text
stringlengths
0
1.05M
meta
dict
from __future__ import absolute_import, division, print_function import tensorflow as tf from tensorflow import convert_to_tensor as to_T from util.cnn import fc_layer as fc, conv_relu_layer as conv_relu def _get_lstm_cell(num_layers, lstm_dim, apply_dropout): if isinstance(lstm_dim, list): # Different layers have different dimensions if not len(lstm_dim) == num_layers: raise ValueError('the length of lstm_dim must be equal to num_layers') cell_list = [] for l in range(num_layers): lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_dim[l], state_is_tuple=True) # Dropout is only applied on output of the 1st to second-last layer. # The output of the last layer has no dropout if apply_dropout and l < num_layers-1: dropout_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=0.5) else: dropout_cell = lstm_cell cell_list.append(dropout_cell) else: # All layers has the same dimension. lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_dim, state_is_tuple=True) # Dropout is only applied on output of the 1st to second-last layer. # The output of the last layer has no dropout if apply_dropout: dropout_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=0.5) else: dropout_cell = lstm_cell cell_list = [dropout_cell] * (num_layers-1) + [lstm_cell] cell = tf.contrib.rnn.MultiRNNCell(cell_list, state_is_tuple=True) return cell class AttentionSeq2Seq: def __init__(self, input_seq_batch, seq_length_batch, T_decoder, num_vocab_txt, embed_dim_txt, num_vocab_nmn, embed_dim_nmn, lstm_dim, num_layers, EOS_token, encoder_dropout, decoder_dropout, decoder_sampling, use_gt_layout=None, gt_layout_batch=None, scope='encoder_decoder', reuse=None): self.T_decoder = T_decoder self.encoder_num_vocab = num_vocab_txt self.encoder_embed_dim = embed_dim_txt self.decoder_num_vocab = num_vocab_nmn self.decoder_embed_dim = embed_dim_nmn self.lstm_dim = lstm_dim self.num_layers = num_layers self.EOS_token = EOS_token self.encoder_dropout = encoder_dropout self.decoder_dropout = decoder_dropout self.decoder_sampling = decoder_sampling with tf.variable_scope(scope, reuse=reuse): self._build_encoder(input_seq_batch, seq_length_batch) self._build_decoder(use_gt_layout, gt_layout_batch) def _build_encoder(self, input_seq_batch, seq_length_batch, scope='encoder', reuse=None): lstm_dim = self.lstm_dim num_layers = self.num_layers apply_dropout = self.encoder_dropout with tf.variable_scope(scope, reuse=reuse): T = tf.shape(input_seq_batch)[0] N = tf.shape(input_seq_batch)[1] self.T_encoder = T self.N = N embedding_mat = tf.get_variable('embedding_mat', [self.encoder_num_vocab, self.encoder_embed_dim]) # text_seq has shape [T, N] and embedded_seq has shape [T, N, D]. embedded_seq = tf.nn.embedding_lookup(embedding_mat, input_seq_batch) self.embedded_input_seq = embedded_seq # The RNN cell = _get_lstm_cell(num_layers, lstm_dim, apply_dropout) # encoder_outputs has shape [T, N, lstm_dim] encoder_outputs, encoder_states = tf.nn.dynamic_rnn(cell, embedded_seq, seq_length_batch, dtype=tf.float32, time_major=True, scope='lstm') self.encoder_outputs = encoder_outputs self.encoder_states = encoder_states # transform the encoder outputs for further attention alignments # encoder_outputs_flat has shape [T, N, lstm_dim] encoder_h_transformed = fc('encoder_h_transform', tf.reshape(encoder_outputs, [-1, lstm_dim]), output_dim=lstm_dim) encoder_h_transformed = tf.reshape(encoder_h_transformed, to_T([T, N, lstm_dim])) self.encoder_h_transformed = encoder_h_transformed # seq_not_finished is a shape [T, N, 1] tensor, where seq_not_finished[t, n] # is 1 iff sequence n is not finished at time t, and 0 otherwise seq_not_finished = tf.less(tf.range(T)[:, tf.newaxis, tf.newaxis], seq_length_batch[:, tf.newaxis]) seq_not_finished = tf.cast(seq_not_finished, tf.float32) self.seq_not_finished = seq_not_finished def _build_decoder(self, use_gt_layout, gt_layout_batch, scope='decoder', reuse=None): # The main difference from before is that the decoders now takes another # input (the attention) when computing the next step # T_max is the maximum length of decoded sequence (including <eos>) # # This function is for decoding only. It performs greedy search or sampling. # the first input is <go> (its embedding vector) and the subsequent inputs # are the outputs from previous time step # num_vocab does not include <go> # # use_gt_layout is None or a bool tensor, and gt_layout_batch is a tenwor # with shape [T_max, N]. # If use_gt_layout is not None, then when use_gt_layout is true, predict # exactly the tokens in gt_layout_batch, regardless of actual probability. # Otherwise, if sampling is True, sample from the token probability # If sampling is False, do greedy decoding (beam size 1) N = self.N encoder_states = self.encoder_states T_max = self.T_decoder lstm_dim = self.lstm_dim num_layers = self.num_layers apply_dropout = self.decoder_dropout EOS_token = self.EOS_token sampling = self.decoder_sampling with tf.variable_scope(scope, reuse=reuse): embedding_mat = tf.get_variable('embedding_mat', [self.decoder_num_vocab, self.decoder_embed_dim]) # we use a separate embedding for <go>, as it is only used in the # beginning of the sequence go_embedding = tf.get_variable('go_embedding', [1, self.decoder_embed_dim]) with tf.variable_scope('att_prediction'): v = tf.get_variable('v', [lstm_dim]) W_a = tf.get_variable('weights', [lstm_dim, lstm_dim], initializer=tf.contrib.layers.xavier_initializer()) b_a = tf.get_variable('biases', lstm_dim, initializer=tf.constant_initializer(0.)) # The parameters to predict the next token with tf.variable_scope('token_prediction'): W_y = tf.get_variable('weights', [lstm_dim*2, self.decoder_num_vocab], initializer=tf.contrib.layers.xavier_initializer()) b_y = tf.get_variable('biases', self.decoder_num_vocab, initializer=tf.constant_initializer(0.)) # Attentional decoding # Loop function is called at time t BEFORE the cell execution at time t, # and its next_input is used as the input at time t (not t+1) # c.f. https://www.tensorflow.org/api_docs/python/tf/nn/raw_rnn mask_range = tf.reshape( tf.range(self.decoder_num_vocab, dtype=tf.int32), [1, -1]) all_eos_pred = EOS_token * tf.ones(to_T([N]), tf.int32) all_one_prob = tf.ones(to_T([N]), tf.float32) all_zero_entropy = tf.zeros(to_T([N]), tf.float32) if use_gt_layout is not None: gt_layout_mult = tf.cast(use_gt_layout, tf.int32) pred_layout_mult = 1 - gt_layout_mult def loop_fn(time, cell_output, cell_state, loop_state): if cell_output is None: # time == 0 next_cell_state = encoder_states next_input = tf.tile(go_embedding, to_T([N, 1])) else: # time > 0 next_cell_state = cell_state # compute the attention map over the input sequence # a_raw has shape [T, N, 1] att_raw = tf.reduce_sum( tf.tanh(tf.nn.xw_plus_b(cell_output, W_a, b_a) + self.encoder_h_transformed) * v, axis=2, keep_dims=True) # softmax along the first dimension (T) over not finished examples # att has shape [T, N, 1] att = tf.nn.softmax(att_raw, dim=0)*self.seq_not_finished att = att / tf.reduce_sum(att, axis=0, keep_dims=True) # d has shape [N, lstm_dim] d2 = tf.reduce_sum(att*self.encoder_outputs, axis=0) # token_scores has shape [N, num_vocab] token_scores = tf.nn.xw_plus_b( tf.concat([cell_output, d2], axis=1), W_y, b_y) # predict the next token (behavior depending on parameters) if sampling: # predicted_token has shape [N] logits = token_scores predicted_token = tf.cast(tf.reshape( tf.multinomial(token_scores, 1), [-1]), tf.int32) else: # predicted_token has shape [N] predicted_token = tf.cast(tf.argmax(token_scores, 1), tf.int32) if use_gt_layout is not None: predicted_token = (gt_layout_batch[time-1] * gt_layout_mult + predicted_token * pred_layout_mult) # token_prob has shape [N], the probability of the predicted token # although token_prob is not needed for predicting the next token # it is needed in output (for policy gradient training) # [N, num_vocab] # mask has shape [N, num_vocab] mask = tf.equal(mask_range, tf.reshape(predicted_token, [-1, 1])) all_token_probs = tf.nn.softmax(token_scores) token_prob = tf.reduce_sum(all_token_probs * tf.cast(mask, tf.float32), axis=1) neg_entropy = tf.reduce_sum(all_token_probs * tf.log(tf.maximum(1e-5, all_token_probs)), axis=1) # is_eos_predicted is a [N] bool tensor, indicating whether # <eos> has already been predicted previously in each sequence is_eos_predicted = loop_state[2] predicted_token_old = predicted_token # if <eos> has already been predicted, now predict <eos> with # prob 1 predicted_token = tf.where(is_eos_predicted, all_eos_pred, predicted_token) token_prob = tf.where(is_eos_predicted, all_one_prob, token_prob) neg_entropy = tf.where(is_eos_predicted, all_zero_entropy, neg_entropy) is_eos_predicted = tf.logical_or(is_eos_predicted, tf.equal(predicted_token_old, EOS_token)) # the prediction is from the cell output of the last step # timestep (t-1), feed it as input into timestep t next_input = tf.nn.embedding_lookup(embedding_mat, predicted_token) elements_finished = tf.greater_equal(time, T_max) # loop_state is a 5-tuple, representing # 1) the predicted_tokens # 2) the prob of predicted_tokens # 3) whether <eos> has already been predicted # 4) the negative entropy of policy (accumulated across timesteps) # 5) the attention if loop_state is None: # time == 0 # Write the predicted token into the output predicted_token_array = tf.TensorArray(dtype=tf.int32, size=T_max, infer_shape=False) token_prob_array = tf.TensorArray(dtype=tf.float32, size=T_max, infer_shape=False) att_array = tf.TensorArray(dtype=tf.float32, size=T_max, infer_shape=False) next_loop_state = (predicted_token_array, token_prob_array, tf.zeros(to_T([N]), dtype=tf.bool), tf.zeros(to_T([N]), dtype=tf.float32), att_array) else: # time > 0 t_write = time-1 next_loop_state = (loop_state[0].write(t_write, predicted_token), loop_state[1].write(t_write, token_prob), is_eos_predicted, loop_state[3] + neg_entropy, loop_state[4].write(t_write, att)) return (elements_finished, next_input, next_cell_state, cell_output, next_loop_state) # The RNN cell = _get_lstm_cell(num_layers, lstm_dim, apply_dropout) _, _, decodes_ta = tf.nn.raw_rnn(cell, loop_fn, scope='lstm') predicted_tokens = decodes_ta[0].stack() token_probs = decodes_ta[1].stack() neg_entropy = decodes_ta[3] # atts has shape [T_decoder, T_encoder, N, 1] atts = decodes_ta[4].stack() self.atts = atts # word_vec has shape [T_decoder, N, 1] word_vecs = tf.reduce_sum(atts*self.embedded_input_seq, axis=1) predicted_tokens.set_shape([None, None]) token_probs.set_shape([None, None]) neg_entropy.set_shape([None]) word_vecs.set_shape([None, None, self.encoder_embed_dim]) self.predicted_tokens = predicted_tokens self.token_probs = token_probs self.neg_entropy = neg_entropy self.word_vecs = word_vecs
{ "repo_name": "ronghanghu/n2nmn", "path": "models_shapes/nmn3_netgen_att.py", "copies": "1", "size": "14699", "license": "bsd-2-clause", "hash": -2274397952943021600, "line_mean": 51.6845878136, "line_max": 98, "alpha_frac": 0.5407850874, "autogenerated": false, "ratio": 4.0051771117166215, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0037696130783384883, "num_lines": 279 }
from __future__ import absolute_import, division, print_function import tensorflow as tf from tensorflow_probability.python import distributions as tfd from tensorflow_probability.python import layers as tfl from tensorflow_probability.python.internal import \ distribution_util as dist_util from tensorflow_probability.python.layers import DistributionLambda from tensorflow_probability.python.layers.distribution_layer import _event_size from odin.bay.distributions import NegativeBinomialDisp, ZeroInflated __all__ = [ 'PoissonLayer', 'NegativeBinomialDispLayer', 'NegativeBinomialLayer', 'ZINegativeBinomialDispLayer', 'ZINegativeBinomialLayer', 'ZIPoissonLayer' ] PoissonLayer = tfl.IndependentPoisson class NegativeBinomialLayer(DistributionLambda): """An independent NegativeBinomial Keras layer. Parameters ---------- event_shape: integer vector `Tensor` representing the shape of single draw from this distribution. given_log_count : boolean is the input representing log count values or the count itself dispersion : {'full', 'share', 'single'} 'full' creates a dispersion value for each individual data point, 'share' creates a single vector of dispersion for all examples, and 'single' uses a single value as dispersion for all data points. Note: the dispersion in this case is the probability of success. convert_to_tensor_fn: Python `callable` that takes a `tfd.Distribution` instance and returns a `tf.Tensor`-like object. Default value: `tfd.Distribution.sample`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. Default value: `False`. **kwargs: Additional keyword arguments passed to `tf.keras.Layer`. """ def __init__(self, event_shape=(), given_log_count=True, dispersion='full', convert_to_tensor_fn=tfd.Distribution.sample, validate_args=False, activity_regularizer=None, **kwargs): dispersion = str(dispersion).lower() assert dispersion in ('full', 'single', 'share'), \ "Only support three different dispersion value: 'full', 'single' and " + \ "'share', but given: %s" % dispersion super(NegativeBinomialLayer, self).__init__(lambda t: type(self).new( t, event_shape, given_log_count, dispersion, validate_args), convert_to_tensor_fn, activity_regularizer=activity_regularizer, **kwargs) @staticmethod def new(params, event_shape=(), given_log_count=True, dispersion='full', validate_args=False, name=None): """Create the distribution instance from a `params` vector.""" with tf.compat.v1.name_scope(name, 'NegativeBinomialLayer', [params, event_shape]): params = tf.convert_to_tensor(value=params, name='params') event_shape = dist_util.expand_to_vector(tf.convert_to_tensor( value=event_shape, name='event_shape', dtype=tf.int32), tensor_name='event_shape') output_shape = tf.concat([ tf.shape(input=params)[:-1], event_shape, ], axis=0) ndims = output_shape.shape[0] total_count_params, logits_params = tf.split(params, 2, axis=-1) if dispersion == 'single': logits_params = tf.reduce_mean(logits_params) elif dispersion == 'share': logits_params = tf.reduce_mean(logits_params, axis=tf.range(0, ndims - 1, dtype='int32'), keepdims=True) if given_log_count: total_count_params = tf.exp(total_count_params, name='total_count') return tfd.Independent( tfd.NegativeBinomial(total_count=tf.reshape(total_count_params, output_shape), logits=tf.reshape(logits_params, output_shape) if dispersion == 'full' else logits_params, validate_args=validate_args), reinterpreted_batch_ndims=tf.size(input=event_shape), validate_args=validate_args) @staticmethod def params_size(event_shape=(), name=None): """The number of `params` needed to create a single distribution.""" with tf.compat.v1.name_scope(name, 'NegativeBinomial_params_size', [event_shape]): event_shape = tf.convert_to_tensor(value=event_shape, name='event_shape', dtype=tf.int32) return 2 * _event_size(event_shape, name=name or 'NegativeBinomial_params_size') class NegativeBinomialDispLayer(DistributionLambda): """An alternative parameterization of the NegativeBinomial Keras layer. Parameters ---------- event_shape: integer vector `Tensor` representing the shape of single draw from this distribution. given_log_mean : `bool` is the input representing log mean values or the count mean itself given_log_mean : `bool` is the input representing log mean values or the count mean itself dispersion : {'full', 'share', 'single'} 'full' creates a dispersion value for each individual data point, 'share' creates a single vector of dispersion for all examples, and 'single' uses a single value as dispersion for all data points. convert_to_tensor_fn: Python `callable` that takes a `tfd.Distribution` instance and returns a `tf.Tensor`-like object. Default value: `tfd.Distribution.sample`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. Default value: `False`. **kwargs: Additional keyword arguments passed to `tf.keras.Layer`. """ def __init__(self, event_shape=(), given_log_mean=True, given_log_disp=True, dispersion='full', convert_to_tensor_fn=tfd.Distribution.sample, validate_args=False, activity_regularizer=None, **kwargs): dispersion = str(dispersion).lower() assert dispersion in ('full', 'single', 'share'), \ "Only support three different dispersion value: 'full', 'single' and " + \ "'share', but given: %s" % dispersion super(NegativeBinomialDispLayer, self).__init__( lambda t: type(self).new(t, event_shape, given_log_mean, given_log_disp, dispersion, validate_args), convert_to_tensor_fn, activity_regularizer=activity_regularizer, **kwargs) @staticmethod def new(params, event_shape=(), given_log_mean=True, given_log_disp=True, dispersion='full', validate_args=False, name=None): """ Create the distribution instance from a `params` vector. """ with tf.compat.v1.name_scope(name, 'NegativeBinomialDispLayer', [params, event_shape]): params = tf.convert_to_tensor(value=params, name='params') event_shape = dist_util.expand_to_vector(tf.convert_to_tensor( value=event_shape, name='event_shape', dtype=tf.int32), tensor_name='event_shape') output_shape = tf.concat([ tf.shape(input=params)[:-1], event_shape, ], axis=0) loc_params, disp_params = tf.split(params, 2, axis=-1) if dispersion == 'single': disp_params = tf.reduce_mean(disp_params) elif dispersion == 'share': disp_params = tf.reduce_mean(disp_params, axis=tf.range(0, output_shape.shape[0] - 1, dtype='int32'), keepdims=True) if given_log_mean: loc_params = tf.exp(loc_params, name='loc') if given_log_disp: disp_params = tf.exp(disp_params, name='disp') return tfd.Independent( NegativeBinomialDisp(loc=tf.reshape(loc_params, output_shape), disp=tf.reshape(disp_params, output_shape) if dispersion == 'full' else disp_params, validate_args=validate_args), reinterpreted_batch_ndims=tf.size(input=event_shape), validate_args=validate_args) @staticmethod def params_size(event_shape=(), name=None): """The number of `params` needed to create a single distribution.""" with tf.compat.v1.name_scope(name, 'NegativeBinomialDisp_params_size', [event_shape]): event_shape = tf.convert_to_tensor(value=event_shape, name='event_shape', dtype=tf.int32) return 2 * _event_size(event_shape, name=name or 'NegativeBinomialDisp_params_size') # =========================================================================== # Zero inflated # =========================================================================== class ZIPoissonLayer(DistributionLambda): """A Independent zero-inflated Poisson keras layer """ def __init__(self, event_shape=(), convert_to_tensor_fn=tfd.Distribution.sample, validate_args=False, activity_regularizer=None, **kwargs): super(ZIPoissonLayer, self).__init__( lambda t: type(self).new(t, event_shape, validate_args), convert_to_tensor_fn, activity_regularizer=activity_regularizer, **kwargs) @staticmethod def new(params, event_shape=(), validate_args=False, name=None): """Create the distribution instance from a `params` vector.""" with tf.compat.v1.name_scope(name, 'ZIPoissonLayer', [params, event_shape]): params = tf.convert_to_tensor(value=params, name='params') event_shape = dist_util.expand_to_vector(tf.convert_to_tensor( value=event_shape, name='event_shape', dtype=tf.int32), tensor_name='event_shape') output_shape = tf.concat([ tf.shape(input=params)[:-1], event_shape, ], axis=0) (log_rate_params, logits_params) = tf.split(params, 2, axis=-1) zip = ZeroInflated(count_distribution=tfd.Poisson( log_rate=tf.reshape(log_rate_params, output_shape), validate_args=validate_args), logits=tf.reshape(logits_params, output_shape), validate_args=validate_args) return tfd.Independent( zip, reinterpreted_batch_ndims=tf.size(input=event_shape), validate_args=validate_args) @staticmethod def params_size(event_shape=(), name=None): """The number of `params` needed to create a single distribution.""" with tf.compat.v1.name_scope(name, 'ZeroInflatedNegativeBinomial_params_size', [event_shape]): event_shape = tf.convert_to_tensor(value=event_shape, name='event_shape', dtype=tf.int32) return 2 * _event_size( event_shape, name=name or 'ZeroInflatedNegativeBinomial_params_size') class ZINegativeBinomialLayer(DistributionLambda): """A Independent zero-inflated negative binomial keras layer Parameters ---------- event_shape: integer vector `Tensor` representing the shape of single draw from this distribution. given_log_count : boolean is the input representing log count values or the count itself dispersion : {'full', 'share', 'single'} 'full' creates a dispersion value for each individual data point, 'share' creates a single vector of dispersion for all examples, and 'single' uses a single value as dispersion for all data points. convert_to_tensor_fn: Python `callable` that takes a `tfd.Distribution` instance and returns a `tf.Tensor`-like object. Default value: `tfd.Distribution.sample`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. Default value: `False`. **kwargs: Additional keyword arguments passed to `tf.keras.Layer`. """ def __init__(self, event_shape=(), given_log_count=True, dispersion='full', convert_to_tensor_fn=tfd.Distribution.sample, validate_args=False, activity_regularizer=None, **kwargs): super(ZINegativeBinomialLayer, self).__init__(lambda t: type(self).new( t, event_shape, given_log_count, dispersion, validate_args), convert_to_tensor_fn, activity_regularizer=activity_regularizer, **kwargs) @staticmethod def new(params, event_shape=(), given_log_count=True, dispersion='full', validate_args=False, name=None): """Create the distribution instance from a `params` vector.""" with tf.compat.v1.name_scope(name, 'ZINegativeBinomialLayer', [params, event_shape]): params = tf.convert_to_tensor(value=params, name='params') event_shape = dist_util.expand_to_vector(tf.convert_to_tensor( value=event_shape, name='event_shape', dtype=tf.int32), tensor_name='event_shape') output_shape = tf.concat([ tf.shape(input=params)[:-1], event_shape, ], axis=0) ndims = output_shape.shape[0] (total_count_params, logits_params, rate_params) = tf.split(params, 3, axis=-1) if dispersion == 'single': logits_params = tf.reduce_mean(logits_params) elif dispersion == 'share': logits_params = tf.reduce_mean(logits_params, axis=tf.range(0, ndims - 1, dtype='int32'), keepdims=True) if given_log_count: total_count_params = tf.exp(total_count_params, name='total_count') nb = tfd.NegativeBinomial(total_count=tf.reshape(total_count_params, output_shape), logits=tf.reshape(logits_params, output_shape) if dispersion == 'full' else logits_params, validate_args=validate_args) zinb = ZeroInflated(count_distribution=nb, logits=tf.reshape(rate_params, output_shape), validate_args=validate_args) return tfd.Independent( zinb, reinterpreted_batch_ndims=tf.size(input=event_shape), validate_args=validate_args) @staticmethod def params_size(event_shape=(), name=None): """The number of `params` needed to create a single distribution.""" with tf.compat.v1.name_scope(name, 'ZeroInflatedNegativeBinomial_params_size', [event_shape]): event_shape = tf.convert_to_tensor(value=event_shape, name='event_shape', dtype=tf.int32) return 3 * _event_size( event_shape, name=name or 'ZeroInflatedNegativeBinomial_params_size') class ZINegativeBinomialDispLayer(DistributionLambda): """A Independent zero-inflated negative binomial (alternative parameterization) keras layer Parameters ---------- event_shape: integer vector `Tensor` representing the shape of single draw from this distribution. given_log_mean : boolean is the input representing log count values or the count itself given_log_disp : boolean is the input representing log dispersion values dispersion : {'full', 'share', 'single'} 'full' creates a dispersion value for each individual data point, 'share' creates a single vector of dispersion for all examples, and 'single' uses a single value as dispersion for all data points. convert_to_tensor_fn: Python `callable` that takes a `tfd.Distribution` instance and returns a `tf.Tensor`-like object. Default value: `tfd.Distribution.sample`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. Default value: `False`. **kwargs: Additional keyword arguments passed to `tf.keras.Layer`. """ def __init__(self, event_shape=(), given_log_mean=True, given_log_disp=True, dispersion='full', convert_to_tensor_fn=tfd.Distribution.sample, validate_args=False, activity_regularizer=None, **kwargs): super(ZINegativeBinomialDispLayer, self).__init__( lambda t: type(self).new(t, event_shape, given_log_mean, given_log_disp, dispersion, validate_args), convert_to_tensor_fn, activity_regularizer=activity_regularizer, **kwargs) @staticmethod def new(params, event_shape=(), given_log_mean=True, given_log_disp=True, dispersion='full', validate_args=False, name=None): """Create the distribution instance from a `params` vector.""" with tf.compat.v1.name_scope(name, 'ZINegativeBinomialDispLayer', [params, event_shape]): params = tf.convert_to_tensor(value=params, name='params') event_shape = dist_util.expand_to_vector(tf.convert_to_tensor( value=event_shape, name='event_shape', dtype=tf.int32), tensor_name='event_shape') output_shape = tf.concat([ tf.shape(input=params)[:-1], event_shape, ], axis=0) # splitting the parameters (loc_params, disp_params, rate_params) = tf.split(params, 3, axis=-1) if dispersion == 'single': disp_params = tf.reduce_mean(disp_params) elif dispersion == 'share': disp_params = tf.reduce_mean(disp_params, axis=tf.range(0, output_shape.shape[0] - 1, dtype='int32'), keepdims=True) # as count value, do exp if necessary if given_log_mean: loc_params = tf.exp(loc_params, name='loc') if given_log_disp: disp_params = tf.exp(disp_params, name='disp') # create the distribution nb = NegativeBinomialDisp(loc=tf.reshape(loc_params, output_shape), disp=tf.reshape(disp_params, output_shape) if dispersion == 'full' else disp_params, validate_args=validate_args) zinb = ZeroInflated(count_distribution=nb, logits=tf.reshape(rate_params, output_shape), validate_args=validate_args) return tfd.Independent( zinb, reinterpreted_batch_ndims=tf.size(input=event_shape), validate_args=validate_args) @staticmethod def params_size(event_shape=(), name=None): """The number of `params` needed to create a single distribution.""" with tf.compat.v1.name_scope(name, 'ZINegativeBinomialDisp_params_size', [event_shape]): event_shape = tf.convert_to_tensor(value=event_shape, name='event_shape', dtype=tf.int32) return 3 * _event_size(event_shape, name=name or 'ZINegativeBinomialDisp_params_size')
