by the number of publications in Scopus and the Scopus Hirsch index (h-index), earn higher salaries. METHODS: This was a cross-sectional study. Participants were ophthalmologists, otolaryngologists, neurosurgeons, and neurologists classified as "top earners" (>$100,000 annually) within the University of California (UC) healthcare system in 2008. Bibliometric searches on Scopus were conducted to retrieve the total number of publications and Hirsch indices (h-index), a measure of academic productivity. The association between the number of publications and h-index on physicians' total compensation was determined with multivariate regression models after controlling for the four specialties (ophthalmology, otolaryngology, neurosurgery, and neurology), the five institutions (UC San Francisco, UC Los Angeles, UC San Diego, UC Irvine, and UC Davis), and academic rank (assistant professor, associate professor, and professor). RESULTS: The UC healthcare system departments reported 433 faculty physicians among the four specialties, with 71.6% (n = 310) earning more than $100,000 in 2008 and classifying as top earners. After controlling for the specialty, institution, and ranking, there was a significant association between the number of publications on salary (P < 0.000001). Scopus number of publications and h-index were correlated (P < 0.001). Scopus h-index was of borderline significance in predicting physician salary (P = 0.12). Physicians with higher Scopus publications had higher total salaries across all four specialties. Every 10 publications were associated with a 2.40% increase in total salary after controlling for specialty, institution, rank, and chair. CONCLUSIONS: Ophthalmologists, otolaryngologists, neurosurgeons, and neurologists in the UC healthcare system who are more academically productive receive greater remuneration.
4,771
393
22926484
Is there an association between bruxism and reflux?
Self-reported bruxism mirrors anxiety and stress in adults. OBJECTIVES: The aims were to analyze whether the levels of self-reported bruxism and anxiety associate among otherwise healthy subjects, and to investigate the independent effects of anxiety and stress experience on the probability of self-reported bruxism. STUDY DESIGN: As part of a study on irregular shift work, a questionnaire was mailed to all employees of the Finnish Broadcasting Company with irregular shift work (number of subjects: n=750) and to an equal number of randomly selected employees in the same company with regular eight-hour daytime work. RESULTS: The response rates were 82.3% (56.6 % men) and 34.3 % (46.7 % men), respectively. Among the 874 respondents, those aware of more frequent bruxism reported significantly more severe anxiety (p<0.001). Adjusted by age and gender, frequent bruxers were more than two times more likely to report severe stress (odds ratio 2.5; 95% confidence interval 1.5-4.2) and anxiety (odds ratio 2.2; 95% confidence interval 1.3-3.6) than non-or-mild bruxers. CONCLUSIONS: Present findings suggest that self-reported bruxism and psychological states such as anxiety or stress may be related in working age subjects.
4,781
394
16685074
What is known about the value of mindfulness interventions in prostate cancer patients?
Mindfulness meditation for oncology patients: a discussion and critical review. UNLABELLED: The purpose of this article is to (1) provide a comprehensive over view and discussion of mindfulness meditation and its clinical applicability in oncology and (2) report and critically evaluate the existing and emerging research on mindfulness meditation as an intervention for cancer patients. Using relevant keywords, a comprehensive search of MEDLINE, PsycInfo, and Ovid was completed along with a review of published abstracts from the annual conferences sponsored by the Center for Mindfulness in Medicine, Health Care, and Society and the American Psychosocial Oncology Society. Each article and abstract was critiqued and systematically assessed for purpose statement or research questions, STUDY DESIGN: The search produced 9 research articles published in the past 5 years and 5 conference abstracts published in 2004. Most studies were conducted with breast and prostate cancer patients, and the mindfulness intervention was done in a clinic-based group setting. Consistent benefits--improved psychological functioning, reduction of stress symptoms, enhanced coping and well-being in cancer outpatients--were found. More research in this area is warranted: using randomized, controlled designs, rigorous methods, and different cancer diagnoses and treatment settings; expanding outcomes to include quality of life, physiological, health care use, and health-related outcomes; exploring mediating factors; and discerning dose effects and optimal frequency and length of home practice. Mindfulness meditation has clinically relevant implications to alleviate psychological and physical suffering of persons living with cancer. Use of this behavioral intervention for oncology patients is an area of burgeoning interest to clinicians and researchers.
4,792
395
20507844
What is known about prostate cancer screening in the UK ?
Supporting informed decision making online in 20 minutes: an observational web-log study of a PSA test decision aid. BACKGROUND: Web-based decision aids are known to have an effect on knowledge, attitude, and behavior; important components of informed decision making. We know what decision aids achieve in randomized controlled trials (RCTs), but we still know very little about how they are used and how this relates to the informed decision making outcome measures. OBJECTIVE: To examine men's use of an online decision aid for prostate cancer screening using website transaction log files (web-logs), and to examine associations between usage and components of informed decision making. METHODS: We conducted an observational web-log analysis of users of an online decision aid, Prosdex. Men between 50 and 75 years of age were recruited for an associated RCT from 26 general practices across South Wales, United Kingdom. Men allocated to one arm of the RCT were included in the current study. Time and usage data were derived from website log files. Components of informed decision making were measured by an online questionnaire. RESULTS: Available for analysis were 82 web-logs. Overall, there was large variation in the use of Prosdex. The mean total time spent on the site was 20 minutes. The mean number of pages accessed was 32 (SD 21) out of a possible 60 pages. Significant associations were found between increased usage and increased knowledge (Spearman rank correlation [rho] = 0.69, P < .01), between increased usage and less favorable attitude towards PSA testing (rho = -0.52, P < .01), and between increased usage and reduced intention to undergo PSA testing (rho = -0.44, P < .01). A bimodal distribution identified two types of user: low access and high access users. CONCLUSIONS: Increased usage of Prosdex leads to more informed decision making, the key aim of the UK Prostate Cancer Risk Management Programme. However, developers realistically have roughly 20 minutes to provide useful information that will support informed decision making when the patient uses a web-based interface. Future decision aids need to be developed with this limitation in mind. We recommend that web-log analysis should be an integral part of online decision aid development and analysis. TRIAL REGISTRATION: ISRCTN48473735; http://www.controlled-trials.com/ISRCTN48473735 (Archived by WebCite at http://www.webcitation.org/5pqeF89tS).