{ "repo_name": "imito/odin", "path": "odin/bay/distribution_layers/count_layers.py", "copies": "1", "size": "21219", "license": "mit", "hash": -4027891369750667000, "line_mean": 43.2985386221, "line_max": 80, "alpha_frac": 0.5719873698, "autogenerated": false, "ratio": 4.318949725218808, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5390937095018807, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import tensorflow as tf from tensorflow.python.framework import dtypes from tensorflow.contrib import learn as tflearn from tensorflow.contrib import layers as tflayers def lstm_model(num_units, rnn_layers, dense_layers=None, learning_rate=0.1, optimizer='Adagrad'): """ Creates a deep model based on: * stacked lstm cells * an optional dense layers :param num_units: the size of the cells. :param rnn_layers: list of int or dict * list of int: the steps used to instantiate the `BasicLSTMCell` cell * list of dict: [{steps: int, keep_prob: int}, ...] :param dense_layers: list of nodes for each layer :return: the model definition """ def lstm_cells(layers): if isinstance(layers[0], dict): return [tf.contrib.rnn.DropoutWrapper( tf.contrib.rnn.BasicLSTMCell( layer['num_units'], state_is_tuple=True ), layer['keep_prob'] ) if layer.get('keep_prob') else tf.contrib.rnn.BasicLSTMCell( layer['num_units'], state_is_tuple=True ) for layer in layers ] return [tf.contrib.rnn.BasicLSTMCell(steps, state_is_tuple=True) for steps in layers] def dnn_layers(input_layers, layers): if layers and isinstance(layers, dict): return tflayers.stack(input_layers, tflayers.fully_connected, layers['layers'], activation=layers.get('activation'), dropout=layers.get('dropout')) elif layers: return tflayers.stack(input_layers, tflayers.fully_connected, layers) else: return input_layers def _lstm_model(X, y): stacked_lstm = tf.contrib.rnn.MultiRNNCell(lstm_cells(rnn_layers), state_is_tuple=True) x_ = tf.unstack(X, axis=1, num=num_units) output, layers = tf.contrib.rnn.static_rnn(stacked_lstm, x_, dtype=dtypes.float32) output = dnn_layers(output[-1], dense_layers) prediction, loss = tflearn.models.linear_regression(output, y) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer=optimizer, learning_rate=learning_rate) return prediction, loss, train_op return _lstm_model
{ "repo_name": "irontarkus95/MET-Oracle-lstm-weather-prediction", "path": "LSTM_RCNN/lstm.py", "copies": "1", "size": "2469", "license": "mit", "hash": -932313319185495000, "line_mean": 41.5689655172, "line_max": 97, "alpha_frac": 0.6115836371, "autogenerated": false, "ratio": 4.054187192118227, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5165770829218227, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import tensorflow as tf import polyaxon_lib as plx from polyaxon_schemas.losses import SoftmaxCrossEntropyConfig from polyaxon_schemas.metrics import AccuracyConfig from polyaxon_schemas.optimizers import AdamConfig def graph_fn(mode, features): x = plx.layers.Embedding(input_dim=10000, output_dim=128)(features['source_token']) x = plx.layers.LSTM(units=128, dropout=0.2, recurrent_dropout=0.2)(x) x = plx.layers.Dense(units=2)(x) return x def model_fn(features, labels, params, mode, config): model = plx.models.Classifier( mode=mode, graph_fn=graph_fn, loss=SoftmaxCrossEntropyConfig(), optimizer=AdamConfig(learning_rate=0.001), metrics=[AccuracyConfig()], summaries='all', one_hot_encode=True, n_classes=2) return model(features=features, labels=labels, params=params, config=config) def experiment_fn(output_dir): """Creates an experiment using LSTM architecture to classify IMDB sentiment dataset.""" dataset_dir = '../data/imdb' plx.datasets.imdb.prepare(dataset_dir) train_input_fn, eval_input_fn = plx.datasets.imdb.create_input_fn(dataset_dir) experiment = plx.experiments.Experiment( estimator=plx.estimators.Estimator(model_fn=model_fn, model_dir=output_dir), train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, train_steps=10000, eval_steps=10) return experiment def main(*args): plx.experiments.run_experiment(experiment_fn=experiment_fn, output_dir="/tmp/polyaxon_logs/imdb_lsmt", schedule='continuous_train_and_eval') if __name__ == "__main__": tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()
{ "repo_name": "polyaxon/polyaxon-api", "path": "examples/programatic_examples/imdb_sentiment_lstm.py", "copies": "1", "size": "1839", "license": "mit", "hash": 4223640110791726000, "line_mean": 32.4363636364, "line_max": 91, "alpha_frac": 0.6742794997, "autogenerated": false, "ratio": 3.5028571428571427, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46771366425571426, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import tensorflow as tf import tensorflow.contrib.layers as layers from deep_rl.misc import slice_2d, get_vars_from_scope def create_a3c_graph(input_shape, n_action, model, opt, beta=None, name='a3c'): """ Implements Actor Critic Model (A3C) Returns a dictionary of Tensorflow graph operations to be with a tf.Session instance. Args: n_action: A `int`. Number of actions agent can do. model: The Tensorflow model opt: A `tf.train.Optimizer`. beta: A `float`. Regularization term for the entropy of the policy model. If beta is `None` no regularization will be added. """ actions = tf.placeholder(tf.int32, shape=(None)) returns = tf.placeholder(tf.float32, shape=(None)) policy_in = tf.placeholder(tf.float32, shape=input_shape) value_in = tf.placeholder(tf.float32, shape=input_shape) tf.add_to_collection("actions", actions) tf.add_to_collection("returns", returns) tf.add_to_collection("policy_in", policy_in) tf.add_to_collection("value_in", value_in) with tf.variable_scope('actor'): pnn = model(policy_in) probs = tf.nn.softmax(layers.fully_connected(pnn, n_action)) with tf.variable_scope('critic'): v_out = model(value_in) value = layers.fully_connected(v_out, 1) tf.add_to_collection("policy_out", probs) tf.add_to_collection("value_out", value) actor_vars = get_vars_from_scope('actor') critic_vars = get_vars_from_scope('critic') N = tf.shape(states)[0] p_vals = slice_2d(probs, tf.range(0, N), actions) surr_loss = tf.log(p_vals + 1e-8) policy_loss = -surr_loss * (returns - value) if beta: policy_loss += beta * (-tf.reduce_sum(probs * tf.log(probs + 1e-8), 1)) policy_loss = tf.reduce_mean(policy_loss, name="policy_loss") value_loss = tf.reduce_mean(tf.square(returns - value), name="value_loss") policy_train_op = opt.minimize(policy_loss, var_list=actor_vars) value_train_op = opt.minimize(value_loss, var_list=critic_vars) tf.add_to_collection("policy_loss", policy_loss) tf.add_to_collection("value_loss", value_loss) tf.add_to_collection("policy_train_op", policy_train_op) tf.add_to_collection("value_train_op", value_train_op)
{ "repo_name": "domluna/deep_rl", "path": "deep_rl/graphs/a3c.py", "copies": "1", "size": "2340", "license": "mit", "hash": 1009008459853267300, "line_mean": 36.7419354839, "line_max": 81, "alpha_frac": 0.6666666667, "autogenerated": false, "ratio": 3.20109439124487, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.436776105794487, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import tensorflow as tf import torch from tensorflow import nest from tensorflow.python import keras from odin import backend as bk # =========================================================================== # Base classe # =========================================================================== class BaseAttention(keras.layers.Layer): pass # =========================================================================== # Attention classes # =========================================================================== class SoftAttention(BaseAttention): """ Original implementation from Tensorflow: `tensorflow/python/keras/layers/dense_attention.py` Copyright 2019 The TensorFlow Authors. All Rights Reserved. Base Attention class, modified for supporting: - Multi-head attention - Self-attention mechanism - Using more odin.backend function to make it easier transfer between tensorflow and pytorch The meaning of `query`, `value` and `key` depend on the application. In the case of text similarity, for example, `query` is the sequence embeddings of the first piece of text and `value` is the sequence embeddings of the second piece of text. Hence, the attention determines alignment between `query` and `value`, `key` is usually the same tensor as value. Args: causal: Boolean. Set to `True` for decoder self-attention. Adds a mask such that position `i` cannot attend to positions `j > i`. This prevents the flow of information from the future towards the past. return_score: Boolean. Set to `True` for returning the attention scores. Call Arguments: inputs: List of the following tensors: * query: Query `Tensor` of shape `[batch_size, Tq, dim]`. * value: Value `Tensor` of shape `[batch_size, Tv, dim]`. * key: Optional key `Tensor` of shape `[batch_size, Tv, dim]`. If not given, will use `value` for both `key` and `value`, which is the most common case. mask: List of the following tensors: * query_mask: A boolean mask `Tensor` of shape `[batch_size, Tq]`. If given, the output will be zero at the positions where `mask==False`. * value_mask: A boolean mask `Tensor` of shape `[batch_size, Tv]`. If given, will apply the mask such that values at positions where `mask==False` do not contribute to the result. Output shape: Attention outputs of shape `[batch_size, Tq, dim]`. References: [1] Graves, A., et al., 2014. Neural Turing Machines. arXiv:1410.5401 [cs]. [2] Xu, K., et al., 2015. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. arXiv:1502.03044 [cs]. [3] Luong, M.T., et al., 2015. Effective Approaches to Attention-based Neural Machine Translation. arXiv:1508.04025 [cs]. [4] Kim, Y., Denton, C., Hoang, L., Rush, A.M., 2017. Structured Attention Networks. arXiv:1702.00887 [cs]. [5] Vaswani, A., et al., 2017. Attention Is All You Need. arXiv:1706.03762 [cs]. """ def __init__(self, input_dim=None, causal=False, return_score=False, multihead_norm=0., scale_initializer='one', scale_tied=True, attention_type='mul', attention_activation='softmax', **kwargs): super(SoftAttention, self).__init__(**kwargs) self.causal = causal self.return_score = bool(return_score) self.multihead_norm = multihead_norm self.supports_masking = True # ====== initialize scale ====== # if not scale_tied and input_dim is None: raise ValueError("If scale_tied=False, the input_dim must be given") scale = 1 if scale_initializer is not None: scale = bk.parse_initializer(scale_initializer, self) if scale_tied: scale = bk.variable(initial_value=scale(()), trainable=True, framework=self) else: scale = bk.variable(initial_value=scale(nest.flatten(input_dim)), trainable=True, framework=self) self.attention_scale = scale self.attention_type = str(attention_type).strip().lower() self.attention_activation = bk.parse_activation(attention_activation, self) def calculate_scores(self, query, key): """Calculates attention scores (a.k.a logits values). Args: query: Query tensor of shape `[batch_size, Tq, dim]`. key: Key tensor of shape `[batch_size, Tv, dim]`. Returns: Tensor of shape `[batch_size, Tq, Tv]`. """ if self.attention_type == 'mul': # TODO: this might be wrong return bk.matmul(self.attention_scale * query, bk.swapaxes(key, 1, 2)) elif self.attention_type == 'add': # [batch_size, Tq, 1, dim] q = bk.expand_dims(query, axis=2) # [batch_size, 1, Tv, dim] k = bk.expand_dims(key, axis=1) return bk.reduce_sum(self.attention_scale * bk.tanh(q + k), axis=-1) else: raise NotImplementedError("No support for attention_type='%s'" % self.attention_type) def _apply_scores(self, scores, value, scores_mask=None): """Applies attention scores to the given value tensor. To use this method in your attention layer, follow the steps: * Use `query` tensor of shape `[batch_size, Tq]` and `key` tensor of shape `[batch_size, Tv]` to calculate the attention `scores`. * Pass `scores` and `value` tensors to this method. The method applies `scores_mask`, calculates `attention_distribution = softmax(scores)`, then returns `matmul(attention_distribution, value). * Apply `query_mask` and return the result. Args: scores: Scores float tensor of shape `[batch_size, Tq, Tv]`. value: Value tensor of shape `[batch_size, Tv, dim]`. scores_mask: A boolean mask `Tensor` of shape `[batch_size, 1, Tv]` or `[batch_size, Tq, Tv]`. If given, scores at positions where `scores_mask==False` do not contribute to the result. It must contain at least one `True` value in each line along the last dimension. Returns: Tensor of shape `[batch_size, Tq, dim]`. """ if scores_mask is not None: padding_mask = bk.logical_not(scores_mask) # Bias so padding positions do not contribute to attention distribution. scores -= 1.e9 * bk.cast(padding_mask, dtype=scores.dtype) # [batch_size, Tq, Tv] attention_distribution = self.attention_activation(scores) return bk.matmul(attention_distribution, value) def call(self, query, value=None, key=None, mask=None, training=None): if value is None: value = query if key is None: key = value with bk.framework_(self): query = bk.array(query) key = bk.array(key) value = bk.array(value) scores = self.calculate_scores(query=query, key=key) # ====== prepare the mask ====== # q_mask = mask[0] if mask else None v_mask = mask[1] if mask else None if v_mask is not None: # Mask of shape [batch_size, 1, Tv]. v_mask = bk.expand_dims(v_mask, axis=-2) if self.causal: # Creates a lower triangular mask, so position i cannot attend to # positions j>i. This prevents the flow of information from the future # into the past. scores_shape = scores.shape # causal_mask_shape = [1, Tq, Tv]. causal_mask_shape = bk.concatenate( [bk.ones_like(scores_shape[:-2]), scores_shape[-2:]], axis=0) causal_mask = bk.tril_mask(causal_mask_shape) else: causal_mask = None scores_mask = bk.logical_and(v_mask, causal_mask) # ====== applying the attention ====== # result = self._apply_scores(scores=scores, value=value, scores_mask=scores_mask) # ====== applying the mask ====== # if q_mask is not None: # Mask of shape [batch_size, Tq, 1]. q_mask = bk.expand_dims(q_mask, axis=-1) result *= bk.cast(q_mask, dtype=result.dtype) return result def compute_mask(self, inputs, mask=None): with bk.framework_(self): if mask: q_mask = mask[0] if q_mask is None: return None return bk.array(q_mask) return None def get_config(self): config = {'causal': self.causal} base_config = super(BaseAttention, self).get_config() return dict(list(base_config.items()) + list(config.items())) # =========================================================================== # Soft and Hard attention # =========================================================================== class HardAttention(SoftAttention): pass
{ "repo_name": "imito/odin", "path": "odin/networks/attention.py", "copies": "1", "size": "8902", "license": "mit", "hash": 4074157343303613000, "line_mean": 38.0438596491, "line_max": 80, "alpha_frac": 0.594810155, "autogenerated": false, "ratio": 3.8403796376186365, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49351897926186367, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import tensorflow as tf def conv_layer(name, bottom, kernel_size, stride, output_dim, padding='SAME', bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): # input has shape [batch, in_height, in_width, in_channels] input_dim = bottom.get_shape().as_list()[-1] # weights and biases variables with tf.variable_scope(name, reuse=reuse): # initialize the variables if weights_initializer is None: weights_initializer = tf.contrib.layers.xavier_initializer_conv2d() if bias_term and biases_initializer is None: biases_initializer = tf.constant_initializer(0.) # filter has shape [filter_height, filter_width, in_channels, out_channels] weights = tf.get_variable("weights", [kernel_size, kernel_size, input_dim, output_dim], initializer=weights_initializer) if bias_term: biases = tf.get_variable("biases", output_dim, initializer=biases_initializer) if not reuse: tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, tf.nn.l2_loss(weights)) conv = tf.nn.conv2d(bottom, filter=weights, strides=[1, stride, stride, 1], padding=padding) if bias_term: conv = tf.nn.bias_add(conv, biases) return conv def conv_relu_layer(name, bottom, kernel_size, stride, output_dim, padding='SAME', bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): conv = conv_layer(name, bottom, kernel_size, stride, output_dim, padding, bias_term, weights_initializer, biases_initializer, reuse=reuse) relu = tf.nn.relu(conv) return relu def deconv_layer(name, bottom, kernel_size, stride, output_dim, padding='SAME', bias_term=True, weights_initializer=None, biases_initializer=None): # input_shape is [batch, in_height, in_width, in_channels] input_shape = bottom.get_shape().as_list() batch_size, input_height, input_width, input_dim = input_shape output_shape = [batch_size, input_height*stride, input_width*stride, output_dim] # weights and biases variables with tf.variable_scope(name, reuse=reuse): # initialize the variables if weights_initializer is None: weights_initializer = tf.contrib.layers.xavier_initializer_conv2d() if bias_term and biases_initializer is None: biases_initializer = tf.constant_initializer(0.) # filter has shape [filter_height, filter_width, out_channels, in_channels] weights = tf.get_variable("weights", [kernel_size, kernel_size, output_dim, input_dim], initializer=weights_initializer) if bias_term: biases = tf.get_variable("biases", output_dim, initializer=biases_initializer) if not reuse: tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, tf.nn.l2_loss(weights)) deconv = tf.nn.conv2d_transpose(bottom, filter=weights, output_shape=output_shape, strides=[1, stride, stride, 1], padding=padding) if bias_term: deconv = tf.nn.bias_add(deconv, biases) return deconv def deconv_relu_layer(name, bottom, kernel_size, stride, output_dim, padding='SAME', bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): deconv = deconv_layer(name, bottom, kernel_size, stride, output_dim, padding, bias_term, weights_initializer, biases_initializer, reuse=reuse) relu = tf.nn.relu(deconv) return relu def pooling_layer(name, bottom, kernel_size, stride): pool = tf.nn.max_pool(bottom, ksize=[1, kernel_size, kernel_size, 1], strides=[1, stride, stride, 1], padding='SAME', name=name) return pool def fc_layer(name, bottom, output_dim, bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): # flatten bottom input # input has shape [batch, in_height, in_width, in_channels] shape = bottom.get_shape().as_list() input_dim = 1 for d in shape[1:]: input_dim *= d flat_bottom = tf.reshape(bottom, [-1, input_dim]) # weights and biases variables with tf.variable_scope(name, reuse=reuse): # initialize the variables if weights_initializer is None: weights_initializer = tf.contrib.layers.xavier_initializer() if bias_term and biases_initializer is None: biases_initializer = tf.constant_initializer(0.) # weights has shape [input_dim, output_dim] weights = tf.get_variable("weights", [input_dim, output_dim], initializer=weights_initializer) if bias_term: biases = tf.get_variable("biases", output_dim, initializer=biases_initializer) if not reuse: tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, tf.nn.l2_loss(weights)) if bias_term: fc = tf.nn.xw_plus_b(flat_bottom, weights, biases) else: fc = tf.matmul(flat_bottom, weights) return fc def fc_relu_layer(name, bottom, output_dim, bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): fc = fc_layer(name, bottom, output_dim, bias_term, weights_initializer, biases_initializer, reuse=reuse) relu = tf.nn.relu(fc) return relu
{ "repo_name": "ronghanghu/n2nmn", "path": "util/cnn.py", "copies": "1", "size": "5605", "license": "bsd-2-clause", "hash": 4749091447886653000, "line_mean": 43.4841269841, "line_max": 101, "alpha_frac": 0.6381801963, "autogenerated": false, "ratio": 3.805159538357094, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4943339734657094, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import tensorflow as tf from deep_rl.misc.utils import get_vars_from_scope, slice_2d def create_dqn_graph(n_action, model, opt, gamma=0.99): """ Implements Deep Q-Learning if terminal: y = r else: y = r + gamma * max_a' Q(s', a', theta-) L = (y - Q(s, a; theta)) ** 2 """ actions = tf.placeholder(tf.int32) terminals = tf.placeholder(tf.bool) rewards = tf.placeholder(tf.float32) with tf.variable_scope('policy'): p_in, p_out = model() with tf.variable_scope('target'): t_in, t_out = model() p_vars = get_vars_from_scope('policy') t_vars = get_vars_from_scope('target') mask = (tf.cast(tf.logical_not(terminals), tf.float32)) y = rewards + mask * gamma * tf.reduce_max(t_out, 1) N = tf.shape(p_in)[0] policy_probs = tf.nn.softmax(p_out) p_vals = slice_2d(policy_probs, tf.range(0, N), actions) loss_op = tf.reduce_mean(tf.square(y - p_vals)) train_op = opt.minimize(loss_op, var_list=p_vars) update_targets_op = [tf.assign(tv, pv) for (tv, pv) in zip(t_vars, p_vars)] return dict( # inputs policy_input=p_in, target_input=t_in, actions=actions, rewards=rewards, terminals=terminals, # outputs policy_qvals=p_out, target_qvals=t_out, policy_probs=policy_probs, loss_op=loss_op, train_op=train_op, # misc update_targets_op=update_targets_op)
{ "repo_name": "domluna/deep_rl", "path": "deep_rl/graphs/dqn.py", "copies": "1", "size": "1550", "license": "mit", "hash": 6630909429152993000, "line_mean": 26.1929824561, "line_max": 79, "alpha_frac": 0.5909677419, "autogenerated": false, "ratio": 3.0155642023346303, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.41065319442346304, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import tensorflow as tf from deep_rl.misc.utils import get_vars_from_scope, slice_2d def create_vpg_graph(n_action, policy_model, value_model, policy_opt, value_opt): """ Implements Vanilla Policy Gradient """ actions = tf.placeholder(tf.int32, shape=(None), name="actions") advantages = tf.placeholder(tf.float32, shape=(None), name="advantages") returns = tf.placeholder(tf.float32, shape=(None), name="returns") with tf.variable_scope('policy'): p_input, probs = policy_model() with tf.variable_scope('value'): v_input, value = value_model() p_vars = get_vars_from_scope('policy') v_vars = get_vars_from_scope('value') N = tf.shape(p_input)[0] p_vals = slice_2d(probs, tf.range(0, N), actions) surr_loss = -tf.log(p_vals) pf_loss_op = tf.reduce_mean(surr_loss * advantages, name="pf_loss_op") pf_train_op = policy_opt.minimize(pf_loss_op, var_list=p_vars, name="pf_train_op") vf_loss_op = tf.reduce_mean((value - returns)**2) vf_train_op = value_opt.minimize(vf_loss_op, var_list=v_vars, name="vf_train_op") return dict(actions=actions, advantages=advantages, returns=returns, policy_input=p_input, probs=probs, value_input=v_input, value=value, policy_train_op=pf_train_op, value_train_op=vf_train_op)
{ "repo_name": "domluna/deep_rl", "path": "deep_rl/graphs/vpg.py", "copies": "1", "size": "1497", "license": "mit", "hash": 3308588417870942000, "line_mean": 34.6428571429, "line_max": 86, "alpha_frac": 0.6199064796, "autogenerated": false, "ratio": 3.198717948717949, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9314419990008243, "avg_score": 0.0008408876619411172, "num_lines": 42 }
from __future__ import absolute_import, division, print_function import tensorflow as tf def full_connect(inputs, weights_shape, biases_shape, is_train=True, FLAGS=None): """ Define full-connect layer with reused Variables. """ weights = tf.get_variable( "weights", weights_shape, initializer=tf.random_normal_initializer()) biases = tf.get_variable( "biases", biases_shape, initializer=tf.random_normal_initializer()) layer = tf.matmul(inputs, weights) + biases if FLAGS.enable_bn and is_train: mean, var = tf.nn.moments(layer, axes=[0]) scale = tf.get_variable( "scale", biases_shape, initializer=tf.random_normal_initializer()) shift = tf.get_variable( "shift", biases_shape, initializer=tf.random_normal_initializer()) layer = tf.nn.batch_normalization(layer, mean, var, shift, scale, FLAGS.bn_epsilon) return layer def full_connect_relu(inputs, weights_shape, biases_shape, is_train=True, FLAGS=None): """ Define full-connect layer and activation function with reused Variables. """ layer = full_connect(inputs, weights_shape, biases_shape, is_train, FLAGS) layer = tf.nn.relu(layer) return layer def customized_inference(inputs, input_units, output_units, is_train=True, FLAGS=None): """ Define the customed model. """ hidden1_units = 128 hidden2_units = 32 hidden3_units = 8 with tf.variable_scope("input_layer"): layer = full_connect_relu(inputs, [input_units, hidden1_units], [hidden1_units], is_train, FLAGS) with tf.variable_scope("layer_0"): layer = full_connect_relu(layer, [hidden1_units, hidden2_units], [hidden2_units], is_train, FLAGS) with tf.variable_scope("layer_1"): layer = full_connect_relu(layer, [hidden2_units, hidden3_units], [hidden3_units], is_train, FLAGS) if FLAGS.enable_dropout and is_train: layer = tf.nn.dropout(layer, FLAGS.dropout_keep_prob) with tf.variable_scope("output_layer"): layer = full_connect(layer, [hidden3_units, output_units], [output_units], is_train, FLAGS) return layer def dnn_inference(inputs, input_units, output_units, is_train=True, FLAGS=None): """ Define the DNN model. """ # Example: [128, 64, 32, 16] model_network_hidden_units = [int(i) for i in FLAGS.dnn_struct.split()] with tf.variable_scope("input_layer"): layer = full_connect_relu(inputs, [input_units, model_network_hidden_units[0]], [model_network_hidden_units[0]], is_train, FLAGS) for i in range(len(model_network_hidden_units) - 1): with tf.variable_scope("layer_{}".format(i)): layer = full_connect_relu(layer, [ model_network_hidden_units[i], model_network_hidden_units[i + 1] ], [model_network_hidden_units[i + 1]], is_train, FLAGS) with tf.variable_scope("output_layer"): layer = full_connect(layer, [model_network_hidden_units[-1], output_units], [output_units], is_train, FLAGS) return layer def lr_inference(inputs, input_units, output_units, is_train=True, FLAGS=None): """ Define the linear regression model. """ with tf.variable_scope("lr"): layer = full_connect(inputs, [input_units, output_units], [output_units], FLAGS) return layer def wide_and_deep_inference(inputs, input_units, output_units, is_train=True, FLAGS=None): """ Define the wide-and-deep model. """ return lr_inference(inputs, input_units, output_units, is_train, FLAGS) + dnn_inference( inputs, input_units, output_units, is_train, FLAGS) def cnn_inference(inputs, input_units, output_units, is_train=True, FLAGS=None): """ Define the CNN model. """ # [BATCH_SIZE, 9] -> [BATCH_SIZE, 3, 3, 1] inputs = tf.reshape(inputs, [-1, 3, 3, 1]) # [BATCH_SIZE, 3, 3, 1] -> [BATCH_SIZE, 3, 3, 8] with tf.variable_scope("conv_0"): weights = tf.get_variable( "weights", [3, 3, 1, 8], initializer=tf.random_normal_initializer()) bias = tf.get_variable( "bias", [8], initializer=tf.random_normal_initializer()) layer = tf.nn.conv2d(inputs, weights, strides=[1, 1, 1, 1], padding="SAME") layer = tf.nn.bias_add(layer, bias) layer = tf.nn.relu(layer) # [BATCH_SIZE, 3, 3, 8] -> [BATCH_SIZE, 3 * 3 * 8] layer = tf.reshape(layer, [-1, 3 * 3 * 8]) # [BATCH_SIZE, 3 * 3 * 8] -> [BATCH_SIZE, LABEL_SIZE] with tf.variable_scope("output_layer"): weights = tf.get_variable( "weights", [3 * 3 * 8, FLAGS.label_size], initializer=tf.random_normal_initializer()) bias = tf.get_variable( "bias", [FLAGS.label_size], initializer=tf.random_normal_initializer()) layer = tf.add(tf.matmul(layer, weights), bias) return layer def customized_cnn_inference(inputs, input_units, output_units, is_train=True, FLAGS=None): """ Define the CNN model. """ # TODO: Change if validate_batch_size is different # [BATCH_SIZE, 512 * 512 * 1] -> [BATCH_SIZE, 512, 512, 1] inputs = tf.reshape(inputs, [FLAGS.train_batch_size, 512, 512, 1]) # [BATCH_SIZE, 512, 512, 1] -> [BATCH_SIZE, 128, 128, 8] with tf.variable_scope("conv0"): weights = tf.get_variable( "weights", [3, 3, 1, 8], initializer=tf.random_normal_initializer()) bias = tf.get_variable( "bias", [8], initializer=tf.random_normal_initializer()) layer = tf.nn.conv2d(inputs, weights, strides=[1, 1, 1, 1], padding="SAME") layer = tf.nn.bias_add(layer, bias) layer = tf.nn.relu(layer) layer = tf.nn.max_pool( layer, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1], padding="SAME") # [BATCH_SIZE, 128, 128, 8] -> [BATCH_SIZE, 32, 32, 8] with tf.variable_scope("conv1"): weights = tf.get_variable( "weights", [3, 3, 8, 8], initializer=tf.random_normal_initializer()) bias = tf.get_variable( "bias", [8], initializer=tf.random_normal_initializer()) layer = tf.nn.conv2d(layer, weights, strides=[1, 1, 1, 1], padding="SAME") layer = tf.nn.bias_add(layer, bias) layer = tf.nn.relu(layer) layer = tf.nn.max_pool( layer, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1], padding="SAME") # [BATCH_SIZE, 32, 32, 8] -> [BATCH_SIZE, 8, 8, 8] with tf.variable_scope("conv2"): weights = tf.get_variable( "weights", [3, 3, 8, 8], initializer=tf.random_normal_initializer()) bias = tf.get_variable( "bias", [8], initializer=tf.random_normal_initializer()) layer = tf.nn.conv2d(layer, weights, strides=[1, 1, 1, 1], padding="SAME") layer = tf.nn.bias_add(layer, bias) layer = tf.nn.relu(layer) layer = tf.nn.max_pool( layer, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1], padding="SAME") # [BATCH_SIZE, 8, 8, 8] -> [BATCH_SIZE, 8 * 8 * 8] layer = tf.reshape(layer, [-1, 8 * 8 * 8]) # [BATCH_SIZE, 8 * 8 * 8] -> [BATCH_SIZE, LABEL_SIZE] with tf.variable_scope("output"): weights = tf.get_variable( "weights", [8 * 8 * 8, FLAGS.label_size], initializer=tf.random_normal_initializer()) bias = tf.get_variable( "bias", [FLAGS.label_size], initializer=tf.random_normal_initializer()) layer = tf.add(tf.matmul(layer, weights), bias) return layer def lstm_inference(inputs, input_units, output_units, is_train=True, FLAGS=None): RNN_HIDDEN_UNITS = 128 timesteps = 3 number_input = 3 weights = tf.Variable(tf.random_normal([RNN_HIDDEN_UNITS, output_units])) biases = tf.Variable(tf.random_normal([output_units])) # [BATCH_SIZE, 9] -> [BATCH_SIZE, 3, 3] x = tf.reshape(inputs, [-1, timesteps, number_input]) # [BATCH_SIZE, 3, 3] -> 3 * [BATCH_SIZE, 3] x = tf.unstack(x, timesteps, 1) # output size is 128, state size is (c=128, h=128) lstm_cell = tf.contrib.rnn.BasicLSTMCell(RNN_HIDDEN_UNITS, forget_bias=1.0) # outputs is array of 3 * [BATCH_SIZE, 3] outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x, dtype=tf.float32) # outputs[-1] is [BATCH_SIZE, 3] layer = tf.matmul(outputs[-1], weights) + biases return layer def bidirectional_lstm_inference(inputs, input_units, output_units, is_train=True, FLAGS=None): RNN_HIDDEN_UNITS = 128 timesteps = 3 number_input = 3 weights = tf.Variable(tf.random_normal([RNN_HIDDEN_UNITS, output_units])) biases = tf.Variable(tf.random_normal([output_units])) # [BATCH_SIZE, 9] -> [BATCH_SIZE, 3, 3] x = tf.reshape(inputs, [-1, timesteps, number_input]) # [BATCH_SIZE, 3, 3] -> 3 * [BATCH_SIZE, 3] x = tf.unstack(x, timesteps, 1) # Update the hidden units for bidirection-rnn fw_lstm_cell = tf.contrib.rnn.BasicLSTMCell( RNN_HIDDEN_UNITS / 2, forget_bias=1.0) bw_lstm_cell = tf.contrib.rnn.BasicLSTMCell( RNN_HIDDEN_UNITS / 2, forget_bias=1.0) outputs, _, _ = tf.contrib.rnn.static_bidirectional_rnn( fw_lstm_cell, bw_lstm_cell, x, dtype=tf.float32) # outputs[-1] is [BATCH_SIZE, 3] layer = tf.matmul(outputs[-1], weights) + biases return layer def gru_inference(inputs, input_units, output_units, is_train=True, FLAGS=None): RNN_HIDDEN_UNITS = 128 timesteps = 3 number_input = 3 weights = tf.Variable(tf.random_normal([RNN_HIDDEN_UNITS, output_units])) biases = tf.Variable(tf.random_normal([output_units])) # [BATCH_SIZE, 9] -> [BATCH_SIZE, 3, 3] x = tf.reshape(inputs, [-1, timesteps, number_input]) # [BATCH_SIZE, 3, 3] -> 3 * [BATCH_SIZE, 3] x = tf.unstack(x, timesteps, 1) # output size is 128, state size is (c=128, h=128) lstm_cell = tf.contrib.rnn.GRUCell(RNN_HIDDEN_UNITS) # outputs is array of 3 * [BATCH_SIZE, 3] outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x, dtype=tf.float32) # outputs[-1] is [BATCH_SIZE, 3] layer = tf.matmul(outputs[-1], weights) + biases return layer def compute_softmax_and_accuracy(logits, labels): """ Compute the softmax and accuracy of the logits and labels. Args: logits: The logits from the model. labels: The labels. Return: The softmax op and accuracy op. """ softmax_op = tf.nn.softmax(logits) correct_prediction_op = tf.equal(tf.argmax(softmax_op, 1), labels) accuracy_op = tf.reduce_mean(tf.cast(correct_prediction_op, tf.float32)) return softmax_op, accuracy_op def compute_auc(softmax_op, label_op, label_size): """ Compute the auc of the softmax result and labels. Args: softmax_op: The softmax op. label_op: The label op. label_size: The label size. Return: The auc op. """ batch_labels = tf.cast(label_op, tf.int32) sparse_labels = tf.reshape(batch_labels, [-1, 1]) derived_size = tf.shape(batch_labels)[0] indices = tf.reshape(tf.range(0, derived_size, 1), [-1, 1]) concated = tf.concat(axis=1, values=[indices, sparse_labels]) outshape = tf.stack([derived_size, label_size]) new_batch_labels = tf.sparse_to_dense(concated, outshape, 1.0, 0.0) _, auc_op = tf.contrib.metrics.streaming_auc(softmax_op, new_batch_labels) return auc_op
{ "repo_name": "tobegit3hub/deep_recommend_system", "path": "model.py", "copies": "1", "size": "11879", "license": "apache-2.0", "hash": 3849776703830879000, "line_mean": 32.1815642458, "line_max": 79, "alpha_frac": 0.5940735752, "autogenerated": false, "ratio": 3.3255879059350506, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9333705466189677, "avg_score": 0.017191202989074804, "num_lines": 358 }
from __future__ import absolute_import, division, print_function import textwrap from distutils.version import LooseVersion from collections import Iterator import sys import traceback from contextlib import contextmanager import warnings import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core.common import is_datetime64tz_dtype from pandas.api.types import is_categorical_dtype, is_scalar import toolz from ..core import get_deps from ..async import get_sync PANDAS_VERSION = LooseVersion(pd.__version__) def shard_df_on_index(df, divisions): """ Shard a DataFrame by ranges on its index Examples -------- >>> df = pd.DataFrame({'a': [0, 10, 20, 30, 40], 'b': [5, 4 ,3, 2, 1]}) >>> df a b 0 0 5 1 10 4 2 20 3 3 30 2 4 40 1 >>> shards = list(shard_df_on_index(df, [2, 4])) >>> shards[0] a b 0 0 5 1 10 4 >>> shards[1] a b 2 20 3 3 30 2 >>> shards[2] a b 4 40 1 >>> list(shard_df_on_index(df, []))[0] # empty case a b 0 0 5 1 10 4 2 20 3 3 30 2 4 40 1 """ if isinstance(divisions, Iterator): divisions = list(divisions) if not len(divisions): yield df else: divisions = np.array(divisions) df = df.sort_index() index = df.index if is_categorical_dtype(index): index = index.as_ordered() indices = index.searchsorted(divisions) yield df.iloc[:indices[0]] for i in range(len(indices) - 1): yield df.iloc[indices[i]: indices[i + 1]] yield df.iloc[indices[-1]:] def unique(divisions): """ Polymorphic unique function >>> list(unique([1, 2, 3, 1, 2, 3])) [1, 2, 3] >>> unique(np.array([1, 2, 3, 1, 2, 3])) array([1, 2, 3]) >>> unique(pd.Categorical(['Alice', 'Bob', 'Alice'], ordered=False)) [Alice, Bob] Categories (2, object): [Alice, Bob] """ if isinstance(divisions, np.ndarray): return np.unique(divisions) if isinstance(divisions, pd.Categorical): return pd.Categorical.from_codes(np.unique(divisions.codes), divisions.categories, divisions.ordered) if isinstance(divisions, (tuple, list, Iterator)): return tuple(toolz.unique(divisions)) raise NotImplementedError() _META_TYPES = "meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional" _META_DESCRIPTION = """\ An empty ``pd.DataFrame`` or ``pd.Series`` that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a ``DataFrame``, a ``dict`` of ``{name: dtype}`` or iterable of ``(name, dtype)`` can be provided. Instead of a series, a tuple of ``(name, dtype)`` can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing ``meta`` is recommended. For more information, see ``dask.dataframe.utils.make_meta``. """ def insert_meta_param_description(*args, **kwargs): """Replace `$META` in docstring with param description. If pad keyword is provided, will pad description by that number of spaces (default is 8).""" if not args: return lambda f: insert_meta_param_description(f, **kwargs) f = args[0] if f.__doc__: indent = " " * kwargs.get('pad', 8) body = textwrap.wrap(_META_DESCRIPTION, initial_indent=indent, subsequent_indent=indent, width=78) descr = '{0}\n{1}'.format(_META_TYPES, '\n'.join(body)) f.__doc__ = f.__doc__.replace('$META', descr) return f @contextmanager def raise_on_meta_error(funcname=None): """Reraise errors in this block to show metadata inference failure. Parameters ---------- funcname : str, optional If provided, will be added to the error message to indicate the name of the method that failed. """ try: yield except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() tb = ''.join(traceback.format_tb(exc_traceback)) msg = ("Metadata inference failed{0}.\n\n" "Original error is below:\n" "------------------------\n" "{1}\n\n" "Traceback:\n" "---------\n" "{2}" ).format(" in `{0}`".format(funcname) if funcname else "", repr(e), tb) raise ValueError(msg) UNKNOWN_CATEGORIES = '__UNKNOWN_CATEGORIES__' def has_known_categories(x): """Returns whether the categories in `x` are known. Parameters ---------- x : Series or CategoricalIndex """ x = getattr(x, '_meta', x) if isinstance(x, pd.Series): return UNKNOWN_CATEGORIES not in x.cat.categories elif isinstance(x, pd.CategoricalIndex): return UNKNOWN_CATEGORIES not in x.categories raise TypeError("Expected Series or CategoricalIndex") def strip_unknown_categories(x): """Replace any unknown categoricals with empty categoricals. Useful for preventing ``UNKNOWN_CATEGORIES`` from leaking into results. """ if isinstance(x, (pd.Series, pd.DataFrame)): x = x.copy() if isinstance(x, pd.DataFrame): cat_mask = x.dtypes == 'category' if cat_mask.any(): cats = cat_mask[cat_mask].index for c in cats: if not has_known_categories(x[c]): x[c].cat.set_categories([], inplace=True) elif isinstance(x, pd.Series): if is_categorical_dtype(x.dtype) and not has_known_categories(x): x.cat.set_categories([], inplace=True) if (isinstance(x.index, pd.CategoricalIndex) and not has_known_categories(x.index)): x.index = x.index.set_categories([]) elif isinstance(x, pd.CategoricalIndex) and not has_known_categories(x): x = x.set_categories([]) return x def clear_known_categories(x, cols=None, index=True): """Set categories to be unknown. Parameters ---------- x : DataFrame, Series, Index cols : iterable, optional If x is a DataFrame, set only categoricals in these columns to unknown. By default, all categorical columns are set to unknown categoricals index : bool, optional If True and x is a Series or DataFrame, set the clear known categories in the index as well. """ if isinstance(x, (pd.Series, pd.DataFrame)): x = x.copy() if isinstance(x, pd.DataFrame): mask = x.dtypes == 'category' if cols is None: cols = mask[mask].index elif not mask.loc[cols].all(): raise ValueError("Not all columns are categoricals") for c in cols: x[c].cat.set_categories([UNKNOWN_CATEGORIES], inplace=True) elif isinstance(x, pd.Series): if is_categorical_dtype(x.dtype): x.cat.set_categories([UNKNOWN_CATEGORIES], inplace=True) if index and isinstance(x.index, pd.CategoricalIndex): x.index = x.index.set_categories([UNKNOWN_CATEGORIES]) elif isinstance(x, pd.CategoricalIndex): x = x.set_categories([UNKNOWN_CATEGORIES]) return x def _empty_series(name, dtype, index=None): if isinstance(dtype, str) and dtype == 'category': return pd.Series(pd.Categorical([UNKNOWN_CATEGORIES]), name=name, index=index).iloc[:0] return pd.Series([], dtype=dtype, name=name, index=index) def make_meta(x, index=None): """Create an empty pandas object containing the desired metadata. Parameters ---------- x : dict, tuple, list, pd.Series, pd.DataFrame, pd.Index, dtype, scalar To create a DataFrame, provide a `dict` mapping of `{name: dtype}`, or an iterable of `(name, dtype)` tuples. To create a `Series`, provide a tuple of `(name, dtype)`. If a pandas object, names, dtypes, and index should match the desired output. If a dtype or scalar, a scalar of the same dtype is returned. index : pd.Index, optional Any pandas index to use in the metadata. If none provided, a `RangeIndex` will be used. Examples -------- >>> make_meta([('a', 'i8'), ('b', 'O')]) Empty DataFrame Columns: [a, b] Index: [] >>> make_meta(('a', 'f8')) Series([], Name: a, dtype: float64) >>> make_meta('i8') 1 """ if hasattr(x, '_meta'): return x._meta if isinstance(x, (pd.Series, pd.DataFrame)): return x.iloc[0:0] elif isinstance(x, pd.Index): return x[0:0] index = index if index is None else index[0:0] if isinstance(x, dict): return pd.DataFrame({c: _empty_series(c, d, index=index) for (c, d) in x.items()}, index=index) if isinstance(x, tuple) and len(x) == 2: return _empty_series(x[0], x[1], index=index) elif isinstance(x, (list, tuple)): if not all(isinstance(i, tuple) and len(i) == 2 for i in x): raise ValueError("Expected iterable of tuples of (name, dtype), " "got {0}".format(x)) return pd.DataFrame({c: _empty_series(c, d, index=index) for (c, d) in x}, columns=[c for c, d in x], index=index) elif not hasattr(x, 'dtype') and x is not None: # could be a string, a dtype object, or a python type. Skip `None`, # because it is implictly converted to `dtype('f8')`, which we don't # want here. try: dtype = np.dtype(x) return _scalar_from_dtype(dtype) except: # Continue on to next check pass if is_scalar(x): return _nonempty_scalar(x) raise TypeError("Don't know how to create metadata from {0}".format(x)) def _nonempty_index(idx): typ = type(idx) if typ is pd.RangeIndex: return pd.RangeIndex(2, name=idx.name) elif typ in (pd.Int64Index, pd.Float64Index): return typ([1, 2], name=idx.name) elif typ is pd.Index: return pd.Index(['a', 'b'], name=idx.name) elif typ is pd.DatetimeIndex: start = '1970-01-01' data = [start, start] if idx.freq is None else None return pd.DatetimeIndex(data, start=start, periods=2, freq=idx.freq, tz=idx.tz, name=idx.name) elif typ is pd.PeriodIndex: return pd.PeriodIndex(start='1970-01-01', periods=2, freq=idx.freq, name=idx.name) elif typ is pd.TimedeltaIndex: start = np.timedelta64(1, 'D') data = [start, start] if idx.freq is None else None return pd.TimedeltaIndex(data, start=start, periods=2, freq=idx.freq, name=idx.name) elif typ is pd.CategoricalIndex: if len(idx.categories): data = [idx.categories[0]] * 2 cats = idx.categories else: data = _nonempty_index(idx.categories) cats = None return pd.CategoricalIndex(data, categories=cats, ordered=idx.ordered, name=idx.name) elif typ is pd.MultiIndex: levels = [_nonempty_index(i) for i in idx.levels] labels = [[0, 0] for i in idx.levels] return pd.MultiIndex(levels=levels, labels=labels, names=idx.names) raise TypeError("Don't know how to handle index of " "type {0}".format(type(idx).__name__)) _simple_fake_mapping = { 'b': np.bool_(True), 'V': np.void(b' '), 'M': np.datetime64('1970-01-01'), 'm': np.timedelta64(1), 'S': np.str_('foo'), 'a': np.str_('foo'), 'U': np.unicode_('foo'), 'O': 'foo' } def _scalar_from_dtype(dtype): if dtype.kind in ('i', 'f', 'u'): return dtype.type(1) elif dtype.kind == 'c': return dtype.type(complex(1, 0)) elif dtype.kind in _simple_fake_mapping: o = _simple_fake_mapping[dtype.kind] return o.astype(dtype) if dtype.kind in ('m', 'M') else o else: raise TypeError("Can't handle dtype: {0}".format(dtype)) def _nonempty_scalar(x): if isinstance(x, (pd.Timestamp, pd.Timedelta, pd.Period)): return x elif np.isscalar(x): dtype = x.dtype if hasattr(x, 'dtype') else np.dtype(type(x)) return _scalar_from_dtype(dtype) else: raise TypeError("Can't handle meta of type " "'{0}'".format(type(x).__name__)) def _nonempty_series(s, idx): dtype = s.dtype if is_datetime64tz_dtype(dtype): entry = pd.Timestamp('1970-01-01', tz=dtype.tz) data = [entry, entry] elif is_categorical_dtype(dtype): if len(s.cat.categories): data = [s.cat.categories[0]] * 2 cats = s.cat.categories else: data = _nonempty_index(s.cat.categories) cats = None data = pd.Categorical(data, categories=cats, ordered=s.cat.ordered) else: entry = _scalar_from_dtype(dtype) data = np.array([entry, entry], dtype=dtype) return pd.Series(data, name=s.name, index=idx) def meta_nonempty(x): """Create a nonempty pandas object from the given metadata. Returns a pandas DataFrame, Series, or Index that contains two rows of fake data. """ if isinstance(x, pd.Index): return _nonempty_index(x) elif isinstance(x, pd.Series): idx = _nonempty_index(x.index) return _nonempty_series(x, idx) elif isinstance(x, pd.DataFrame): idx = _nonempty_index(x.index) data = {i: _nonempty_series(x.iloc[:, i], idx) for i, c in enumerate(x.columns)} res = pd.DataFrame(data, index=idx, columns=np.arange(len(x.columns))) res.columns = x.columns return res elif is_scalar(x): return _nonempty_scalar(x) else: raise TypeError("Expected Index, Series, DataFrame, or scalar, " "got {0}".format(type(x).__name__)) ############################################################### # Testing ############################################################### def _check_dask(dsk, check_names=True, check_dtypes=True): import dask.dataframe as dd if hasattr(dsk, 'dask'): result = dsk.compute(get=get_sync) if isinstance(dsk, dd.Index): assert isinstance(result, pd.Index), type(result) if check_names: assert dsk.name == result.name # cache assert isinstance(dsk._meta, pd.Index), type(dsk._meta) if check_names: assert dsk._meta.name == result.name if check_dtypes: assert_dask_dtypes(dsk, result) elif isinstance(dsk, dd.Series): assert isinstance(result, pd.Series), type(result) if check_names: assert dsk.name == result.name, (dsk.name, result.name) # cache assert isinstance(dsk._meta, pd.Series), type(dsk._meta) if check_names: assert dsk._meta.name == result.name if check_dtypes: assert_dask_dtypes(dsk, result) elif isinstance(dsk, dd.DataFrame): assert isinstance(result, pd.DataFrame), type(result) assert isinstance(dsk.columns, pd.Index), type(dsk.columns) if check_names: tm.assert_index_equal(dsk.columns, result.columns) # cache assert isinstance(dsk._meta, pd.DataFrame), type(dsk._meta) if check_names: tm.assert_index_equal(dsk._meta.columns, result.columns) if check_dtypes: assert_dask_dtypes(dsk, result) elif isinstance(dsk, dd.core.Scalar): assert (np.isscalar(result) or isinstance(result, (pd.Timestamp, pd.Timedelta))) if check_dtypes: assert_dask_dtypes(dsk, result) else: msg = 'Unsupported dask instance {0} found'.format(type(dsk)) raise AssertionError(msg) return result return dsk def _maybe_sort(a): # sort by value, then index try: if isinstance(a, pd.DataFrame): a = a.sort_values(by=a.columns.tolist()) else: a = a.sort_values() except (TypeError, IndexError, ValueError): pass return a.sort_index() def assert_eq(a, b, check_names=True, check_dtypes=True, check_divisions=True, check_index=True, **kwargs): if check_divisions: assert_divisions(a) assert_divisions(b) if hasattr(a, 'divisions') and hasattr(b, 'divisions'): at = type(np.asarray(a.divisions).tolist()[0]) # numpy to python bt = type(np.asarray(b.divisions).tolist()[0]) # scalar conversion assert at == bt, (at, bt) assert_sane_keynames(a) assert_sane_keynames(b) a = _check_dask(a, check_names=check_names, check_dtypes=check_dtypes) b = _check_dask(b, check_names=check_names, check_dtypes=check_dtypes) if not check_index: a = a.reset_index(drop=True) b = b.reset_index(drop=True) if isinstance(a, pd.DataFrame): a = _maybe_sort(a) b = _maybe_sort(b) tm.assert_frame_equal(a, b, **kwargs) elif isinstance(a, pd.Series): a = _maybe_sort(a) b = _maybe_sort(b) tm.assert_series_equal(a, b, check_names=check_names, **kwargs) elif isinstance(a, pd.Index): tm.assert_index_equal(a, b, **kwargs) else: if a == b: return True else: if np.isnan(a): assert np.isnan(b) else: assert np.allclose(a, b) return True def eq(*args, **kwargs): warnings.warn('eq is deprecated. Use assert_frame instead', UserWarning) assert_eq(*args, **kwargs) def assert_dask_graph(dask, label): if hasattr(dask, 'dask'): dask = dask.dask assert isinstance(dask, dict) for k in dask: if isinstance(k, tuple): k = k[0] if k.startswith(label): return True else: msg = "given dask graph doesn't contan label: {0}" raise AssertionError(msg.format(label)) def assert_divisions(ddf): if not hasattr(ddf, 'divisions'): return if not hasattr(ddf, 'index'): return if not ddf.known_divisions: return index = lambda x: x if isinstance(x, pd.Index) else x.index results = get_sync(ddf.dask, ddf._keys()) for i, df in enumerate(results[:-1]): if len(df): assert index(df).min() >= ddf.divisions[i] assert index(df).max() < ddf.divisions[i + 1] if len(results[-1]): assert index(results[-1]).min() >= ddf.divisions[-2] assert index(results[-1]).max() <= ddf.divisions[-1] def assert_sane_keynames(ddf): if not hasattr(ddf, 'dask'): return for k in ddf.dask.keys(): while isinstance(k, tuple): k = k[0] assert isinstance(k, (str, bytes)) assert len(k) < 100 assert ' ' not in k if sys.version_info[0] >= 3: assert k.split('-')[0].isidentifier() def assert_dask_dtypes(ddf, res, numeric_equal=True): """Check that the dask metadata matches the result. If `numeric_equal`, integer and floating dtypes compare equal. This is useful due to the implicit conversion of integer to floating upon encountering missingness, which is hard to infer statically.""" eq_types = {'O', 'S', 'U', 'a'} # treat object and strings alike if numeric_equal: eq_types.update(('i', 'f')) if isinstance(res, pd.DataFrame): for col, a, b in pd.concat([ddf._meta.dtypes, res.dtypes], axis=1).itertuples(): assert (a.kind in eq_types and b.kind in eq_types) or (a == b) elif isinstance(res, (pd.Series, pd.Index)): a = ddf._meta.dtype b = res.dtype assert (a.kind in eq_types and b.kind in eq_types) or (a == b) else: if hasattr(ddf._meta, 'dtype'): a = ddf._meta.dtype if not hasattr(res, 'dtype'): assert np.isscalar(res) b = np.dtype(type(res)) else: b = res.dtype assert (a.kind in eq_types and b.kind in eq_types) or (a == b) else: assert type(ddf._meta) == type(res) def assert_max_deps(x, n, eq=True): dependencies, dependents = get_deps(x.dask) if eq: assert max(map(len, dependencies.values())) == n else: assert max(map(len, dependencies.values())) <= n