4,808
396
21209713
Which hormone abnormalities are common in Williams syndrome ?
Autoimmune thyroid diseases in children. The two major autoimmune thyroid diseases (ATDs) include Graves' disease (GD) and autoimmune thyroiditis (AT); both of which are characterized by infiltration of the thyroid by T and B cells reactive to thyroid antigens, by the production of thyroid autoantibodies and by abnormal thyroid function (hyperthyroidism in GD and hypothyroidism in AT). While the exact etiology of thyroid autoimmunity is not known, it is believed to develop when a combination of genetic susceptibility and environmental encounters leads to breakdown of tolerance. It is important to recognize thyroid dysfunction at an early stage by maintaining an appropriate index of suspicion.
4,829
397
23408665
The secreted frizzled-related protein 3 (sFPR3) is altered in human cancers. Are its level found to increase or to decrease?
Cardiac hormones are potent inhibitors of secreted frizzled-related protein-3 in human cancer cells. Secreted frizzled-related proteins (sFRPs) are secreted glycoproteins involved in neoplastic growth. Four hormones synthesized in the heart, namely vessel dilator, atrial natriuretic peptide (ANP), kaliuretic peptide (KP) and long-acting natriuretic peptide (LANP), have anticancer effects both in vitro and in vivo. These heart hormones were evaluated for their ability to inhibit sFRP-3, which is associated with tumor invasiveness, in human pancreatic cancer, colorectal cancer and renal adenocarcinoma cell lines. Vessel dilator, KP, ANP and LANP maximally reduced the concentration of sFRP-3 by 83%, 83%, 84% and 83%, respectively (each at P<0.0001), in the human colorectal adenocarcinoma cells. In the human pancreatic carcinoma cells, the concentration of sFRP-3 was maximally reduced by 77%, 77%, 77% and 78% (each at P<0.0001) secondary to treatment with vessel dilator, KP, ANP and LANP, respectively. In the human renal adenocarcinoma cells, the sFRP-3 was maximally reduced by vessel dilator, KP, ANP and LANP by 68%, 66%, 68% and 66% (each at P<0.0001), respectively. The results indicate that these four cardiac hormones are significant inhibitors (up to 84%) of sFRP-3 in a variety of human cancer cells. Furthermore, these data suggest that the metabolic targeting of sFRP-3 by the cardiac hormones contributes to their anti-cancer mechanism(s) of action.
4,837
398
18288611
Albumin depletion is a common first step for proteomic analysis of CSF fluid. What is the advantage and disadvantage of this procedure?
Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer's disease patients and healthy individuals. Glycoproteins in cerebrospinal fluid (CSF) are altered in Alzheimer's Disease (AD) patients compared to control individuals. We have utilized albumin depletion prior to 2D gel electrophoresis to enhance glycoprotein concentration for image analysis as well as structural glycoprotein determination without glycan release using mass spectrometry (MS). The benefits of a direct glycoprotein analysis approach include minimal sample manipulation and retention of structural details. A quantitative comparison of gel-separated glycoprotein isoforms from twelve AD patients and twelve control subjects was performed with glycoprotein-specific and total protein stains. We have also compared glycoforms in pooled CSF obtained from AD patients and control subjects with mass spectrometry. One isoform of alpha1-antitrypsin showed decreased glycosylation in AD patients while another glycosylated isoform of an unassigned protein was up-regulated. Protein expression levels of alpha1-antitrypsin were decreased, while the protein levels of apolipoprotein E and clusterin were increased in AD. No specific glycoform could be specifically assigned to AD.
4,845
399
22403033
How are lincRNA affecting the regulation of gene expression?
Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. The functional repertoire of long intergenic noncoding RNA (lincRNA) molecules has begun to be elucidated in mammals. Determining the biological relevance and potential gene regulatory mechanisms of these enigmatic molecules would be expedited in a more tractable model organism, such as Drosophila melanogaster. To this end, we defined a set of 1,119 putative lincRNA genes in D. melanogaster using modENCODE whole transcriptome (RNA-seq) data. A large majority (1.1 of 1.3 Mb; 85%) of these bases were not previously reported by modENCODE as being transcribed. Significant selective constraint on the sequences of these loci predicts that virtually all have sustained functionality across the Drosophila clade. We observe biases in lincRNA genomic locations and expression profiles that are consistent with some of these lincRNAs being involved in the regulation of neighboring protein-coding genes with developmental functions. We identify lincRNAs that may be important in the developing nervous system and in male-specific organs, such as the testes. LincRNA loci were also identified whose positions, relative to nearby protein-coding loci, are equivalent between D. melanogaster and mouse. This study predicts that the genomes of not only vertebrates, such as mammals, but also an invertebrate (fruit fly) harbor large numbers of lincRNA loci. Our findings now permit exploitation of Drosophila genetics for the investigation of lincRNA mechanisms, including lincRNAs with potential functional analogues in mammals.