{ "repo_name": "cpcloud/dask", "path": "dask/dataframe/utils.py", "copies": "1", "size": "21108", "license": "bsd-3-clause", "hash": -1765535917126917400, "line_mean": 32.9903381643, "line_max": 82, "alpha_frac": 0.5701629714, "autogenerated": false, "ratio": 3.6677671589921808, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47379301303921806, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import textwrap from distutils.version import LooseVersion from collections import Iterator import sys import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core.common import is_datetime64tz_dtype, is_categorical_dtype import toolz from ..async import get_sync PANDAS_VERSION = LooseVersion(pd.__version__) def shard_df_on_index(df, divisions): """ Shard a DataFrame by ranges on its index Examples -------- >>> df = pd.DataFrame({'a': [0, 10, 20, 30, 40], 'b': [5, 4 ,3, 2, 1]}) >>> df a b 0 0 5 1 10 4 2 20 3 3 30 2 4 40 1 >>> shards = list(shard_df_on_index(df, [2, 4])) >>> shards[0] a b 0 0 5 1 10 4 >>> shards[1] a b 2 20 3 3 30 2 >>> shards[2] a b 4 40 1 >>> list(shard_df_on_index(df, []))[0] # empty case a b 0 0 5 1 10 4 2 20 3 3 30 2 4 40 1 """ from dask.dataframe.categorical import iscategorical if isinstance(divisions, Iterator): divisions = list(divisions) if not len(divisions): yield df else: divisions = np.array(divisions) df = df.sort_index() index = df.index if iscategorical(index.dtype): index = index.as_ordered() indices = index.searchsorted(divisions) yield df.iloc[:indices[0]] for i in range(len(indices) - 1): yield df.iloc[indices[i]: indices[i+1]] yield df.iloc[indices[-1]:] def unique(divisions): """ Polymorphic unique function >>> list(unique([1, 2, 3, 1, 2, 3])) [1, 2, 3] >>> unique(np.array([1, 2, 3, 1, 2, 3])) array([1, 2, 3]) >>> unique(pd.Categorical(['Alice', 'Bob', 'Alice'], ordered=False)) [Alice, Bob] Categories (2, object): [Alice, Bob] """ if isinstance(divisions, np.ndarray): return np.unique(divisions) if isinstance(divisions, pd.Categorical): return pd.Categorical.from_codes(np.unique(divisions.codes), divisions.categories, divisions.ordered) if isinstance(divisions, (tuple, list, Iterator)): return tuple(toolz.unique(divisions)) raise NotImplementedError() _META_TYPES = "meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional" _META_DESCRIPTION = """\ An empty ``pd.DataFrame`` or ``pd.Series`` that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a ``DataFrame``, a ``dict`` of ``{name: dtype}`` or iterable of ``(name, dtype)`` can be provided. Instead of a series, a tuple of ``(name, dtype)`` can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing ``meta`` is recommended. For more information, see ``dask.dataframe.utils.make_meta``. """ def insert_meta_param_description(*args, **kwargs): """Replace `$META` in docstring with param description. If pad keyword is provided, will pad description by that number of spaces (default is 8).""" if not args: return lambda f: insert_meta_param_description(f, **kwargs) f = args[0] if f.__doc__: indent = " "*kwargs.get('pad', 8) body = textwrap.wrap(_META_DESCRIPTION, initial_indent=indent, subsequent_indent=indent, width=78) descr = '{0}\n{1}'.format(_META_TYPES, '\n'.join(body)) f.__doc__ = f.__doc__.replace('$META', descr) return f def make_meta(x, index=None): """Create an empty pandas object containing the desired metadata. Parameters ---------- x : dict, tuple, list, pd.Series, pd.DataFrame, pd.Index, dtype, scalar To create a DataFrame, provide a `dict` mapping of `{name: dtype}`, or an iterable of `(name, dtype)` tuples. To create a `Series`, provide a tuple of `(name, dtype)`. If a pandas object, names, dtypes, and index should match the desired output. If a dtype or scalar, a scalar of the same dtype is returned. index : pd.Index, optional Any pandas index to use in the metadata. If none provided, a `RangeIndex` will be used. Examples -------- >>> make_meta([('a', 'i8'), ('b', 'O')]) Empty DataFrame Columns: [a, b] Index: [] >>> make_meta(('a', 'f8')) Series([], Name: a, dtype: float64) >>> make_meta('i8') 1 """ if hasattr(x, '_meta'): return x._meta if isinstance(x, (pd.Series, pd.DataFrame)): return x.iloc[0:0] elif isinstance(x, pd.Index): return x[0:0] index = index if index is None else index[0:0] if isinstance(x, dict): return pd.DataFrame({c: pd.Series([], dtype=d) for (c, d) in x.items()}, index=index) elif isinstance(x, tuple) and len(x) == 2: return pd.Series([], dtype=x[1], name=x[0], index=index) elif isinstance(x, (list, tuple)): if not all(isinstance(i, tuple) and len(i) == 2 for i in x): raise ValueError("Expected iterable of tuples of (name, dtype), " "got {0}".format(x)) return pd.DataFrame({c: pd.Series([], dtype=d) for (c, d) in x}, columns=[c for c, d in x], index=index) elif not hasattr(x, 'dtype') and x is not None: # could be a string, a dtype object, or a python type. Skip `None`, # because it is implictly converted to `dtype('f8')`, which we don't # want here. try: dtype = np.dtype(x) return _scalar_from_dtype(dtype) except: # Continue on to next check pass if is_pd_scalar(x): return _nonempty_scalar(x) raise TypeError("Don't know how to create metadata from {0}".format(x)) def _nonempty_index(idx): typ = type(idx) if typ is pd.RangeIndex: return pd.RangeIndex(2, name=idx.name) elif typ in (pd.Int64Index, pd.Float64Index): return typ([1, 2], name=idx.name) elif typ is pd.Index: return pd.Index(['a', 'b'], name=idx.name) elif typ is pd.DatetimeIndex: start = '1970-01-01' data = [start, start] if idx.freq is None else None return pd.DatetimeIndex(data, start=start, periods=2, freq=idx.freq, tz=idx.tz, name=idx.name) elif typ is pd.PeriodIndex: return pd.PeriodIndex(start='1970-01-01', periods=2, freq=idx.freq, name=idx.name) elif typ is pd.TimedeltaIndex: start = np.timedelta64(1, 'D') data = [start, start] if idx.freq is None else None return pd.TimedeltaIndex(data, start=start, periods=2, freq=idx.freq, name=idx.name) elif typ is pd.CategoricalIndex: element = idx.categories[0] return pd.CategoricalIndex([element, element], categories=idx.categories, ordered=idx.ordered, name=idx.name) elif typ is pd.MultiIndex: levels = [_nonempty_index(i) for i in idx.levels] labels = [[0, 0] for i in idx.levels] return pd.MultiIndex(levels=levels, labels=labels, names=idx.names) raise TypeError("Don't know how to handle index of " "type {0}".format(type(idx).__name__)) _simple_fake_mapping = { 'b': np.bool_(True), 'V': np.void(b' '), 'M': np.datetime64('1970-01-01'), 'm': np.timedelta64(1), 'S': np.str_('foo'), 'a': np.str_('foo'), 'U': np.unicode_('foo'), 'O': 'foo' } def _scalar_from_dtype(dtype): if dtype.kind in ('i', 'f', 'u'): return dtype.type(1) elif dtype.kind == 'c': return dtype.type(complex(1, 0)) elif dtype.kind in _simple_fake_mapping: o = _simple_fake_mapping[dtype.kind] return o.astype(dtype) if dtype.kind in ('m', 'M') else o else: raise TypeError("Can't handle dtype: {0}".format(dtype)) def _nonempty_scalar(x): if isinstance(x, (pd.Timestamp, pd.Timedelta, pd.Period)): return x elif np.isscalar(x): dtype = x.dtype if hasattr(x, 'dtype') else np.dtype(type(x)) return _scalar_from_dtype(dtype) else: raise TypeError("Can't handle meta of type " "'{0}'".format(type(x).__name__)) def is_pd_scalar(x): """Whether the object is a scalar type""" return (np.isscalar(x) or isinstance(x, (pd.Timestamp, pd.Timedelta, pd.Period))) def _nonempty_series(s, idx): dtype = s.dtype if is_datetime64tz_dtype(dtype): entry = pd.Timestamp('1970-01-01', tz=dtype.tz) data = [entry, entry] elif is_categorical_dtype(dtype): entry = s.cat.categories[0] data = pd.Categorical([entry, entry], categories=s.cat.categories, ordered=s.cat.ordered) else: entry = _scalar_from_dtype(dtype) data = np.array([entry, entry], dtype=dtype) return pd.Series(data, name=s.name, index=idx) def meta_nonempty(x): """Create a nonempty pandas object from the given metadata. Returns a pandas DataFrame, Series, or Index that contains two rows of fake data. """ if isinstance(x, pd.Index): return _nonempty_index(x) elif isinstance(x, pd.Series): idx = _nonempty_index(x.index) return _nonempty_series(x, idx) elif isinstance(x, pd.DataFrame): idx = _nonempty_index(x.index) data = {c: _nonempty_series(x[c], idx) for c in x.columns} return pd.DataFrame(data, columns=x.columns, index=idx) elif is_pd_scalar(x): return _nonempty_scalar(x) else: raise TypeError("Expected Index, Series, DataFrame, or scalar, " "got {0}".format(type(x).__name__)) ############################################################### # Testing ############################################################### def _check_dask(dsk, check_names=True, check_dtypes=True): import dask.dataframe as dd if hasattr(dsk, 'dask'): result = dsk.compute(get=get_sync) if isinstance(dsk, dd.Index): assert isinstance(result, pd.Index), type(result) if check_names: assert dsk.name == result.name # cache assert isinstance(dsk._meta, pd.Index), type(dsk._meta) if check_names: assert dsk._meta.name == result.name if check_dtypes: assert_dask_dtypes(dsk, result) elif isinstance(dsk, dd.Series): assert isinstance(result, pd.Series), type(result) if check_names: assert dsk.name == result.name, (dsk.name, result.name) # cache assert isinstance(dsk._meta, pd.Series), type(dsk._meta) if check_names: assert dsk._meta.name == result.name if check_dtypes: assert_dask_dtypes(dsk, result) elif isinstance(dsk, dd.DataFrame): assert isinstance(result, pd.DataFrame), type(result) assert isinstance(dsk.columns, pd.Index), type(dsk.columns) if check_names: tm.assert_index_equal(dsk.columns, result.columns) # cache assert isinstance(dsk._meta, pd.DataFrame), type(dsk._meta) if check_names: tm.assert_index_equal(dsk._meta.columns, result.columns) if check_dtypes: assert_dask_dtypes(dsk, result) elif isinstance(dsk, dd.core.Scalar): assert (np.isscalar(result) or isinstance(result, (pd.Timestamp, pd.Timedelta))) if check_dtypes: assert_dask_dtypes(dsk, result) else: msg = 'Unsupported dask instance {0} found'.format(type(dsk)) raise AssertionError(msg) return result return dsk def _maybe_sort(a): # sort by value, then index try: if isinstance(a, pd.DataFrame): a = a.sort_values(by=a.columns.tolist()) else: a = a.sort_values() except (TypeError, IndexError, ValueError): pass return a.sort_index() def eq(a, b, check_names=True, check_dtypes=True, check_divisions=True, **kwargs): if check_divisions: assert_divisions(a) assert_divisions(b) assert_sane_keynames(a) assert_sane_keynames(b) a = _check_dask(a, check_names=check_names, check_dtypes=check_dtypes) b = _check_dask(b, check_names=check_names, check_dtypes=check_dtypes) if isinstance(a, pd.DataFrame): a = _maybe_sort(a) b = _maybe_sort(b) tm.assert_frame_equal(a, b, **kwargs) elif isinstance(a, pd.Series): a = _maybe_sort(a) b = _maybe_sort(b) tm.assert_series_equal(a, b, check_names=check_names, **kwargs) elif isinstance(a, pd.Index): tm.assert_index_equal(a, b, **kwargs) else: if a == b: return True else: if np.isnan(a): assert np.isnan(b) else: assert np.allclose(a, b) return True def assert_dask_graph(dask, label): if hasattr(dask, 'dask'): dask = dask.dask assert isinstance(dask, dict) for k in dask: if isinstance(k, tuple): k = k[0] if k.startswith(label): return True else: msg = "given dask graph doesn't contan label: {0}" raise AssertionError(msg.format(label)) def assert_divisions(ddf): if not hasattr(ddf, 'divisions'): return if not hasattr(ddf, 'index'): return if not ddf.known_divisions: return results = get_sync(ddf.dask, ddf._keys()) for i, df in enumerate(results[:-1]): if len(df): assert df.index.min() >= ddf.divisions[i] assert df.index.max() < ddf.divisions[i + 1] if len(results[-1]): assert results[-1].index.min() >= ddf.divisions[-2] assert results[-1].index.max() <= ddf.divisions[-1] def assert_sane_keynames(ddf): if not hasattr(ddf, 'dask'): return for k in ddf.dask.keys(): while isinstance(k, tuple): k = k[0] assert isinstance(k, (str, bytes)) assert len(k) < 100 assert ' ' not in k if sys.version_info[0] >= 3: assert k.split('-')[0].isidentifier() def assert_dask_dtypes(ddf, res, numeric_equal=True): """Check that the dask metadata matches the result. If `numeric_equal`, integer and floating dtypes compare equal. This is useful due to the implicit conversion of integer to floating upon encountering missingness, which is hard to infer statically.""" eq_types = {'O', 'S', 'U', 'a'} # treat object and strings alike if numeric_equal: eq_types.update(('i', 'f')) if isinstance(res, pd.DataFrame): for col, a, b in pd.concat([ddf._meta.dtypes, res.dtypes], axis=1).itertuples(): assert (a.kind in eq_types and b.kind in eq_types) or (a == b) elif isinstance(res, (pd.Series, pd.Index)): a = ddf._meta.dtype b = res.dtype assert (a.kind in eq_types and b.kind in eq_types) or (a == b) else: if hasattr(ddf._meta, 'dtype'): a = ddf._meta.dtype if not hasattr(res, 'dtype'): assert np.isscalar(res) b = np.dtype(type(res)) else: b = res.dtype assert (a.kind in eq_types and b.kind in eq_types) or (a == b) else: assert type(ddf._meta) == type(res)
{ "repo_name": "cowlicks/dask", "path": "dask/dataframe/utils.py", "copies": "1", "size": "16030", "license": "bsd-3-clause", "hash": 8129658437381091000, "line_mean": 32.7473684211, "line_max": 79, "alpha_frac": 0.566625078, "autogenerated": false, "ratio": 3.594170403587444, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46607954815874436, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import tflearn def textfile_to_seq(file, seq_maxlen=25, redun_step=3): """ string_to_semi_redundant_sequences. Vectorize a string and returns parsed sequences and targets, along with the associated dictionary. Arguments: string: `str`. Lower-case text from input text file. seq_maxlen: `int`. Maximum length of a sequence. Default: 25. redun_step: `int`. Redundancy step. Default: 3. Returns: `tuple`: (inputs, targets, dictionary) """ import numpy as np import re print("Vectorizing text...") import codecs f = codecs.open('toponims.txt', "r", "utf-8") string = f.read() string.encode('utf-8') string = re.sub( '([A-Z])', '^\\1', string ).lower() chars = set() chars.update(string) char_idx = {c: i for i, c in enumerate(chars)} sequences = [] next_chars = [] for i in range(0, len(string) - seq_maxlen, redun_step): sequences.append(string[i: i + seq_maxlen]) next_chars.append(string[i + seq_maxlen]) X = np.zeros((len(sequences), seq_maxlen, len(chars)), dtype=np.bool) Y = np.zeros((len(sequences), len(chars)), dtype=np.bool) for i, seq in enumerate(sequences): for t, char in enumerate(seq): X[i, t, char_idx[char]] = 1 Y[i, char_idx[next_chars[i]]] = 1 print("Text total length: " + str(len(string))) print("Distinct chars: " + str(len(chars))) print("Total sequences: " + str(len(sequences))) return X, Y, char_idx def random_sequence_from_string(string, seq_maxlen): import random rand_index = random.randint(0, len(string) - seq_maxlen - 1) return string[rand_index: rand_index + seq_maxlen] def random_sequence_from_textfile(path, seq_maxlen): import codecs import re f = codecs.open(path, "r", "utf-8") text = f.read() text.encode('utf-8') text = re.sub( '([A-Z])', '^\\1', text ).lower() return random_sequence_from_string(text, seq_maxlen) path = 'toponims.txt' maxlen = 20 X, Y, char_idx = \ textfile_to_seq(path, seq_maxlen=maxlen, redun_step=3) g = tflearn.input_data(shape=[None, maxlen, len(char_idx)]) g = tflearn.lstm(g, 64, return_seq=True) g = tflearn.dropout(g, 0.5) g = tflearn.lstm(g, 64) g = tflearn.dropout(g, 0.5) g = tflearn.fully_connected(g, len(char_idx), activation='softmax') g = tflearn.regression(g, optimizer='adam', loss='categorical_crossentropy', learning_rate=0.01) m = tflearn.SequenceGenerator(g, dictionary=char_idx, seq_maxlen=maxlen, clip_gradients=5.0) for i in range(100): seed = random_sequence_from_textfile(path, maxlen) m.fit(X, Y, validation_set=0.1, batch_size=128, n_epoch=1, run_id='toponims') print("-- TESTING...") print("-- EPOCH = ", i) print("-- Test with temperature of 1.2 --") print(m.generate(30, temperature=1.2, seq_seed=seed)) print("-- Test with temperature of 1.0 --") print(m.generate(30, temperature=1.0, seq_seed=seed)) print("-- Test with temperature of 0.5 --") print(m.generate(30, temperature=0.5, seq_seed=seed))
{ "repo_name": "jvitria/DeepLearningBBVA2016", "path": "helpers/names.py", "copies": "2", "size": "3235", "license": "mit", "hash": 7035212594129675000, "line_mean": 34.5604395604, "line_max": 76, "alpha_frac": 0.6182380216, "autogenerated": false, "ratio": 3.1998021760633035, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9796533880884607, "avg_score": 0.004301263355739168, "num_lines": 91 }
from __future__ import absolute_import, division, print_function import threading from Queue import Empty import cloudpickle as cp import pytest from mentor.queue import LockingQueue, Queue def test_queue_put_get(zk): queue = Queue(zk, '/mentor/putget') queue.put(cp.dumps(range(5))) assert cp.loads(queue.get()) == range(5) def test_locking_queue_put_get(zk): queue = LockingQueue(zk, '/mentor/putget_locking') queue.put(cp.dumps(range(5))) assert queue.get() == cp.dumps(range(5)) queue.consume() def test_queue_serde(zk): queue = Queue(zk, '/mentor/serde') queue.put(cp.dumps({'a': 1, 'b': 2})) queue.put(cp.dumps({'c': 3})) pickled_queue = cp.dumps(queue) unpickled_queue = cp.loads(pickled_queue) assert cp.loads(unpickled_queue.get()) == {'a': 1, 'b': 2} assert cp.loads(unpickled_queue.get()) == {'c': 3} def test_locking_queue_serde(zk): queue = LockingQueue(zk, '/mentor/serde_locking') queue.put(cp.dumps({'a': 1, 'b': 2})) queue.put(cp.dumps({'c': 3})) pickled_queue = cp.dumps(queue) unpickled_queue = cp.loads(pickled_queue) assert cp.loads(unpickled_queue.get()) == {'a': 1, 'b': 2} unpickled_queue.consume() assert cp.loads(unpickled_queue.get()) == {'c': 3} unpickled_queue.consume() def test_queue_size(zk): queue = Queue(zk, '/mentor/size') assert queue.empty() assert queue.qsize() == 0 queue.put(cp.dumps(range(5))) assert queue.empty() is False assert queue.qsize() == 1 def test_queue_blocking_get(zk): queue = Queue(zk, '/mentor/blocking') def delayed_put(): import time time.sleep(2) queue.put(cp.dumps(range(5))) t = threading.Thread(target=delayed_put) t.start() with pytest.raises(Empty): queue.get(block=True, timeout=1) assert queue.get(block=True, timeout=2) == cp.dumps(range(5))
{ "repo_name": "lensacom/satyr", "path": "mentor/tests/test_queue.py", "copies": "1", "size": "1905", "license": "apache-2.0", "hash": 294234648320201300, "line_mean": 25.095890411, "line_max": 65, "alpha_frac": 0.6330708661, "autogenerated": false, "ratio": 3.0431309904153356, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9176201856515336, "avg_score": 0, "num_lines": 73 }
from __future__ import absolute_import, division, print_function import threading from . import ir, pipeline, transforms #------------------------------------------------------------------------ # Passes #------------------------------------------------------------------------ passes = [ transforms.explicit_coercions, ] #------------------------------------------------------------------------ # Execution Context #------------------------------------------------------------------------ _tls = threading.local() def current_ctx(): """Return the current evaluation strategy""" try: return _tls.ctx except AttributeError: _tls.ctx = ir.ExecutionContext() return current_ctx() #------------------------------------------------------------------------ # Prepare #------------------------------------------------------------------------ def prepare(expr, strategy): """ Prepare a Deferred for interpretation """ graph, expr_ctx = expr f, values = ir.from_expr(graph, expr_ctx, current_ctx()) env = {'strategy': strategy} func, env = pipeline.run_pipeline(f, env, passes) return func, env
{ "repo_name": "zeeshanali/blaze", "path": "blaze/compute/air/prepare.py", "copies": "1", "size": "1169", "license": "bsd-3-clause", "hash": 5501974357735049000, "line_mean": 26.1860465116, "line_max": 73, "alpha_frac": 0.4063301967, "autogenerated": false, "ratio": 5.566666666666666, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.003911521363933469, "num_lines": 43 }
from __future__ import absolute_import, division, print_function import time from Queue import Empty import cloudpickle as cp from kazoo.client import KazooClient from kazoo.recipe.queue import LockingQueue as KazooLockingQueue from kazoo.recipe.queue import Queue as KazooQueue from .utils import timeout as seconds from .utils import TimeoutError class SerializableMixin(object): def __getstate__(self): hosts = ["{}:{}".format(h, p) for h, p in self.client.hosts] client = ",".join(hosts) result = self.__dict__.copy() result['client'] = client return result def __setstate__(self, state): hosts = state.pop('client') client = KazooClient(hosts) client.start() self.__dict__ = state self.client = client class CompatMixin(object): # Python's Queue compatibility def __bool__(self): return True def __nonzero__(self): return True def qsize(self): return len(self) def empty(self): return len(self) == 0 class Queue(CompatMixin, SerializableMixin, KazooQueue): def get(self, block=True, timeout=-1): result = super(Queue, self).get() if block: try: with seconds(timeout): while result is None: result = super(Queue, self).get() time.sleep(0.1) except TimeoutError: raise Empty return cp.loads(result) def put(self, item): value = cp.dumps(item) return super(Queue, self).put(value) class LockingQueue(CompatMixin, SerializableMixin, KazooLockingQueue): def get(self, block=True, timeout=-1): result = super(LockingQueue, self).get(timeout=timeout) return cp.loads(result) def put(self, item, priority=100): value = cp.dumps(item) return super(LockingQueue, self).put(value, priority=priority)
{ "repo_name": "lensacom/satyr", "path": "mentor/queue.py", "copies": "1", "size": "1969", "license": "apache-2.0", "hash": -2928521527677109000, "line_mean": 23.9240506329, "line_max": 70, "alpha_frac": 0.6109700356, "autogenerated": false, "ratio": 3.977777777777778, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 79 }
from __future__ import absolute_import, division, print_function import time import importlib import json import copy import pdb import tensorflow as tf from tensorflow.python.ops import variables import numpy as np import tfutils.utils as utils from tfutils.error import NanLossError, HiLossError, NoChangeError from tfutils.utils import strip_prefix from tfutils.db_interface import DBInterface from tfutils.helper import \ parse_params, get_params, \ get_data, get_model, get_loss, \ split_input, log, get_model from tfutils.validation import run_all_validations, get_valid_targets_dict from tfutils.defaults import \ DEFAULT_HOST, DEFAULT_LOOP_PARAMS, \ DEFAULT_TRAIN_THRES_LOSS, DEFAULT_PARAMS from tfutils.tpu_train import tpu_train_from_params def train_from_params( save_params, model_params, train_params, loss_params=None, learning_rate_params=None, optimizer_params=None, validation_params=None, load_params=None, log_device_placement=DEFAULT_PARAMS['log_device_placement'], # advanced dont_run=DEFAULT_PARAMS['dont_run'], # advanced skip_check=DEFAULT_PARAMS['skip_check'], # advanced use_estimator=False ): """ Main training interface function. Args: save_params (dict): Describing the parameters used to construct the save database, and control saving. These include: - host (str) Hostname where database connection lives - port (int) Port where database connection lives - dbname (str) Name of database for storage - collname (str) Name of collection for storage - exp_id (str) Experiment id descriptor NOTE: the variables host/port/dbname/coll/exp_id control the location of the saved data for the run, in order of increasing specificity. When choosing these, note that: - If a given host/port/dbname/coll/exp_id already has saved checkpoints,\ then any new call to start training with these same location variables\ will start to train from the most recent saved checkpoint. If you mistakenly\ try to start training a new model with different variable names, or structure,\ from that existing checkpoint, an error will be raised, as the model will be\ incompatiable with the saved variables. - When choosing what dbname, coll, and exp_id, to use, keep in mind that mongodb\ queries only operate over a single collection. So if you want to analyze\ results from a bunch of experiments together using mongod queries, you should\ put them all in the same collection, but with different exp_ids. If, on the\ other hand, you never expect to analyze data from two experiments together,\ you can put them in different collections or different databases. Choosing\ between putting two experiments in two collections in the same database\ or in two totally different databases will depend on how you want to organize\ your results and is really a matter of preference. - do_save (bool, default: True) Whether to save to database - save_initial_filters (bool, default: True) Whether to save initial model filters at step = 0, - save_metrics_freq (int, default: 5) How often to store train results to database - save_valid_freq (int, default: 3000) How often to calculate and store validation results to database - save_filters_freq (int, default: 30000) How often to save filter values to database - cache_filters_freq (int, default: 3000) How often to cache filter values locally and save to ___RECENT database - cache_max_num (int, default: 6) Maximal number of cached filters to keep in __RECENT database - cache_dir (str, default: None) Path where caches will be saved locally. If None, will default to ~/.tfutils/<host:post>/<dbname>/<collname>/<exp_id>. model_params (dict): Containing function that produces model and arguments to that function. - model_params['func'] The function producing the model. The function's signature is: Args: - ``inputs``: data object - ``train`` (boolean): if in training or testing - ``seed`` (int): seed for use in random generation Returns: - ``outputs`` (tf.Operations): train output tensorflow nodes - Additional configurations you want to store in database - Remaining items in model_params are dictionary of arguments passed to func. train_params (dict): Containing params for data sources and targets in training. - train_params['data_params'] This contains params for the data - ``train_params['data_params']['func']`` is the function that constructs the data: The function's signature is: Args: - ``batch_size``: Batch size for input data Returns: - ``inputs``: A dictionary of tensors that will be sent to model function - ``train_params['data_params']['batch_size']`` batch size of the data, will be sent to func - Remainder of ``train_params['data_params']`` are kwargs passed to func - train_params['targets'] (optional) contains params for additional train targets - ``train_params['targets']['func']`` is a function that produces tensorflow nodes as training targets: The function's signature is: Args: - ``inputs``: returned values of ``train_params['data_params']['func']`` - ``output``: first returned value of ``train_params['model_params']['func']`` Returns: A dictionary of tensors that will be computed and stored in the database - Remainder of ``train_parms['targets']`` are arguments to func. - train_params['validate_first'] (optional, bool, default is True): controls whether validating before training - train_params['thres_loss'] (optional, float, default: 100): If loss exceeds this during training, HiLossError is thrown - train_params['num_steps'] (int or None, default: None): How many total steps of the optimization are run. If None, train is run until process is cancelled. loss_params (dict): Parameters for helper.get_loss_base function to build loss. - loss_params['pred_targets'] (a string or a list of strings): contain the names of inputs nodes that will be sent into the loss function - loss_params['loss_func']: the function used to calculate the loss. Must be provided. - loss_params['loss_func_kwargs'] (dict): Keyword parameters sent to ``loss_params['loss_func']``. Default is {}. - loss_params['agg_func']: The aggregate function, default is None. - loss_params['agg_func_kwargs']: Keyword parameters sent to ``loss_params['agg_func']``. Default is {}. - loss_params['loss_per_case_func'] (Deprecated): Deprecated parameter, the same as ``loss_params['loss_func']``. - loss_params['targets'] (Deprecated): Deprecated parameter, the same as ``loss_params['targets']``. learning_rate_params (dict): Parameters for specifying learning_rate. - learning_rate_params['func']: The function producing tensorflow node acting as learning rate. This function must accept argument ``global_step``. - remainder of learning_rate_params are arguments to func. optimizer_params (dict): Parameters for creating optimizer. - optimizer_params['optimizer']: A class producing an optimizer object, which should have function ``compute_gradients`` and ``apply_gradients``. The signatures of these two functions are similar as tensorflow basic optimizer classes. Must accept: - "learning_rate" -- the result of the learning_rate_func call - Remainder of optimizer_params (aside form "optimizer") are arguments to the optimizer func - optimizer_params['func'] (Deprecated): Deprecated parameter, the same as ``optimizer_params['optimizer']``. validation_params (dict): Dictionary of validation sources. The structure if this dictionary is: { <validation_target_name_1>: { data: { 'func': (callable) data source function for this validation, <kwarg1>: <value1> for 'func', ... }, targets: { 'func': (callable) returning targets, <kwarg1>: <value1> for 'func', ... }, num_steps (int): number of batches of validation source to compute, agg_func (optional, callable): how to aggregate validation results across batches after computation. Signature is: - one input argument: the list of validation batch results - one output: aggregated version Default is ``utils.identity_func`` online_agg_func (optional, callable): how to aggregate validation results on a per-batch basis. Siganture is: - three input arguments: (current aggregate, new result, step) - one output: new aggregated result On first step, current aggregate passed in is None. The final result is passed to the "agg_func". Default is ``utils.append_and_return`` }, <validation_target_name_2>: ... } For each validation_target_name key, the targets are computed and then added to the output dictionary to be computed every so often -- unlike train_targets which are computed on each time step, these are computed on a basic controlled by the valid_save_freq specific in the save_params. load_params (dict): Similar to save_params, if you want loading to happen from a different location than where saving occurs. Parameters include: - host (str) Hostname where database connection lives - port (int) Port where database connection lives - dbname (str) Name of database for storage - collname (str) Name of collection for storage - exp_id (str) Experiment id descriptor - do_restore (bool, default: True) Whether to restore from saved model - query (dict) mongodb query describing how to load from loading database - from_ckpt (string) Path to load from a TensorFlow checkpoint (instead of from the db) - to_restore (list of strings or a regex/callable which returns strings) Specifies which variables should be loaded from the checkpoint. Any variables not specified here will be reinitialized. - load_param_dict (dict) A dictionary whose keys are the names of the variables that are to be loaded from the checkpoint, and the values are the names of the variables of the model that you want to restore with the value of the corresponding checkpoint variable. log_device_placement (bool, default is False): Advanced parameter. Whether to log device placement in tensorflow session dont_run (bool, default is False): Advanced parameter. Whether returning everything, not actually training skip_check (bool, default is False): Advanced parameter. Whether skipping github check, could be useful when working in detached head """ # use tpu only if a tpu_name has been specified and not a multi-model if isinstance(model_params, list): # multi-model mode use_tpu = (model_params[0].get('tpu_name', None) is not None) assert(use_tpu is False) else: use_tpu = (model_params.get('tpu_name', None) is not None) if use_tpu: log.info('Using tpu: %s' %model_params['tpu_name']) params, train_args = parse_params('train', model_params, dont_run=dont_run, skip_check=skip_check, load_params=load_params, loss_params=loss_params, save_params=save_params, train_params=train_params, optimizer_params=optimizer_params, validation_params=validation_params, learning_rate_params=learning_rate_params, log_device_placement=log_device_placement, use_tpu=use_tpu or use_estimator ) if use_estimator or use_tpu: return tpu_train_from_params(params, train_args, use_tpu=use_tpu) else: with tf.Graph().as_default(), tf.device(DEFAULT_HOST): # For convenience, use list of dicts instead of dict of lists _params = [{key: value[i] for (key, value) in params.items()} for i in range(len(params['model_params']))] _trargs = [{key: value[i] for (key, value) in train_args.items()} for i in range(len(params['model_params']))] # Use a single dataprovider for all models. data_params = _params[0]['train_params']['data_params'] _params[0]['train_params']['data_params'], inputs \ = get_data(**data_params) # Build a graph for each distinct model. var_manager_list = [] for param, trarg in zip(_params, _trargs): _, _, param, trarg, var_manager \ = get_model(inputs, param['model_params'], param=param, trarg=trarg) trarg['validation_targets'], _ = \ get_valid_targets_dict( var_manager=var_manager, **param) var_manager_list.append(var_manager) # Create session. gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session( config=tf.ConfigProto( allow_soft_placement=True, gpu_options=gpu_options, log_device_placement=log_device_placement, )) # Initialize variables here init_op_global = tf.global_variables_initializer() sess.run(init_op_global) init_op_local = tf.local_variables_initializer() sess.run(init_op_local) log.info('Initialized from scratch first') # Build database interface for each model # This interface class will handle the records saving, model saving, and # model restoring. for param, trarg, var_manager in zip(_params, _trargs, var_manager_list): trarg['dbinterface'] = DBInterface(sess=sess, params=param, var_manager=var_manager, global_step=trarg['global_step'], save_params=param['save_params'], load_params=param['load_params']) ## Model will be restored from saved database here trarg['dbinterface'].initialize() # Convert back to a dictionary of lists params = {key: [param[key] for param in _params] for key in _params[0].keys()} train_args = {key: [trarg[key] for trarg in _trargs] for key in _trargs[0].keys()} if dont_run: return train_args return train(sess, **train_args) def train(sess, dbinterface, train_loop, train_targets, global_step, num_minibatches=1, num_steps=float('inf'), thres_loss=DEFAULT_TRAIN_THRES_LOSS, validate_first=True, validation_targets=None): """Actually runs the training evaluation loop. Args: sess (tesorflow.Session): Object in which to run calculations. dbinterface (DBInterface object): Saver through which to save results. train_loop (callable withs args: sess and train_targets): Callable that specifies a custom training loop train_targets (dict of tensorflow nodes): Targets to train. One item in this dict must be "optimizer" or similar to make anything happen num_minibatches (int): How many minibatches to use to before applying gradient update. num_steps (int): How many steps to train to before quitting validation_targets (dict of tensorflow objects, default: None): Objects on which validation will be computed thres_loss (float, default: 100): If loss exceeds this during training, HiLossError is thrown """ # Collect args in a dict of lists train_args = { 'num_steps': num_steps, 'thres_loss': thres_loss, 'train_loop': train_loop, 'global_step': global_step, 'dbinterface': dbinterface, 'train_targets': train_targets, 'validate_first': validate_first, 'num_minibatches': num_minibatches, 'validation_targets': validation_targets} # Convert to a list of dicts trargs = [{key: value[i] for (key, value) in train_args.items()} for i in range(len(train_targets))] num_steps = [t['num_steps'] for t in trargs] steps = [t['global_step'].eval(session=sess) for t in trargs] # Start initial validation for (step, trarg) in zip(steps, trargs): if step >= trarg['num_steps']: log.info('Training cancelled since step ({}) is >= num_steps ({})'. format(step, trarg['num_steps'])) return log.info('Training beginning ...') if step == 0: trarg['dbinterface'].start_time_step = time.time() if trarg['validate_first']: valid_res = run_all_validations( sess, trarg['validation_targets'], dbinterface=trarg['dbinterface']) train_loop = train_args['train_loop'][0] train_targets = train_args['train_targets'] # Run training while any(step < num_step for (step, num_step) in zip(steps, num_steps)): start_time_step = time.time() train_results = train_loop( sess, train_targets, num_minibatches=trarg['num_minibatches']) for (step, trarg, train_res) in zip(steps, trargs, train_results): old_step = step step = trarg['global_step'].eval(session=sess) if step <= old_step: raise NoChangeError(\ 'Your optimizer should have incremented the global step,' ' but did not: old_step=%d, new_step=%d' \ % (old_step, step)) if np.isnan(train_res['loss']): raise NanLossError(\ 'Loss has become NaN') if train_res['loss'] > trarg['thres_loss']: raise HiLossError(\ 'Loss {:.2f} exceeded the threshold {:.2f}'.format( train_res['loss'], trarg['thres_loss'])) # Validation vtargs = trarg['validation_targets'] \ if step % trarg['dbinterface'].save_valid_freq == 0 else {} valid_res = run_all_validations(sess, vtargs) # Save trarg['dbinterface'].start_time_step = start_time_step trarg['dbinterface'].save(train_res=train_res, valid_res=valid_res, validation_only=False) steps = [t['global_step'].eval(session=sess) for t in trargs] # Sync and close the session res = [] for trarg in trargs: trarg['dbinterface'].sync_with_host() res.append(trarg['dbinterface'].outrecs) sess.close() return res
{ "repo_name": "neuroailab/tfutils", "path": "tfutils/train.py", "copies": "1", "size": "22221", "license": "mit", "hash": -6003037070600578000, "line_mean": 42.0639534884, "line_max": 119, "alpha_frac": 0.5507852932, "autogenerated": false, "ratio": 4.907464664310954, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0027235133914969576, "num_lines": 516 }
from __future__ import absolute_import, division, print_function import time import json import os import tempfile import threading from collections import defaultdict, Iterable import numpy as np from lcm import LCM from robotlocomotion import viewer2_comms_t from director.thirdparty import transformations class ClientIDFactory(object): def __init__(self): self.pid = os.getpid() self.counter = 0 def new_client_id(self): self.counter += 1 return "py_{:d}_{:d}".format(self.pid, self.counter) CLIENT_ID_FACTORY = ClientIDFactory() def to_lcm(data): msg = viewer2_comms_t() msg.utime = data["utime"] msg.format = "treeviewer_json" msg.format_version_major = 1 msg.format_version_minor = 0 msg.data = bytearray(json.dumps(data), encoding='utf-8') msg.num_bytes = len(msg.data) return msg def serialize_transform(tform): return { "translation": list(transformations.translation_from_matrix(tform)), "quaternion": list(transformations.quaternion_from_matrix(tform)) } class GeometryData(object): __slots__ = ["geometry", "color", "transform"] def __init__(self, geometry, color=(1., 1., 1., 1.), transform=np.eye(4)): self.geometry = geometry self.color = color self.transform = transform def serialize(self): params = self.geometry.serialize() params["color"] = list(self.color) params["transform"] = serialize_transform(self.transform) return params class BaseGeometry(object): def serialize(self): raise NotImplementedError() class Box(BaseGeometry): __slots__ = ["lengths"] def __init__(self, lengths=[1,1,1]): self.lengths = lengths def serialize(self): return { "type": "box", "lengths": list(self.lengths) } class Sphere(BaseGeometry): __slots__ = ["radius"] def __init__(self, radius=1): self.radius = radius def serialize(self): return { "type": "sphere", "radius": self.radius } class Ellipsoid(BaseGeometry): __slots__ = ["radii"] def __init__(self, radii=[1,1,1]): self.radii = radii def serialize(self): return { "type": "ellipsoid", "radii": list(self.radii) } class Cylinder(BaseGeometry): __slots__ = ["length", "radius"] def __init__(self, length=1, radius=1): self.length = length self.radius = radius def serialize(self): return { "type": "cylinder", "length": self.length, "radius": self.radius } class Triad(BaseGeometry): __slots__ = ["tube", "scale"] def __init__(self, scale=1.0, tube=False): self.scale = scale self.tube = tube def serialize(self): return { "type": "triad", "scale": self.scale, "tube": self.tube } class PointCloud(BaseGeometry): __slots__ = ["points", "channels"] def __init__(self, points, channels={}): self.points = points self.channels = channels def serialize(self): return { "type": "pointcloud", "points": [list(p) for p in self.points], "channels": {name: [list(c) for c in values] for (name, values) in self.channels.iteritems()} } class PolyLine(BaseGeometry): def __init__(self, points, radius=0.01, closed=False, start_head=False, end_head=False, head_radius=0.05, head_length=None): self.points = points self.radius = radius self.closed = closed self.start_head = start_head self.end_head = end_head self.head_radius = head_radius self.head_length = head_length if head_length is not None else head_radius def serialize(self): data = { "type": "line", "points": [list(p) for p in self.points], "radius": self.radius, "closed": self.closed } if self.start_head or self.end_head: data["start_head"] = self.start_head data["end_head"] = self.end_head data["head_radius"] = self.head_radius data["head_length"] = self.head_length return data class LazyTree(object): __slots__ = ["geometries", "transform", "children"] def __init__(self, geometries=None, transform=np.eye(4)): if geometries is None: geometries = [] self.geometries = geometries self.transform = transform self.children = defaultdict(lambda: LazyTree()) def __getitem__(self, item): return self.children[item] def getdescendant(self, path): t = self for p in path: t = t[p] return t def descendants(self, prefix=tuple()): result = [] for (key, val) in self.children.items(): childpath = prefix + (key,) result.append(childpath) result.extend(val.descendants(childpath)) return result class CommandQueue(object): def __init__(self): self.settransform = set() self.setgeometry = set() self.delete = set() def isempty(self): return not (self.settransform or self.setgeometry or self.delete) def empty(self): self.settransform = set() self.setgeometry = set() self.delete = set() class Visualizer(object): """ A Visualizer is a lightweight object that contains a CoreVisualizer and a path. The CoreVisualizer does all of the work of storing geometries and publishing LCM messages. By storing the path in the Visualizer instance, we make it easy to do things like store or pass a Visualizer that draws to a sub-part of the viewer tree. Many Visualizer objects can all share the same CoreVisualizer. """ __slots__ = ["core", "path"] def __init__(self, path=None, lcm=None, core=None): if core is None: core = CoreVisualizer(lcm) if path is None: path = tuple() else: if isinstance(path, str): path = tuple(path.split("/")) if not path[0]: path = tuple([p for p in path if p]) self.core = core self.path = path def setgeometry(self, geomdata): """ Set the geometries at this visualizer's path to the given geomdata (replacing whatever was there before). geomdata can be any one of: * a single BaseGeometry * a single GeometryData * a collection of any combinations of BaseGeometry and GeometryData """ self.core.setgeometry(self.path, geomdata) return self def settransform(self, tform): """ Set the transform for this visualizer's path (and, implicitly, any descendants of that path). tform should be a 4x4 numpy array representing a homogeneous transform """ self.core.settransform(self.path, tform) def delete(self): """ Delete the geometry at this visualizer's path. """ self.core.delete(self.path) def __getitem__(self, path): """ Indexing into a visualizer returns a new visualizer with the given path appended to this visualizer's path. """ return Visualizer(path=self.path + (path,), lcm=self.core.lcm, core=self.core) def start_handler(self): """ Start a Python thread that will subscribe to messages from the remote viewer and handle those responses. This enables automatic reloading of geometry into the viewer if, for example, the viewer is restarted later. """ self.core.start_handler() class CoreVisualizer(object): def __init__(self, lcm=None): if lcm is None: lcm = LCM() self.lcm = lcm self.client_id = CLIENT_ID_FACTORY.new_client_id() self.tree = LazyTree() self.queue = CommandQueue() self.publish_immediately = True self.lcm.subscribe(self._response_channel(), self._handle_response) self.handler_thread = None def _request_channel(self): return "DIRECTOR_TREE_VIEWER_REQUEST_<{:s}>".format(self.client_id) def _response_channel(self): return "DIRECTOR_TREE_VIEWER_RESPONSE_<{:s}>".format(self.client_id) def _handler_loop(self): while True: self.lcm.handle() def start_handler(self): if self.handler_thread is not None: return self.handler_thread = threading.Thread( target=self._handler_loop) self.handler_thread.daemon = True self.handler_thread.start() def _handle_response(self, channel, msgdata): msg = viewer2_comms_t.decode(msgdata) data = json.loads(msg.data.decode()) if data["status"] == 0: pass elif data["status"] == 1: for path in self.tree.descendants(): self.queue.setgeometry.add(path) self.queue.settransform.add(path) else: raise ValueError( "Unhandled response from viewer: {}".format(msg.data.decode())) def setgeometry(self, path, geomdata): if isinstance(geomdata, BaseGeometry): self._load(path, [GeometryData(geomdata)]) elif isinstance(geomdata, Iterable): self._load(path, geomdata) else: self._load(path, [geomdata]) def _load(self, path, geoms): converted_geom_data = [] for geom in geoms: if isinstance(geom, GeometryData): converted_geom_data.append(geom) else: converted_geom_data.append(GeometryData(geom)) self.tree.getdescendant(path).geometries = converted_geom_data self.queue.setgeometry.add(path) self._maybe_publish() def settransform(self, path, tform): self.tree.getdescendant(path).transform = tform self.queue.settransform.add(path) self._maybe_publish() def delete(self, path): if not path: self.tree = LazyTree() else: t = self.tree.getdescendant(path[:-1]) if path[-1] in t.children: del t.children[path[-1]] self.queue.delete.add(path) self._maybe_publish() def _maybe_publish(self): if self.publish_immediately: self.publish() def publish(self): if not self.queue.isempty(): data = self.serialize_queue() msg = to_lcm(data) self.lcm.publish(self._request_channel(), msg.encode()) self.queue.empty() def serialize_queue(self): delete = [] setgeometry = [] settransform = [] for path in self.queue.delete: delete.append({"path": path}) for path in self.queue.setgeometry: geoms = self.tree.getdescendant(path).geometries or [] setgeometry.append({ "path": path, "geometries": [geom.serialize() for geom in geoms] }) for path in self.queue.settransform: settransform.append({ "path": path, "transform": serialize_transform( self.tree.getdescendant(path).transform) }) return { "utime": int(time.time() * 1e6), "delete": delete, "setgeometry": setgeometry, "settransform": settransform } if __name__ == '__main__': # We can provide an initial path if we want vis = Visualizer(path="/root/folder1") # Start a thread to handle responses from the viewer. Doing this enables # the automatic reloading of missing geometry if the viewer is restarted. vis.start_handler() vis["boxes"].setgeometry( [GeometryData(Box([1, 1, 1]), color=np.random.rand(4), transform=transformations.translation_matrix([x, -2, 0])) for x in range(10)]) # Index into the visualizer to get a sub-tree. vis.__getitem__ is lazily # implemented, so these sub-visualizers come into being as soon as they're # asked for vis = vis["group1"] box_vis = vis["box"] sphere_vis = vis["sphere"] box = Box([1, 1, 1]) geom = GeometryData(box, color=[0, 1, 0, 0.5]) box_vis.setgeometry(geom) sphere_vis.setgeometry(Sphere(0.5)) sphere_vis.settransform(transformations.translation_matrix([1, 0, 0])) vis["test"].setgeometry(Triad()) vis["test"].settransform(transformations.concatenate_matrices( transformations.rotation_matrix(1.0, [0, 0, 1]), transformations.translation_matrix([-1, 0, 1]))) vis["triad"].setgeometry(Triad()) # Setting the geometry preserves the transform at that path. # Call settransform(np.eye(4)) if you want to clear the transform. vis["test"].setgeometry(Triad()) # bug, the sphere is loaded and replaces the previous # geometry but it is not drawn with the correct color mode vis["test"].setgeometry(Sphere(0.5)) for theta in np.linspace(0, 2 * np.pi, 100): vis.settransform(transformations.rotation_matrix(theta, [0, 0, 1])) time.sleep(0.01) #vis.delete()
{ "repo_name": "patmarion/director", "path": "src/python/director/viewerclient.py", "copies": "1", "size": "13512", "license": "bsd-3-clause", "hash": -1701496471069745200, "line_mean": 29.4324324324, "line_max": 105, "alpha_frac": 0.5820011841, "autogenerated": false, "ratio": 3.9858407079646017, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0008258504560120366, "num_lines": 444 }
from __future__ import absolute_import, division, print_function import time import numpy as np import os import glob import warnings import json from PIL import Image from ..datasets import VOT from ..utils.metrics import poly_iou from ..utils.viz import show_frame class ExperimentVOT(object): r"""Experiment pipeline and evaluation toolkit for VOT dataset. Notes: - The tracking results of three types of experiments ``supervised`` ``unsupervised`` and ``realtime`` are compatible with the official VOT toolkit <https://github.com/votchallenge/vot-toolkit/>`. - TODO: The evaluation function for VOT tracking results is still under development. Args: root_dir (string): Root directory of VOT dataset where sequence folders exist. version (integer, optional): Specify the VOT dataset version. Specify as one of 2013~2018. Default is 2017. list_file (string, optional): If provided, only run experiments over sequences specified by the file. read_image (boolean, optional): If True, return the read PIL image in each frame. Otherwise only return the image path. Default is True. experiments (string or tuple): Specify the type(s) of experiments to run. Default is a tuple (``supervised``, ``unsupervised``, ``realtime``). result_dir (string, optional): Directory for storing tracking results. Default is ``./results``. report_dir (string, optional): Directory for storing performance evaluation results. Default is ``./reports``. """ def __init__(self, root_dir, version=2017, read_image=True, list_file=None, experiments=('supervised', 'unsupervised', 'realtime'), result_dir='results', report_dir='reports'): super(ExperimentVOT, self).__init__() if isinstance(experiments, str): experiments = (experiments,) assert all([e in ['supervised', 'unsupervised', 'realtime'] for e in experiments]) self.dataset = VOT( root_dir, version, anno_type='default', download=True, return_meta=True, list_file=list_file) self.experiments = experiments if version == 'LT2018': version = '-' + version self.read_image = read_image self.result_dir = os.path.join(result_dir, 'VOT' + str(version)) self.report_dir = os.path.join(report_dir, 'VOT' + str(version)) self.skip_initialize = 5 self.burnin = 10 self.repetitions = 15 self.sensitive = 100 self.nbins_eao = 1500 self.tags = ['camera_motion', 'illum_change', 'occlusion', 'size_change', 'motion_change', 'empty'] def run(self, tracker, visualize=False): print('Running tracker %s on %s...' % ( tracker.name, type(self.dataset).__name__)) # run all specified experiments if 'supervised' in self.experiments: self.run_supervised(tracker, visualize) if 'unsupervised' in self.experiments: self.run_unsupervised(tracker, visualize) if 'realtime' in self.experiments: self.run_realtime(tracker, visualize) def run_supervised(self, tracker, visualize=False): print('Running supervised experiment...') # loop over the complete dataset for s, (img_files, anno, _) in enumerate(self.dataset): seq_name = self.dataset.seq_names[s] print('--Sequence %d/%d: %s' % (s + 1, len(self.dataset), seq_name)) # rectangular bounding boxes anno_rects = anno.copy() if anno_rects.shape[1] == 8: anno_rects = self.dataset._corner2rect(anno_rects) # run multiple repetitions for each sequence for r in range(self.repetitions): # check if the tracker is deterministic if r > 0 and tracker.is_deterministic: break elif r == 3 and self._check_deterministic('baseline', tracker.name, seq_name): print(' Detected a deterministic tracker, ' + 'skipping remaining trials.') break print(' Repetition: %d' % (r + 1)) # skip if results exist record_file = os.path.join( self.result_dir, tracker.name, 'baseline', seq_name, '%s_%03d.txt' % (seq_name, r + 1)) if os.path.exists(record_file): print(' Found results, skipping', seq_name) continue # state variables boxes = [] times = [] failure = False next_start = -1 # tracking loop for f, img_file in enumerate(img_files): image = Image.open(img_file) if self.read_image: frame = image else: frame = img_file start_time = time.time() if f == 0: # initial frame tracker.init(frame, anno_rects[0]) boxes.append([1]) elif failure: # during failure frames if f == next_start: failure = False tracker.init(frame, anno_rects[f]) boxes.append([1]) else: start_time = np.NaN boxes.append([0]) else: # during success frames box = tracker.update(frame) iou = poly_iou(anno[f], box, bound=image.size) if iou <= 0.0: # tracking failure failure = True next_start = f + self.skip_initialize boxes.append([2]) else: # tracking succeed boxes.append(box) # store elapsed time times.append(time.time() - start_time) # visualize if required if visualize: if len(boxes[-1]) == 4: show_frame(image, boxes[-1]) else: show_frame(image) # record results self._record(record_file, boxes, times) def run_unsupervised(self, tracker, visualize=False): print('Running unsupervised experiment...') # loop over the complete dataset for s, (img_files, anno, _) in enumerate(self.dataset): seq_name = self.dataset.seq_names[s] print('--Sequence %d/%d: %s' % (s + 1, len(self.dataset), seq_name)) # skip if results exist record_file = os.path.join( self.result_dir, tracker.name, 'unsupervised', seq_name, '%s_001.txt' % seq_name) if os.path.exists(record_file): print(' Found results, skipping', seq_name) continue # rectangular bounding boxes anno_rects = anno.copy() if anno_rects.shape[1] == 8: anno_rects = self.dataset._corner2rect(anno_rects) # tracking loop boxes, times = tracker.track( img_files, anno_rects[0], visualize=visualize) assert len(boxes) == len(anno) # re-formatting boxes = list(boxes) boxes[0] = [1] # record results self._record(record_file, boxes, times) def run_realtime(self, tracker, visualize=False): print('Running real-time experiment...') # loop over the complete dataset for s, (img_files, anno, _) in enumerate(self.dataset): seq_name = self.dataset.seq_names[s] print('--Sequence %d/%d: %s' % (s + 1, len(self.dataset), seq_name)) # skip if results exist record_file = os.path.join( self.result_dir, tracker.name, 'realtime', seq_name, '%s_001.txt' % seq_name) if os.path.exists(record_file): print(' Found results, skipping', seq_name) continue # rectangular bounding boxes anno_rects = anno.copy() if anno_rects.shape[1] == 8: anno_rects = self.dataset._corner2rect(anno_rects) # state variables boxes = [] times = [] next_start = 0 failure = False failed_frame = -1 total_time = 0.0 grace = 3 - 1 offset = 0 # tracking loop for f, img_file in enumerate(img_files): image = Image.open(img_file) if self.read_image: frame = image else: frame = img_file start_time = time.time() if f == next_start: # during initial frames tracker.init(frame, anno_rects[f]) boxes.append([1]) # reset state variables failure = False failed_frame = -1 total_time = 0.0 grace = 3 - 1 offset = f elif not failure: # during success frames # calculate current frame if grace > 0: total_time += 1000.0 / 25 grace -= 1 else: total_time += max(1000.0 / 25, last_time * 1000.0) current = offset + int(np.round(np.floor(total_time * 25) / 1000.0)) # delayed/tracked bounding box if f < current: box = boxes[-1] elif f == current: box = tracker.update(frame) iou = poly_iou(anno[f], box, bound=image.size) if iou <= 0.0: # tracking failure failure = True failed_frame = f next_start = current + self.skip_initialize boxes.append([2]) else: # tracking succeed boxes.append(box) else: # during failure frames if f < current: # skipping frame due to slow speed boxes.append([0]) start_time = np.NaN elif f == current: # current frame box = tracker.update(frame) iou = poly_iou(anno[f], box, bound=image.size) if iou <= 0.0: # tracking failure boxes.append([2]) boxes[failed_frame] = [0] times[failed_frame] = np.NaN else: # tracking succeed boxes.append(box) elif f < next_start: # skipping frame due to failure boxes.append([0]) start_time = np.NaN # store elapsed time last_time = time.time() - start_time times.append(last_time) # visualize if required if visualize: if len(boxes[-1]) == 4: show_frame(image, boxes[-1]) else: show_frame(image) # record results self._record(record_file, boxes, times) def report(self, tracker_names): assert isinstance(tracker_names, (list, tuple)) # function for loading results def read_record(filename): with open(filename) as f: record = f.read().strip().split('\n') record = [[float(t) for t in line.split(',')] for line in record] return record # assume tracker_names[0] is your tracker report_dir = os.path.join(self.report_dir, tracker_names[0]) if not os.path.exists(report_dir): os.makedirs(report_dir) report_file = os.path.join(report_dir, 'performance.json') performance = {} for name in tracker_names: print('Evaluating', name) ious = {} ious_full = {} failures = {} times = {} masks = {} # frame masks for attribute tags for s, (img_files, anno, meta) in enumerate(self.dataset): seq_name = self.dataset.seq_names[s] # initialize frames scores frame_num = len(img_files) ious[seq_name] = np.full( (self.repetitions, frame_num), np.nan, dtype=float) ious_full[seq_name] = np.full( (self.repetitions, frame_num), np.nan, dtype=float) failures[seq_name] = np.full( (self.repetitions, frame_num), np.nan, dtype=float) times[seq_name] = np.full( (self.repetitions, frame_num), np.nan, dtype=float) # read results of all repetitions record_files = sorted(glob.glob(os.path.join( self.result_dir, name, 'baseline', seq_name, '%s_[0-9]*.txt' % seq_name))) boxes = [read_record(f) for f in record_files] assert all([len(b) == len(anno) for b in boxes]) # calculate frame ious with burnin bound = Image.open(img_files[0]).size seq_ious = [self._calc_iou(b, anno, bound, burnin=True) for b in boxes] ious[seq_name][:len(seq_ious), :] = seq_ious # calculate frame ious without burnin seq_ious_full = [self._calc_iou(b, anno, bound) for b in boxes] ious_full[seq_name][:len(seq_ious_full), :] = seq_ious_full # calculate frame failures seq_failures = [ [len(b) == 1 and b[0] == 2 for b in boxes_per_rep] for boxes_per_rep in boxes] failures[seq_name][:len(seq_failures), :] = seq_failures # collect frame runtimes time_file = os.path.join( self.result_dir, name, 'baseline', seq_name, '%s_time.txt' % seq_name) if os.path.exists(time_file): seq_times = np.loadtxt(time_file, delimiter=',').T times[seq_name][:len(seq_times), :] = seq_times # collect attribute masks tag_num = len(self.tags) masks[seq_name] = np.zeros((tag_num, frame_num), bool) for i, tag in enumerate(self.tags): if tag in meta: masks[seq_name][i, :] = meta[tag] # frames with no tags if 'empty' in self.tags: tag_frames = np.array([ v for k, v in meta.items() if not 'practical' in k], dtype=bool) ind = self.tags.index('empty') masks[seq_name][ind, :] = \ ~np.logical_or.reduce(tag_frames, axis=0) # concatenate frames seq_names = self.dataset.seq_names masks = np.concatenate( [masks[s] for s in seq_names], axis=1) ious = np.concatenate( [ious[s] for s in seq_names], axis=1) failures = np.concatenate( [failures[s] for s in seq_names], axis=1) with warnings.catch_warnings(): # average over repetitions warnings.simplefilter('ignore', category=RuntimeWarning) ious = np.nanmean(ious, axis=0) failures = np.nanmean(failures, axis=0) # calculate average overlaps and failures for each tag tag_ious = np.array( [np.nanmean(ious[m]) for m in masks]) tag_failures = np.array( [np.nansum(failures[m]) for m in masks]) tag_frames = masks.sum(axis=1) # remove nan values tag_ious[np.isnan(tag_ious)] = 0.0 tag_weights = tag_frames / tag_frames.sum() # calculate weighted accuracy and robustness accuracy = np.sum(tag_ious * tag_weights) robustness = np.sum(tag_failures * tag_weights) # calculate tracking speed times = np.concatenate([ t.reshape(-1) for t in times.values()]) # remove invalid values times = times[~np.isnan(times)] times = times[times > 0] if len(times) > 0: speed = np.mean(1. / times) else: speed = -1 performance.update({name: { 'accuracy': accuracy, 'robustness': robustness, 'speed_fps': speed}}) # save performance with open(report_file, 'w') as f: json.dump(performance, f, indent=4) print('Performance saved at', report_file) return performance def show(self, tracker_names, seq_names=None, play_speed=1, experiment='supervised'): if seq_names is None: seq_names = self.dataset.seq_names elif isinstance(seq_names, str): seq_names = [seq_names] assert isinstance(tracker_names, (list, tuple)) assert isinstance(seq_names, (list, tuple)) assert experiment in ['supervised', 'unsupervised', 'realtime'] play_speed = int(round(play_speed)) assert play_speed > 0 # "supervised" experiment results are stored in "baseline" folder if experiment == 'supervised': experiment = 'baseline' # function for loading results def read_record(filename): with open(filename) as f: record = f.read().strip().split('\n') record = [[float(t) for t in line.split(',')] for line in record] for i, r in enumerate(record): if len(r) == 4: record[i] = np.array(r) elif len(r) == 8: r = np.array(r)[np.newaxis, :] r = self.dataset._corner2rect(r) record[i] = r[0] else: record[i] = np.zeros(4) return record for s, seq_name in enumerate(seq_names): print('[%d/%d] Showing results on %s...' % ( s + 1, len(seq_names), seq_name)) # load all tracking results records = {} for name in tracker_names: record_file = os.path.join( self.result_dir, name, experiment, seq_name, '%s_001.txt' % seq_name) records[name] = read_record(record_file) # loop over the sequence and display results img_files, anno, _ = self.dataset[seq_name] if anno.shape[1] == 8: anno = self.dataset._corner2rect(anno) for f, img_file in enumerate(img_files): if not f % play_speed == 0: continue image = Image.open(img_file) boxes = [anno[f]] + [ records[name][f] for name in tracker_names] show_frame(image, boxes, legends=['GroundTruth'] + tracker_names, colors=['w', 'r', 'g', 'b', 'c', 'm', 'y', 'orange', 'purple', 'brown', 'pink']) def _record(self, record_file, boxes, times): # convert boxes to string lines = [] for box in boxes: if len(box) == 1: lines.append('%d' % box[0]) else: lines.append(str.join(',', ['%.4f' % t for t in box])) # record bounding boxes record_dir = os.path.dirname(record_file) if not os.path.isdir(record_dir): os.makedirs(record_dir) with open(record_file, 'w') as f: f.write(str.join('\n', lines)) print(' Results recorded at', record_file) # convert times to string lines = ['%.4f' % t for t in times] lines = [t.replace('nan', 'NaN') for t in lines] # record running times time_file = record_file[:record_file.rfind('_')] + '_time.txt' if os.path.exists(time_file): with open(time_file) as f: exist_lines = f.read().strip().split('\n') lines = [t + ',' + s for t, s in zip(exist_lines, lines)] with open(time_file, 'w') as f: f.write(str.join('\n', lines)) def _check_deterministic(self, exp, tracker_name, seq_name): record_dir = os.path.join( self.result_dir, tracker_name, exp, seq_name) record_files = sorted(glob.glob(os.path.join( record_dir, '%s_[0-9]*.txt' % seq_name))) if len(record_files) < 3: return False records = [] for record_file in record_files: with open(record_file, 'r') as f: records.append(f.read()) return len(set(records)) == 1 def _calc_iou(self, boxes, anno, bound, burnin=False): # skip initialization frames if burnin: boxes = boxes.copy() init_inds = [i for i, box in enumerate(boxes) if box == [1.0]] for ind in init_inds: boxes[ind:ind + self.burnin] = [[0]] * self.burnin # calculate polygon ious ious = np.array([poly_iou(np.array(a), b, bound) if len(a) > 1 else np.NaN for a, b in zip(boxes, anno)]) return ious
{ "repo_name": "got-10k/toolkit", "path": "got10k/experiments/vot.py", "copies": "1", "size": "22933", "license": "mit", "hash": -2196561216249271000, "line_mean": 39.0926573427, "line_max": 94, "alpha_frac": 0.4772162386, "autogenerated": false, "ratio": 4.434925546315993, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0015231623254177119, "num_lines": 572 }
from __future__ import absolute_import, division, print_function import time import os import construct import idna from tlsenum import hello_constructs from tlsenum.mappings import ( CipherSuites, ECCurves, ECPointFormat, TLSProtocolVersion ) class ClientHello(object): @property def protocol_version(self): return self._protocol_version @protocol_version.setter def protocol_version(self, protocol_version): assert protocol_version in ["3.0", "1.0", "1.1", "1.2"] self._protocol_version = protocol_version self._protocol_minor = TLSProtocolVersion.index(protocol_version) @property def cipher_suites(self): return self._cipher_suites @cipher_suites.setter def cipher_suites(self, cipher_suites): self._cipher_suites = cipher_suites @property def deflate(self): return self._deflate @deflate.setter def deflate(self, deflate): self._deflate = deflate if deflate: self._compression_method = [1, 0] else: self._compression_method = [0] @property def extensions(self): return self._extensions @extensions.setter def extensions(self, value): self._extensions = value def build(self): protocol_version = construct.Container( major=3, minor=self._protocol_minor ) random = construct.Container( gmt_unix_time=int(time.time()), random_bytes=os.urandom(28) ) session_id = construct.Container( length=0, session_id=b"" ) ciphers = construct.Container( length=len(self._cipher_suites) * 2, cipher_suites=self._get_bytes_from_cipher_suites( self._cipher_suites ) ) compression_method = construct.Container( length=len(self._compression_method), compression_methods=self._compression_method ) client_hello = construct.Container( version=protocol_version, random=random, session_id=session_id, cipher_suites=ciphers, compression_methods=compression_method, extensions_length=len(self._extensions), extensions_bytes=self._extensions ) handshake = construct.Container( handshake_type=1, length=len(hello_constructs.ClientHello.build(client_hello)), handshake_struct=client_hello ) return hello_constructs.TLSPlaintext.build( construct.Container( content_type=0x16, version=protocol_version, length=len(hello_constructs.Handshake.build(handshake)), content=handshake ) ) def _get_bytes_from_cipher_suites(self, cipher_suites): return [CipherSuites[i].value for i in cipher_suites] class Extensions(object): def __init__(self): self._ec_point_format = None self._ec_curves = None self._hostname = None @property def ec_point_format(self): return self._ec_point_format @ec_point_format.setter def ec_point_format(self, formats): self._ec_point_format = formats @property def ec_curves(self): return self._ec_curves @ec_curves.setter def ec_curves(self, curves): self._ec_curves = curves @property def sni(self): return self._hostname @sni.setter def sni(self, hostname): self._hostname = hostname def build(self): ret = b"" if self._ec_point_format is not None: ec_point_format_struct = construct.Container( ec_point_format_length=len(self._ec_point_format), ec_point_format=self._get_bytes_from_ec_point_format( self._ec_point_format ) ) ret += hello_constructs.Extension.build( construct.Container( extension_type=11, extension_length=len(hello_constructs.ECPointFormat.build( ec_point_format_struct )), extension_struct=ec_point_format_struct ) ) if self._ec_curves is not None: ec_curves_struct = construct.Container( ec_curves_length=len(self._ec_curves) * 2, named_curves=self._get_bytes_from_ec_curves( self._ec_curves ) ) ret += hello_constructs.Extension.build( construct.Container( extension_type=10, extension_length=len(hello_constructs.ECCurves.build( ec_curves_struct )), extension_struct=ec_curves_struct ) ) if self._hostname is not None: encoded_hostname = idna.encode(self._hostname) sni_struct = construct.Container( server_name_list_length=len(encoded_hostname) + 3, name_type=0, server_name_length=len(encoded_hostname), server_name=encoded_hostname ) ret += hello_constructs.Extension.build( construct.Container( extension_type=0, extension_length=len(hello_constructs.ServerName.build( sni_struct )), extension_struct=sni_struct ) ) return ret def _get_bytes_from_ec_point_format(self, ec_point_format): return [ECPointFormat[i].value for i in ec_point_format] def _get_bytes_from_ec_curves(self, ec_curves): return [ECCurves[i].value for i in ec_curves] class ServerHello(object): def __init__(self, protocol_version, cipher_suite, deflate): self._protocol_version = protocol_version self._cipher_suite = cipher_suite self._deflate = deflate @property def protocol_version(self): return self._protocol_version @property def cipher_suite(self): return self._cipher_suite @property def deflate(self): return self._deflate @classmethod def parse_server_hello(cls, data): server_hello = hello_constructs.TLSPlaintext.parse(data) if server_hello.content_type == 21: if server_hello.content.alert_description == 40: raise HandshakeFailure() elif server_hello.content.alert_description == 70: raise ProtocolVersionFailure() else: raise ValueError("Unknown TLS Alert, type {0}".format( server_hello.content.alert_description )) protocol_minor = server_hello.content.handshake_struct.version.minor protocol_version = TLSProtocolVersion[protocol_minor] cipher_suite = CipherSuites( server_hello.content.handshake_struct.cipher_suite ).name if server_hello.content.handshake_struct.compression_method == 1: deflate = True else: deflate = False return cls(protocol_version, cipher_suite, deflate) class HandshakeFailure(Exception): pass class ProtocolVersionFailure(Exception): pass def construct_sslv2_client_hello(): # pragma: no cover """ Returns a SSLv2 ClientHello message in bytes. This is a quick and dirty function to return a SSLv2 ClientHello with all 7 specified cipher suites. I don't really want to enumerate the supported SSLv2 cipher suites so this doesn't have to be flexible... This function does not require test coverage because I am simply returning bytes constructed from a fix list. """ return bytes([ 0x80, 0x2e, # Length of record 0x01, # Handshake Type (0x01 for ClientHello) 0x00, 0x02, # SSL Version Identifier (0x0002 for SSLv2) 0x00, 0x15, # Length of cipher suites list 0x00, 0x00, # Session ID Length 0x00, 0x10, # Challenge Length # Cipher suites list 0x01, 0x00, 0x80, 0x02, 0x00, 0x80, 0x03, 0x00, 0x80, 0x04, 0x00, 0x80, 0x05, 0x00, 0x80, 0x06, 0x00, 0x40, 0x07, 0x00, 0xc0, # Challenge 0x53, 0x43, 0x5b, 0x90, 0x9d, 0x9b, 0x72, 0x0b, 0xbc, 0x0c, 0xbc, 0x2b, 0x92, 0xa8, 0x48, 0x97, ])
{ "repo_name": "Ayrx/tlsenum", "path": "tlsenum/parse_hello.py", "copies": "1", "size": "8585", "license": "mit", "hash": -2468510031012426000, "line_mean": 28.6034482759, "line_max": 78, "alpha_frac": 0.5796156086, "autogenerated": false, "ratio": 4.1254204709274385, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5205036079527439, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import time from ..messages import PythonTask from ..queue import Queue from ..scheduler import QueueScheduler, Running from ..utils import timeout __all__ = ('Pool', 'Queue', 'AsyncResult') class AsyncResult(object): def __init__(self, task): self.task = task @property def status(self): return self.task.status def get(self, timeout=60): self.wait(timeout) if self.successful(): return self.status.data else: try: raise self.status.exception except TypeError: raise ValueError('Async result indicate task failed!') def wait(self, seconds=60): with timeout(seconds): while not self.ready(): time.sleep(0.1) def ready(self): return self.status.has_terminated() def successful(self): return self.status.has_succeeded() class Pool(Running): def __init__(self, processes=-1, *args, **kwargs): self.processes = processes self.scheduler = QueueScheduler() super(Pool, self).__init__(self.scheduler, *args, **kwargs) def close(self): self.stop() def terminate(self): self.stop() def wait(self, seconds=-1): self.scheduler.wait(seconds) def map(self, func, iterable, chunksize=1, **kwargs): results = self.map_async(func, iterable, chunksize, **kwargs) return [result.get(timeout=-1) for result in results] def map_async(self, func, iterable, chunksize=1, callback=None, **kwargs): return [self.apply_async(func, (item,), **kwargs) for item in iterable] def apply(self, func, args=[], kwds={}, **kwargs): result = self.apply_async(func=func, args=args, kwds=kwds, **kwargs) return result.get(timeout=-1) def apply_async(self, func, args=[], kwds={}, callback=None, **kwargs): task = PythonTask(name=kwargs.pop('name', 'multiprocessing'), fn=func, args=args, kwargs=kwds, **kwargs) self.scheduler.submit(task) return AsyncResult(task)
{ "repo_name": "lensacom/satyr", "path": "mentor/apis/multiprocessing.py", "copies": "1", "size": "2193", "license": "apache-2.0", "hash": 6843917770820009000, "line_mean": 27.4805194805, "line_max": 79, "alpha_frac": 0.6019151847, "autogenerated": false, "ratio": 4.0686456400742115, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5170560824774212, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import time from workflows.services.common_service import CommonService class UtilizationStatistics(object): '''Generate statistics about the percentage of time spent in different statuses over a fixed time slice. This class is not thread-safe.''' def __init__(self, summation_period=10): '''Reports will always cover the most recent period of summation_period seconds.''' self.period = summation_period self.status_history = [ {'start': 0, 'end': None, 'status': CommonService.SERVICE_STATUS_NEW} ] def update_status(self, new_status): '''Record a status change with a current timestamp.''' timestamp = time.time() self.status_history[-1]['end'] = timestamp self.status_history.append({'start': timestamp, 'end': None, 'status': new_status}) def report(self): '''Return a dictionary of different status codes and the percentage of time spent in each throughout the last summation_period seconds. Truncate the aggregated history appropriately.''' timestamp = time.time() cutoff = timestamp - self.period truncate = 0 summary = {} for event in self.status_history[:-1]: if event['end'] < cutoff: truncate = truncate + 1 continue summary[event['status']] = summary.get(event['status'], 0) + \ event['end'] - max(cutoff, event['start']) summary[self.status_history[-1]['status']] = \ summary.get(self.status_history[-1]['status'], 0) + \ timestamp - max(cutoff, self.status_history[-1]['start']) if truncate: self.status_history = self.status_history[truncate:] total_duration = sum(summary.values()) summary = { s: round(d / total_duration, 4) for s, d in summary.items() } return summary
{ "repo_name": "xia2/workflows", "path": "workflows/frontend/utilization.py", "copies": "1", "size": "1847", "license": "bsd-3-clause", "hash": 2080981114472612000, "line_mean": 40.9772727273, "line_max": 99, "alpha_frac": 0.6599891716, "autogenerated": false, "ratio": 4.095343680709535, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.006419930901490745, "num_lines": 44 }
from __future__ import absolute_import, division, print_function import time import appr.models.kv from appr.exception import ResourceNotFound, UnableToLockResource from appr.models.kv.filesystem import filesystem_client from appr.models.kv.models_index_base import ModelsIndexBase class ModelsIndexFilesystem(ModelsIndexBase): def _fetch_raw_data(self, path): path = appr.models.kv.APPR_KV_PREFIX + path datablob = filesystem_client.get(path) if datablob is None: raise ResourceNotFound("resource %s not found" % path, {"path": path}) package_data = datablob return package_data def _write_raw_data(self, key, data): path = appr.models.kv.APPR_KV_PREFIX + key filesystem_client.set(path, data) def _delete_data(self, key): path = appr.models.kv.APPR_KV_PREFIX + key return filesystem_client.delete(path) def _get_lock(self, lock_key, ttl=3, timeout=4): if timeout is not None: timeout_time = time.time() + timeout while True: if filesystem_client.lockttl(lock_key, ttl): return True else: if timeout is None or time.time() > timeout_time: raise UnableToLockResource("%s already locked" % lock_key, { "lock_key": lock_key, "ttl": ttl}) else: time.sleep(0.2) def _lock_key(self, key): return "%s%s.lock" % (appr.models.kv.APPR_KV_PREFIX, key) def _release_lock(self, lock_key): filesystem_client.delete(lock_key)
{ "repo_name": "app-registry/appr", "path": "appr/models/kv/filesystem/models_index.py", "copies": "2", "size": "1633", "license": "apache-2.0", "hash": 1575734404513044700, "line_mean": 34.5, "line_max": 82, "alpha_frac": 0.6099203919, "autogenerated": false, "ratio": 3.6862302483069977, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5296150640206997, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import time import appr.models.kv from appr.exception import ResourceNotFound, UnableToLockResource from appr.models.kv.models_index_base import ModelsIndexBase from appr.models.kv.redis import redis_client class ModelsIndexRedis(ModelsIndexBase): def _fetch_raw_data(self, path): path = appr.models.kv.APPR_KV_PREFIX + path datablob = redis_client.get(path) if datablob is None: raise ResourceNotFound("resource %s not found" % path, {"path": path}) package_data = datablob return package_data def _write_raw_data(self, key, data): path = appr.models.kv.APPR_KV_PREFIX + key redis_client.set(path, data) def _delete_data(self, key): path = appr.models.kv.APPR_KV_PREFIX + key return redis_client.delete(path) == 1 def _get_lock(self, lock_key, ttl=3, timeout=4): if timeout is not None: timeout_time = time.time() + timeout # 5 minutes from now while True: if redis_client.set(lock_key, 'locked', nx=True, ex=ttl): return True else: if timeout is None or time.time() > timeout_time: raise UnableToLockResource("%s already locked" % lock_key, { "lock_key": lock_key, "ttl": ttl}) else: time.sleep(0.2) def _lock_key(self, key): return "%s%s.lock" % (appr.models.kv.APPR_KV_PREFIX, key) def _release_lock(self, lock_key): redis_client.delete(lock_key)
{ "repo_name": "app-registry/appr", "path": "appr/models/kv/redis/models_index.py", "copies": "2", "size": "1638", "license": "apache-2.0", "hash": 6950786190620633000, "line_mean": 34.6086956522, "line_max": 82, "alpha_frac": 0.5995115995, "autogenerated": false, "ratio": 3.576419213973799, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5175930813473799, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import time import etcd import appr.models.kv from appr.exception import ResourceNotFound, UnableToLockResource from appr.models.kv.etcd import etcd_client from appr.models.kv.models_index_base import ModelsIndexBase class ModelsIndexEtcd(ModelsIndexBase): def _fetch_raw_data(self, path): path = appr.models.kv.APPR_KV_PREFIX + path try: data = etcd_client.read(path).value except etcd.EtcdKeyError as excp: raise ResourceNotFound(excp.message, {"path": path}) return data def _write_raw_data(self, key, data): path = appr.models.kv.APPR_KV_PREFIX + key etcd_client.write(path, data) def _delete_data(self, key): path = appr.models.kv.APPR_KV_PREFIX + key try: etcd_client.delete(path) except etcd.EtcdKeyError: pass def _get_lock(self, lock_key, ttl=3, timeout=4): if timeout is not None: timeout_time = time.time() + timeout # 5 minutes from now while True: try: etcd_client.write(lock_key, 'lock', prevExist=False, ttl=ttl) return True except etcd.EtcdAlreadyExist: if timeout is None or time.time() > timeout_time: raise UnableToLockResource("%s already locked" % lock_key, { "lock_key": lock_key, "ttl": ttl}) else: time.sleep(0.2) def _lock_key(self, key): return "%s%s.lock" % (appr.models.kv.APPR_KV_PREFIX, key) def _release_lock(self, lock_key): return self._delete_data(lock_key.replace(appr.models.kv.APPR_KV_PREFIX, ""))
{ "repo_name": "cn-app-registry/cnr-server", "path": "appr/models/kv/etcd/models_index.py", "copies": "2", "size": "1775", "license": "apache-2.0", "hash": 5426085283039726000, "line_mean": 33.1346153846, "line_max": 85, "alpha_frac": 0.5949295775, "autogenerated": false, "ratio": 3.514851485148515, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5109781062648514, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import time import numpy as np import tensorflow as tf import logging from tensorflow.contrib import layers, learn import gym from deep_rl.graphs import create_vpg_graph from deep_rl.trajectories import compute_vpg_advantage, sample_traj from deep_rl.misc import categorical_sample from six.moves import range flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string("name", "CartPole-v0", "Name of the environment to train/play") flags.DEFINE_float("gamma", 0.99, "Discount rate") flags.DEFINE_float("gae_lambda", 1, "Lambda for GAE") flags.DEFINE_float("learning_rate", 0.05, "Learning rate") flags.DEFINE_integer("batch_size", 2000, "Number of timesteps per batch") flags.DEFINE_bool("render", False, "Render environment during training") flags.DEFINE_integer("seed", 0, "Random seed") flags.DEFINE_string("outdir", "", "Prefix for monitoring, summary and checkpoint directories") flags.DEFINE_integer("save_model_interval", 120, "Interval to save model (seconds)") flags.DEFINE_integer("save_summaries_interval", 120, "Interval to save summaries (seconds)") def policy_model(input_shape, hidden_sizes, n_action): states = tf.placeholder("float", shape=input_shape) hiddens = learn.ops.dnn(states, hidden_sizes, activation=tf.nn.relu) return states, tf.nn.softmax(layers.fully_connected(hiddens, n_action)) def value_model(input_shape, hidden_sizes): states = tf.placeholder("float", shape=input_shape) hiddens = learn.ops.dnn(states, hidden_sizes, activation=tf.nn.relu) return states, layers.fully_connected(hiddens, 1) env = gym.make(FLAGS.name) np.random.seed(FLAGS.seed) tf.set_random_seed(FLAGS.seed) env.seed(FLAGS.seed) n_action = env.action_space.n input_shape = (None,) + env.observation_space.shape monitor_dir = FLAGS.outdir + '/monitor' logging.getLogger().setLevel(logging.DEBUG) env.monitor.start(monitor_dir, resume=True, video_callable=False) def main(unused_args): g = tf.Graph() config = tf.ConfigProto() config.gpu_options.allow_growth = True with g.as_default(), tf.device('/cpu:0'): pf_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) vf_opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) pf_model = lambda: policy_model(input_shape, [32], n_action) vf_model = lambda: value_model(input_shape, [32]) graph_ops = create_vpg_graph(n_action, pf_model, vf_model, pf_opt, vf_opt) sv = tf.train.Supervisor(g, logdir=FLAGS.outdir, save_model_secs=FLAGS.save_model_interval, save_summaries_secs=FLAGS.save_summaries_interval) with sv.managed_session(config=config) as sess: actions = graph_ops["actions"] advantages = graph_ops["advantages"] returns = graph_ops["returns"] pf_input = graph_ops["policy_input"] pf_train_op = graph_ops["policy_train_op"] pf_probs_op = graph_ops["probs"] vf_input = graph_ops["value_input"] vf_predict_op = graph_ops["value"] vf_train_op = graph_ops["value_train_op"] def pf_action(x): probs = sess.run(pf_probs_op, feed_dict={pf_input: x.reshape(1, -1)}) return categorical_sample(probs)[0] vf_predict = lambda x: sess.run(vf_predict_op, feed_dict={vf_input: x})[:, 0] total_steps = 0 while True: trajs = [] t0 = time.time() timesteps_count = 0 trajs_count = 0 while timesteps_count < FLAGS.batch_size: t = sample_traj(env, pf_action, max_traj_len=env.spec.timestep_limit) trajs.append(t) timesteps_count += len(t["actions"]) trajs_count += 1 compute_vpg_advantage(trajs, vf_predict, FLAGS.gamma, FLAGS.gae_lambda) all_states = np.concatenate([t["states"] for t in trajs]) all_acts = np.concatenate([t["actions"] for t in trajs]) all_rets = np.concatenate([t["returns"] for t in trajs]) all_advs = np.concatenate([t["advantages"] for t in trajs]) # train models sess.run(vf_train_op, feed_dict={vf_input: all_states, returns: all_rets}) sess.run(pf_train_op, feed_dict={pf_input: all_states, advantages: all_advs, actions: all_acts}) reward_sums = np.array([t["rewards_sum"] for t in trajs]) reward_mean = reward_sums.mean() reward_std = reward_sums.std() / np.sqrt(len(reward_sums)) total_steps += timesteps_count print("------------------------") print("Total timesteps {}".format(total_steps)) print("Number of timesteps {}".format(timesteps_count)) print("Trajectories sampled {}".format(trajs_count)) print("Max Reward = {:.2f}".format(np.max(reward_sums))) print("Average Reward = {:.2f} +- {:.2f}".format(reward_mean, reward_std)) print("Time taken = {:.2f}".format(time.time() - t0)) print("------------------------") # render after each iteration if FLAGS.render: sample_traj(env, pf_action, max_traj_len=env.spec.timestep_limit, render=True) if __name__ == "__main__": tf.app.run()
{ "repo_name": "domluna/deep_rl", "path": "examples/run_vpg.py", "copies": "1", "size": "5686", "license": "mit", "hash": -6370002256699466000, "line_mean": 39.9064748201, "line_max": 98, "alpha_frac": 0.5944424903, "autogenerated": false, "ratio": 3.630906768837803, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.971854927827051, "avg_score": 0.0013599961734586832, "num_lines": 139 }
from __future__ import absolute_import, division, print_function import time # TODO: change thrown errors to these from concurrent.futures import ALL_COMPLETED, CancelledError, TimeoutError from ..messages import PythonTask from ..scheduler import QueueScheduler, Running from ..utils import timeout as seconds __all__ = ('MesosPoolExecutor', 'Future') def wait(fs, timeout=None, return_when=ALL_COMPLETED): raise NotImplementedError() def as_completed(fs, timeout=None): raise NotImplementedError() class Future(object): def __init__(self, task): self.task = task @property def status(self): return self.task.status def cancel(self): raise NotImplementedError() def cancelled(self): return self.status.has_killed() def running(self): return (self.status.is_running() or self.status.is_starting() or self.status.is_staging()) def done(self): return self.status.has_killed() or self.status.has_finished() def result(self, timeout=None): with seconds(timeout): while not self.status.has_terminated(): time.sleep(0.1) if self.status.has_finished(): return self.status.data else: try: print(self.status.data) raise self.status.exception except TypeError: raise ValueError( 'Future result indicates that task failed!') def exception(self, timeout=None): with seconds(timeout): while not self.status.has_terminated(): time.sleep(0.1) if self.status.has_finished(): return None else: return self.status.exception def add_done_callback(self, fn): raise NotImplementedError() class MesosPoolExecutor(Running): def __init__(self, max_workers=-1, *args, **kwargs): self.max_worker = max_workers # TODO self.scheduler = QueueScheduler() super(MesosPoolExecutor, self).__init__( self.scheduler, *args, **kwargs) def submit(self, fn, args=[], kwargs={}, **kwds): task = PythonTask(fn=fn, args=args, kwargs=kwargs, name=kwds.pop('name', 'futures'), **kwds) self.scheduler.submit(task) return Future(task) def map(self, func, *iterables, **kwargs): timeout = kwargs.pop('timeout', None) chunksize = kwargs.pop('chunksize', 1) for item in zip(*iterables): future = self.submit(func, args=item, **kwargs) yield future.result(timeout=timeout) def shutdown(self, wait=True): if wait: self.scheduler.wait(-1) self.stop()
{ "repo_name": "lensacom/satyr", "path": "mentor/apis/futures.py", "copies": "1", "size": "2835", "license": "apache-2.0", "hash": -7902067813243300000, "line_mean": 27.9285714286, "line_max": 74, "alpha_frac": 0.5873015873, "autogenerated": false, "ratio": 4.288956127080182, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5376257714380182, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import toolz from datashape import Record, DataShape, dshape from datashape import coretypes as ct import datashape from numpy import inf from .core import common_subexpression from .expressions import Expr, ndim class Reduction(Expr): """ A column-wise reduction Blaze supports the same class of reductions as NumPy and Pandas. sum, min, max, any, all, mean, var, std, count, nunique Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> e = t['amount'].sum() >>> data = [['Alice', 100, 1], ... ['Bob', 200, 2], ... ['Alice', 50, 3]] >>> from blaze.compute.python import compute >>> compute(e, data) 350 """ __slots__ = '_hash', '_child', 'axis', 'keepdims' def __init__(self, _child, axis=None, keepdims=False): self._child = _child if axis is None: axis = tuple(range(_child.ndim)) if isinstance(axis, (set, list)): axis = tuple(axis) if not isinstance(axis, tuple): axis = (axis,) axis = tuple(sorted(axis)) self.axis = axis self.keepdims = keepdims @property def dshape(self): axis = self.axis if self.keepdims: shape = tuple(1 if i in axis else d for i, d in enumerate(self._child.shape)) else: shape = tuple(d for i, d in enumerate(self._child.shape) if i not in axis) return DataShape(*(shape + (self.schema,))) @property def schema(self): schema = self._child.schema[0] if isinstance(schema, Record) and len(schema.types) == 1: result = toolz.first(schema.types) else: result = schema return DataShape(result) @property def symbol(self): return type(self).__name__ @property def _name(self): try: return self._child._name + '_' + type(self).__name__ except (AttributeError, ValueError, TypeError): return type(self).__name__ def __str__(self): kwargs = list() if self.keepdims: kwargs.append('keepdims=True') if self.axis != tuple(range(self._child.ndim)): kwargs.append('axis=' + str(self.axis)) other = sorted(set(self.__slots__[1:]) - set(['_child', 'axis', 'keepdims'])) for slot in other: kwargs.append('%s=%s' % (slot, getattr(self, slot))) name = type(self).__name__ if kwargs: return '%s(%s, %s)' % (name, self._child, ', '.join(kwargs)) else: return '%s(%s)' % (name, self._child) class any(Reduction): schema = dshape(ct.bool_) class all(Reduction): schema = dshape(ct.bool_) class sum(Reduction): @property def schema(self): return DataShape(datashape.maxtype(super(sum, self).schema)) class max(Reduction): pass class min(Reduction): pass class mean(Reduction): schema = dshape(ct.real) class var(Reduction): """Variance Parameters ---------- child : Expr An expression unbiased : bool, optional Compute an unbiased estimate of the population variance if this is ``True``. In NumPy and pandas, this parameter is called ``ddof`` (delta degrees of freedom) and is equal to 1 for unbiased and 0 for biased. """ __slots__ = '_hash', '_child', 'unbiased', 'axis', 'keepdims' schema = dshape(ct.real) def __init__(self, child, unbiased=False, *args, **kwargs): self.unbiased = unbiased super(var, self).__init__(child, *args, **kwargs) class std(Reduction): """Standard Deviation Parameters ---------- child : Expr An expression unbiased : bool, optional Compute the square root of an unbiased estimate of the population variance if this is ``True``. .. warning:: This does *not* return an unbiased estimate of the population standard deviation. See Also -------- var """ __slots__ = '_hash', '_child', 'unbiased', 'axis', 'keepdims' schema = dshape(ct.real) def __init__(self, child, unbiased=False, *args, **kwargs): self.unbiased = unbiased super(std, self).__init__(child, *args, **kwargs) class count(Reduction): """ The number of non-null elements """ schema = dshape(ct.int32) class nunique(Reduction): schema = dshape(ct.int32) class nelements(Reduction): """Compute the number of elements in a collection, including missing values. See Also --------- blaze.expr.reductions.count: compute the number of non-null elements Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: float64}') >>> t[t.amount < 1].nelements() nelements(t[t.amount < 1]) """ schema = dshape(ct.int32) def nrows(expr): return nelements(expr, axis=(0,)) class Summary(Expr): """ A collection of named reductions Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> expr = summary(number=t.id.nunique(), sum=t.amount.sum()) >>> data = [['Alice', 100, 1], ... ['Bob', 200, 2], ... ['Alice', 50, 1]] >>> from blaze import compute >>> compute(expr, data) (2, 350) """ __slots__ = '_hash', '_child', 'names', 'values', 'axis', 'keepdims' def __init__(self, _child, names, values, axis=None, keepdims=False): self._child = _child self.names = names self.values = values self.keepdims = keepdims self.axis = axis @property def dshape(self): axis = self.axis if self.keepdims: shape = tuple(1 if i in axis else d for i, d in enumerate(self._child.shape)) else: shape = tuple(d for i, d in enumerate(self._child.shape) if i not in axis) measure = Record(list(zip(self.names, [v.schema for v in self.values]))) return DataShape(*(shape + (measure,))) def __str__(self): s = 'summary(' s += ', '.join('%s=%s' % (name, str(val)) for name, val in zip(self.fields, self.values)) if self.keepdims: s += ', keepdims=True' s += ')' return s def summary(keepdims=False, axis=None, **kwargs): items = sorted(kwargs.items(), key=toolz.first) names = tuple(map(toolz.first, items)) values = tuple(map(toolz.second, items)) child = common_subexpression(*values) if len(kwargs) == 1 and not iscollection(child.dshape): while not iscollection(child.dshape): children = [i for i in child._inputs if isinstance(i, Expr)] if len(children) == 1: child = children[0] else: child = common_subexpression(*children) if axis is None: axis = tuple(range(ndim(child))) if isinstance(axis, (set, list)): axis = tuple(axis) if not isinstance(axis, tuple): axis = (axis,) return Summary(child, names, values, keepdims=keepdims, axis=axis) summary.__doc__ = Summary.__doc__ def vnorm(expr, ord=None, axis=None, keepdims=False): """ Vector norm See np.linalg.norm """ if ord is None or ord == 'fro': ord = 2 if ord == inf: return max(abs(expr), axis=axis, keepdims=keepdims) elif ord == -inf: return min(abs(expr), axis=axis, keepdims=keepdims) elif ord == 1: return sum(abs(expr), axis=axis, keepdims=keepdims) elif ord % 2 == 0: return sum(expr**ord, axis=axis, keepdims=keepdims)**(1./ord) else: return sum(abs(expr)**ord, axis=axis, keepdims=keepdims)**(1./ord) from datashape.predicates import iscollection, isboolean, isnumeric from .expressions import dshape_method_list, method_properties dshape_method_list.extend([ (iscollection, set([count, min, max, nelements])), (lambda ds: len(ds.shape) == 1, set([nrows, nunique])), (lambda ds: iscollection(ds) and isboolean(ds), set([any, all, sum])), (lambda ds: iscollection(ds) and isnumeric(ds), set([mean, sum, mean, min, max, std, var, vnorm])), ]) method_properties.update([nrows])
{ "repo_name": "mrocklin/blaze", "path": "blaze/expr/reductions.py", "copies": "1", "size": "8630", "license": "bsd-3-clause", "hash": -6729876540808689000, "line_mean": 26.6602564103, "line_max": 85, "alpha_frac": 0.5609501738, "autogenerated": false, "ratio": 3.7685589519650655, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4829509125765065, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import toolz from toolz import first import datashape from datashape import Record, dshape, DataShape from datashape import coretypes as ct from datashape.predicates import isscalar, iscollection from .core import common_subexpression from .expressions import Expr, Symbol class Reduction(Expr): """ A column-wise reduction Blaze supports the same class of reductions as NumPy and Pandas. sum, min, max, any, all, mean, var, std, count, nunique Examples -------- >>> t = Symbol('t', 'var * {name: string, amount: int, id: int}') >>> e = t['amount'].sum() >>> data = [['Alice', 100, 1], ... ['Bob', 200, 2], ... ['Alice', 50, 3]] >>> from blaze.compute.python import compute >>> compute(e, data) 350 """ __slots__ = '_child', 'axis', 'keepdims' _dtype = None def __init__(self, _child, axis=None, keepdims=False): self._child = _child if axis is None: axis = tuple(range(_child.ndim)) if isinstance(axis, (set, list)): axis = tuple(axis) if not isinstance(axis, tuple): axis = (axis,) axis = tuple(sorted(axis)) self.axis = axis self.keepdims = keepdims @property def dshape(self): axis = self.axis if self.keepdims: shape = tuple(1 if i in self.axis else d for i, d in enumerate(self._child.shape)) else: shape = tuple(d for i, d in enumerate(self._child.shape) if i not in self.axis) return DataShape(*(shape + (self._dtype,))) @property def symbol(self): return type(self).__name__ @property def _name(self): try: return self._child._name + '_' + type(self).__name__ except (AttributeError, ValueError, TypeError): return type(self).__name__ class any(Reduction): _dtype = ct.bool_ class all(Reduction): _dtype = ct.bool_ class sum(Reduction): @property def _dtype(self): schema = self._child.schema[0] if isinstance(schema, Record) and len(schema.types) == 1: return first(schema.types) else: return schema class max(Reduction): @property def _dtype(self): schema = self._child.schema[0] if isinstance(schema, Record) and len(schema.types) == 1: return first(schema.types) else: return schema class min(Reduction): @property def _dtype(self): schema = self._child.schema[0] if isinstance(schema, Record) and len(schema.types) == 1: return first(schema.types) else: return schema class mean(Reduction): _dtype = ct.real class var(Reduction): """Variance Parameters ---------- child : Expr An expression unbiased : bool, optional Compute an unbiased estimate of the population variance if this is ``True``. In NumPy and pandas, this parameter is called ``ddof`` (delta degrees of freedom) and is equal to 1 for unbiased and 0 for biased. """ __slots__ = '_child', 'unbiased', 'axis', 'keepdims' _dtype = ct.real def __init__(self, child, unbiased=False, *args, **kwargs): self.unbiased = unbiased Reduction.__init__(self, child, *args, **kwargs) class std(Reduction): """Standard Deviation Parameters ---------- child : Expr An expression unbiased : bool, optional Compute the square root of an unbiased estimate of the population variance if this is ``True``. .. warning:: This does *not* return an unbiased estimate of the population standard deviation. See Also -------- var """ __slots__ = '_child', 'unbiased', 'axis', 'keepdims' _dtype = ct.real def __init__(self, child, unbiased=False, *args, **kwargs): self.unbiased = unbiased Reduction.__init__(self, child, *args, **kwargs) class count(Reduction): """ The number of non-null elements """ _dtype = ct.int_ class nunique(Reduction): _dtype = ct.int_ class Summary(Expr): """ A collection of named reductions Examples -------- >>> t = Symbol('t', 'var * {name: string, amount: int, id: int}') >>> expr = summary(number=t.id.nunique(), sum=t.amount.sum()) >>> data = [['Alice', 100, 1], ... ['Bob', 200, 2], ... ['Alice', 50, 1]] >>> from blaze.compute.python import compute >>> compute(expr, data) (2, 350) """ __slots__ = '_child', 'names', 'values', 'keepdims' def __init__(self, _child, names, values, keepdims=False): self._child = _child self.names = names self.values = values self.keepdims = keepdims @property def dshape(self): measure = Record(list(zip(self.names, [v._dtype for v in self.values]))) if self.keepdims: return DataShape(*((1,) * self._child.ndim + (measure,))) else: return DataShape(measure) def __str__(self): return 'summary(' + ', '.join('%s=%s' % (name, str(val)) for name, val in zip(self.fields, self.values)) + \ ', keepdims=%s' % self.keepdims + ')' def summary(keepdims=False, **kwargs): items = sorted(kwargs.items(), key=first) names = tuple(map(first, items)) values = tuple(map(toolz.second, items)) child = common_subexpression(*values) if len(kwargs) == 1 and not iscollection(child.dshape): while not iscollection(child.dshape): children = [i for i in child._inputs if isinstance(i, Expr)] if len(children) == 1: child = children[0] else: raise ValueError() return Summary(child, names, values, keepdims=keepdims) summary.__doc__ = Summary.__doc__ from datashape.predicates import (iscollection, isscalar, isrecord, isboolean, isnumeric) from .expressions import schema_method_list, dshape_method_list schema_method_list.extend([ (isboolean, set([any, all, sum])), (isnumeric, set([mean, sum, mean, min, max, std, var])), ]) dshape_method_list.extend([ (iscollection, set([count, nunique, min, max])), ])
{ "repo_name": "vitan/blaze", "path": "blaze/expr/reductions.py", "copies": "1", "size": "6478", "license": "bsd-3-clause", "hash": 493355932014252000, "line_mean": 26.1046025105, "line_max": 79, "alpha_frac": 0.5663785119, "autogenerated": false, "ratio": 3.8513674197384065, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.990927661750133, "avg_score": 0.0016938628274152376, "num_lines": 239 }
from __future__ import absolute_import, division, print_function import toolz from toolz import pipe import itertools from datashape import discover, Unit, Tuple, Record, iscollection, isscalar import sqlalchemy as sa from ..data.sql import dshape_to_alchemy from ..dispatch import dispatch from ..expr import * from .utils import literalquery __all__ = [] try: import pyspark from pyspark.sql import SchemaRDD except ImportError: SchemaRDD = type(None) names = ('_table_%d' % i for i in itertools.count(1)) __all__ = [] class SparkSQLQuery(object): """ Pair of PySpark SQLContext and SQLAlchemy Table Python's SparkSQL interface only accepts strings. We use SQLAlchemy to generate these strings. To do this we'll have to pass around pairs of (SQLContext, sqlalchemy.Selectable). Additionally we track a mapping of {schemardd: sqlalchemy.Table} Parameters ---------- context: pyspark.sql.SQLContext query: sqlalchemy.Selectable mapping: dict :: {pyspark.sql.SchemaRDD: sqlalchemy.Table} """ __slots__ = 'context', 'query', 'mapping' def __init__(self, context, query, mapping): self.context = context self.query = query self.mapping = mapping def make_query(rdd, primary_key='', name=None): # SparkSQL name = name or next(names) context = rdd.sql_ctx context.registerRDDAsTable(rdd, name) # SQLAlchemy schema = discover(rdd).subshape[0] columns = dshape_to_alchemy(schema) for column in columns: if column.name == primary_key: column.primary_key = True metadata = sa.MetaData() # TODO: sync this between many tables query = sa.Table(name, metadata, *columns) mapping = {rdd: query} return SparkSQLQuery(context, query, mapping) @dispatch(Symbol, SchemaRDD) def compute_up(ts, rdd, **kwargs): return make_query(rdd) @dispatch((var, Label, std, Sort, count, nunique, Selection, mean, Head, ReLabel, Distinct, ElemWise, By, any, all, sum, max, min, Reduction, Projection, Field), SchemaRDD) def compute_up(e, rdd, **kwargs): return compute_up(e, make_query(rdd), **kwargs) @dispatch((BinOp, Join), (SparkSQLQuery, SchemaRDD), (SparkSQLQuery, SchemaRDD)) def compute_up(e, a, b, **kwargs): if not isinstance(a, SparkSQLQuery): a = make_query(a) if not isinstance(b, SparkSQLQuery): b = make_query(b) return compute_up(e, a, b, **kwargs) @dispatch((UnaryOp, Expr), SparkSQLQuery) def compute_up(expr, q, **kwargs): scope = kwargs.pop('scope', dict()) scope = dict((t, q.mapping.get(data, data)) for t, data in scope.items()) q2 = compute_up(expr, q.query, scope=scope, **kwargs) return SparkSQLQuery(q.context, q2, q.mapping) @dispatch((BinOp, Join, Expr), SparkSQLQuery, SparkSQLQuery) def compute_up(expr, a, b, **kwargs): assert a.context == b.context mapping = toolz.merge(a.mapping, b.mapping) scope = kwargs.pop('scope', dict()) scope = dict((t, mapping.get(data, data)) for t, data in scope.items()) c = compute_up(expr, a.query, b.query, scope=scope, **kwargs) return SparkSQLQuery(a.context, c, mapping) from .sql import select def sql_string(query): return pipe(query, select, literalquery, str) @dispatch(Expr, SparkSQLQuery, dict) def post_compute(expr, query, d): result = query.context.sql(sql_string(query.query)) if iscollection(expr.dshape) and isscalar(expr.dshape.measure): result = result.map(lambda x: x[0]) return result @dispatch(Head, SparkSQLQuery, dict) def post_compute(expr, query, d): result = query.context.sql(sql_string(query.query)) if iscollection(expr.dshape) and isscalar(expr.dshape.measure): result = result.map(lambda x: x[0]) return result.collect()
{ "repo_name": "vitan/blaze", "path": "blaze/compute/sparksql.py", "copies": "1", "size": "3846", "license": "bsd-3-clause", "hash": 546851966662616000, "line_mean": 27.4888888889, "line_max": 77, "alpha_frac": 0.6703068123, "autogenerated": false, "ratio": 3.464864864864865, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4635171677164865, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import toolz import datashape import functools from toolz import concat, memoize, partial import re from datashape import dshape, DataShape, Record, Var, Mono from datashape.predicates import isscalar, iscollection, isboolean, isrecord from ..compatibility import _strtypes, builtins from .core import * from .method_dispatch import select_functions from ..dispatch import dispatch __all__ = ['Expr', 'ElemWise', 'Field', 'Symbol', 'discover', 'Projection', 'projection', 'Selection', 'selection', 'Label', 'label', 'Map', 'ReLabel', 'relabel', 'Apply', 'Slice', 'shape', 'ndim'] def isvalid_identifier(s): """ >>> isvalid_identifier('Hello') True >>> isvalid_identifier('Hello world') False >>> isvalid_identifier('Helloworld!') False """ return not not re.match('^\w+$', s) class Expr(Node): """ Symbolic expression of a computation All Blaze expressions (Join, By, Sort, ...) descend from this class. It contains shared logic and syntax. It in turn inherits from ``Node`` which holds all tree traversal logic """ def _get_field(self, fieldname): if not isinstance(self.dshape.measure, Record): if fieldname == self._name: return self raise ValueError("Can not get field '%s' of non-record expression %s" % (fieldname, self)) return Field(self, fieldname) def __getitem__(self, key): if isinstance(key, _strtypes) and key in self.fields: return self._get_field(key) elif isinstance(key, Expr) and iscollection(key.dshape): return selection(self, key) elif (isinstance(key, list) and builtins.all(isinstance(k, _strtypes) for k in key)): if set(key).issubset(self.fields): return self._project(key) else: raise ValueError('Names %s not consistent with known names %s' % (key, self.fields)) elif (isinstance(key, tuple) and all(isinstance(k, (int, slice)) for k in key)): return Slice(self, key) elif isinstance(key, (slice, int)): return Slice(self, (key,)) raise ValueError("Not understood %s[%s]" % (self, key)) def map(self, func, schema=None, name=None): return Map(self, func, schema, name) def _project(self, key): return projection(self, key) @property def schema(self): return datashape.dshape(self.dshape.measure) @property def fields(self): if isinstance(self.dshape.measure, Record): return self.dshape.measure.names if hasattr(self, '_name'): return [self._name] def _len(self): try: return int(self.dshape[0]) except TypeError: raise ValueError('Can not determine length of table with the ' 'following datashape: %s' % self.dshape) def __len__(self): # pragma: no cover return self._len() def __dir__(self): result = dir(type(self)) if isrecord(self.dshape.measure) and self.fields: result.extend(list(self.fields)) d = toolz.merge(schema_methods(self.dshape.measure), dshape_methods(self.dshape)) result.extend(list(d)) return sorted(set(filter(isvalid_identifier, result))) def __getattr__(self, key): try: return object.__getattribute__(self, key) except AttributeError: if self.fields and key in self.fields: if isscalar(self.dshape.measure): # t.foo.foo is t.foo return self else: return self[key] d = toolz.merge(schema_methods(self.dshape.measure), dshape_methods(self.dshape)) if key in d: func = d[key] if func in method_properties: return func(self) else: return functools.update_wrapper(partial(func, self), func) else: raise @property def _name(self): pass class Symbol(Expr): """ Symbolic data. The leaf of a Blaze expression Example ------- >>> points = Symbol('points', '5 * 3 * {x: int, y: int}') """ __slots__ = '_name', 'dshape' __inputs__ = () def __init__(self, name, dshape): self._name = name if isinstance(dshape, _strtypes): dshape = datashape.dshape(dshape) if isinstance(dshape, Mono) and not isinstance(dshape, DataShape): dshape = DataShape(dshape) self.dshape = dshape def __str__(self): return self._name def _resources(self): return dict() class ElemWise(Expr): """ Elementwise operation. The shape of this expression matches the shape of the child. """ @property def dshape(self): return datashape.DataShape(*(self._child.dshape.shape + tuple(self.schema))) class Field(ElemWise): """ A single field from an expression Get a single field from an expression with record-type schema. Collapses that record. We store the name of the field in the ``_name`` attribute. SELECT a FROM table >>> points = Symbol('points', '5 * 3 * {x: int32, y: int32}') >>> points.x.dshape dshape("5 * 3 * int32") """ __slots__ = '_child', '_name' def __str__(self): if re.match('^\w+$', self._name): return '%s.%s' % (self._child, self._name) else: return "%s['%s']" % (self._child, self._name) @property def _expr(self): return Symbol(self._name, datashape.DataShape(self.dshape.measure)) @property def dshape(self): shape = self._child.dshape.shape schema = self._child.dshape.measure.dict[self._name] shape = shape + schema.shape schema = (schema.measure,) return DataShape(*(shape + schema)) class Projection(ElemWise): """ Select fields from data SELECT a, b, c FROM table Examples -------- >>> accounts = Symbol('accounts', ... 'var * {name: string, amount: int, id: int}') >>> accounts[['name', 'amount']].schema dshape("{ name : string, amount : int32 }") See Also -------- blaze.expr.expressions.Field """ __slots__ = '_child', '_fields' @property def fields(self): return list(self._fields) @property def schema(self): d = self._child.schema[0].dict return DataShape(Record([(name, d[name]) for name in self.fields])) def __str__(self): return '%s[[%s]]' % (self._child, ', '.join(["'%s'" % name for name in self.fields])) def _project(self, key): if isinstance(key, list) and set(key).issubset(set(self.fields)): return self._child[key] raise ValueError("Column Mismatch: %s" % key) def _get_field(self, fieldname): if fieldname in self.fields: return Field(self._child, fieldname) raise ValueError("Field %s not found in columns %s" % (fieldname, self.fields)) def projection(expr, names): if not isinstance(names, (tuple, list)): raise TypeError("Wanted list of strings, got %s" % names) if not set(names).issubset(expr.fields): raise ValueError("Mismatched names. Asking for names %s " "where expression has names %s" % (names, expr.fields)) return Projection(expr, tuple(names)) projection.__doc__ = Projection.__doc__ from .utils import hashable_index, replace_slices class Slice(Expr): __slots__ = '_child', '_index' def __init__(self, child, index): self._child = child self._index = hashable_index(index) hash(self) @property def dshape(self): return self._child.dshape.subshape[self.index] @property def index(self): return replace_slices(self._index) def __str__(self): if isinstance(self.index, tuple): return '%s[%s]' % (self._child, ', '.join(map(str, self._index))) else: return '%s[%s]' % (self._child, self._index) class Selection(Expr): """ Filter elements of expression based on predicate Examples -------- >>> accounts = Symbol('accounts', ... 'var * {name: string, amount: int, id: int}') >>> deadbeats = accounts[accounts.amount < 0] """ __slots__ = '_child', 'predicate' def __str__(self): return "%s[%s]" % (self._child, self.predicate) @property def dshape(self): shape = list(self._child.dshape.shape) shape[0] = Var() return DataShape(*(shape + [self._child.dshape.measure])) def selection(table, predicate): subexpr = common_subexpression(table, predicate) if not builtins.all(isinstance(node, (ElemWise, Symbol)) or node.isidentical(subexpr) for node in concat([path(predicate, subexpr), path(table, subexpr)])): raise ValueError("Selection not properly matched with table:\n" "child: %s\n" "apply: %s\n" "predicate: %s" % (subexpr, table, predicate)) if not isboolean(predicate.dshape): raise TypeError("Must select over a boolean predicate. Got:\n" "%s[%s]" % (table, predicate)) return table._subs({subexpr: Selection(subexpr, predicate)}) selection.__doc__ = Selection.__doc__ class Label(ElemWise): """ A Labeled expresion Examples -------- >>> accounts = Symbol('accounts', 'var * {name: string, amount: int}') >>> (accounts.amount * 100)._name 'amount' >>> (accounts.amount * 100).label('new_amount')._name 'new_amount' See Also -------- blaze.expr.expressions.ReLabel """ __slots__ = '_child', 'label' @property def schema(self): return self._child.schema @property def _name(self): return self.label def _get_field(self, key): if key[0] == self.fields[0]: return self else: raise ValueError("Column Mismatch: %s" % key) def label(expr, lab): if expr._name == lab: return expr return Label(expr, lab) label.__doc__ = Label.__doc__ class ReLabel(ElemWise): """ Table with same content but with new labels Examples -------- >>> accounts = Symbol('accounts', 'var * {name: string, amount: int}') >>> accounts.schema dshape("{ name : string, amount : int32 }") >>> accounts.relabel(amount='balance').schema dshape("{ name : string, balance : int32 }") See Also -------- blaze.expr.expressions.Label """ __slots__ = '_child', 'labels' @property def schema(self): subs = dict(self.labels) d = self._child.dshape.measure.dict return DataShape(Record([[subs.get(name, name), dtype] for name, dtype in self._child.dshape.measure.parameters[0]])) def __str__(self): return '%s.relabel(%s)' % (self._child, ', '.join('%s="%s"' % l for l in self.labels)) def relabel(child, labels=None, **kwargs): labels = labels or dict() labels = toolz.merge(labels, kwargs) if isinstance(labels, dict): # Turn dict into tuples labels = tuple(sorted(labels.items())) if isscalar(child.dshape.measure): if child._name == labels[0][0]: return child.label(labels[0][1]) else: return child return ReLabel(child, labels) relabel.__doc__ = ReLabel.__doc__ class Map(ElemWise): """ Map an arbitrary Python function across elements in a collection Examples -------- >>> from datetime import datetime >>> t = Symbol('t', 'var * {price: real, time: int64}') # times as integers >>> datetimes = t.time.map(datetime.utcfromtimestamp) Optionally provide extra schema information >>> datetimes = t.time.map(datetime.utcfromtimestamp, ... schema='{time: datetime}') See Also -------- blaze.expr.expresions.Apply """ __slots__ = '_child', 'func', '_schema', '_name0' @property def schema(self): if self._schema: return dshape(self._schema) else: raise NotImplementedError("Schema of mapped column not known.\n" "Please specify datashape keyword in .map method.\n" "Example: t.columnname.map(function, 'int64')") def label(self, name): assert isscalar(self.dshape.measure) return Map(self._child, self.func, self.schema, name) @property def shape(self): return self._child.shape @property def ndim(self): return self._child.ndim @property def _name(self): if self._name0: return self._name0 else: return self._child._name class Apply(Expr): """ Apply an arbitrary Python function onto an expression Examples -------- >>> t = Symbol('t', 'var * {name: string, amount: int}') >>> h = Apply(t, hash) # Hash value of resultant table Optionally provide extra datashape information >>> h = Apply(t, hash, dshape='real') Apply brings a function within the expression tree. The following transformation is often valid Before ``compute(Apply(expr, f), ...)`` After ``f(compute(expr, ...)`` See Also -------- blaze.expr.expressions.Map """ __slots__ = '_child', 'func', '_dshape' def __init__(self, child, func, dshape=None): self._child = child self.func = func self._dshape = dshape @property def schema(self): if iscollection(self.dshape): return self.dshape.subshape[0] else: raise TypeError("Non-tabular datashape, %s" % self.dshape) @property def dshape(self): if self._dshape: return dshape(self._dshape) else: raise NotImplementedError("Datashape of arbitrary Apply not defined") dshape_method_list = list() schema_method_list = list() method_properties = set() dshape_methods = memoize(partial(select_functions, dshape_method_list)) schema_methods = memoize(partial(select_functions, schema_method_list)) def shape(expr): """ Shape of expression >>> Symbol('s', '3 * 5 * int32').shape (3, 5) Works on anything discoverable >>> shape([[1, 2], [3, 4]]) (2, 2) """ s = list(discover(expr).shape) for i, elem in enumerate(s): try: s[i] = int(elem) except TypeError: pass return tuple(s) def ndim(expr): """ Number of dimensions of expression >>> Symbol('s', '3 * var * int32').ndim 2 """ return len(shape(expr)) dshape_method_list.extend([ (iscollection, set([shape, ndim])), ]) schema_method_list.extend([ (isscalar, set([label, relabel])), (isrecord, set([relabel])), ]) method_properties.update([shape, ndim]) @dispatch(Expr) def discover(expr): return expr.dshape
{ "repo_name": "vitan/blaze", "path": "blaze/expr/expressions.py", "copies": "1", "size": "15494", "license": "bsd-3-clause", "hash": 2752361088076144600, "line_mean": 25.9460869565, "line_max": 81, "alpha_frac": 0.5669291339, "autogenerated": false, "ratio": 3.911638475132542, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4978567609032542, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import toolz import datashape import functools import keyword import numpy as np from toolz import concat, memoize, partial from toolz.curried import map, filter import re from datashape import dshape, DataShape, Record, Var, Mono, Fixed from datashape.predicates import isscalar, iscollection, isboolean, isrecord from ..compatibility import _strtypes, builtins from .core import Node, subs, common_subexpression, path from .method_dispatch import select_functions from ..dispatch import dispatch __all__ = ['Expr', 'ElemWise', 'Field', 'Symbol', 'discover', 'Projection', 'projection', 'Selection', 'selection', 'Label', 'label', 'Map', 'ReLabel', 'relabel', 'Apply', 'Slice', 'shape', 'ndim', 'label', 'symbol'] _attr_cache = dict() def isvalid_identifier(s, regex=re.compile('^[_a-zA-Z][_a-zA-Z0-9]*$')): """Check whether a string is a valid Python identifier Examples -------- >>> isvalid_identifier('Hello') True >>> isvalid_identifier('Hello world') False >>> isvalid_identifier('Helloworld!') False >>> isvalid_identifier('1a') False >>> isvalid_identifier('a1') True >>> isvalid_identifier('for') False >>> isvalid_identifier(None) False """ return not not s and not keyword.iskeyword(s) and regex.match(s) is not None def valid_identifier(s): """Rewrite a string to be a valid identifier if it contains >>> valid_identifier('hello') 'hello' >>> valid_identifier('hello world') 'hello_world' >>> valid_identifier('hello.world') 'hello_world' >>> valid_identifier('hello-world') 'hello_world' >>> valid_identifier(None) >>> valid_identifier('1a') """ if isinstance(s, _strtypes): if s[0].isdigit(): return return s.replace(' ', '_').replace('.', '_').replace('-', '_') return s class Expr(Node): """ Symbolic expression of a computation All Blaze expressions (Join, By, Sort, ...) descend from this class. It contains shared logic and syntax. It in turn inherits from ``Node`` which holds all tree traversal logic """ def _get_field(self, fieldname): if not isinstance(self.dshape.measure, Record): if fieldname == self._name: return self raise ValueError( "Can not get field '%s' of non-record expression %s" % (fieldname, self)) return Field(self, fieldname) def __getitem__(self, key): if isinstance(key, _strtypes) and key in self.fields: return self._get_field(key) elif isinstance(key, Expr) and iscollection(key.dshape): return selection(self, key) elif (isinstance(key, list) and builtins.all(isinstance(k, _strtypes) for k in key)): if set(key).issubset(self.fields): return self._project(key) else: raise ValueError('Names %s not consistent with known names %s' % (key, self.fields)) elif (isinstance(key, tuple) and all(isinstance(k, (int, slice, type(None), list, np.ndarray)) for k in key)): return sliceit(self, key) elif isinstance(key, (slice, int, type(None), list, np.ndarray)): return sliceit(self, (key,)) raise ValueError("Not understood %s[%s]" % (self, key)) def map(self, func, schema=None, name=None): return Map(self, func, schema, name) def _project(self, key): return projection(self, key) @property def schema(self): return datashape.dshape(self.dshape.measure) @property def fields(self): if isinstance(self.dshape.measure, Record): return self.dshape.measure.names name = getattr(self, '_name', None) if name is not None: return [self._name] return [] def _len(self): try: return int(self.dshape[0]) except TypeError: raise ValueError('Can not determine length of table with the ' 'following datashape: %s' % self.dshape) def __len__(self): # pragma: no cover return self._len() def __iter__(self): raise NotImplementedError( 'Iteration over expressions is not supported.\n' 'Iterate over computed result instead, e.g. \n' "\titer(expr) # don't do this\n" "\titer(compute(expr)) # do this instead") def __dir__(self): result = dir(type(self)) if isrecord(self.dshape.measure) and self.fields: result.extend(list(map(valid_identifier, self.fields))) d = toolz.merge(schema_methods(self.dshape.measure), dshape_methods(self.dshape)) result.extend(list(d)) return sorted(set(filter(isvalid_identifier, result))) def __getattr__(self, key): if key == '_hash': raise AttributeError() try: return _attr_cache[(self, key)] except: pass try: result = object.__getattribute__(self, key) except AttributeError: fields = dict(zip(map(valid_identifier, self.fields), self.fields)) if self.fields and key in fields: if isscalar(self.dshape.measure): # t.foo.foo is t.foo result = self else: result = self[fields[key]] else: d = toolz.merge(schema_methods(self.dshape.measure), dshape_methods(self.dshape)) if key in d: func = d[key] if func in method_properties: result = func(self) else: result = functools.update_wrapper(partial(func, self), func) else: raise _attr_cache[(self, key)] = result return result @property def _name(self): if (isscalar(self.dshape.measure) and len(self._inputs) == 1 and isscalar(self._child.dshape.measure)): return self._child._name def __enter__(self): """ Enter context """ return self def __exit__(self, *args): """ Exit context Close any open resource if we are called in context """ for value in self._resources().values(): try: value.close() except AttributeError: pass return True _symbol_cache = dict() def _symbol_key(args, kwargs): if len(args) == 1: name, = args ds = None token = None if len(args) == 2: name, ds = args token = None elif len(args) == 3: name, ds, token = args ds = kwargs.get('dshape', ds) token = kwargs.get('token', token) ds = dshape(ds) return (name, ds, token) @memoize(cache=_symbol_cache, key=_symbol_key) def symbol(name, dshape, token=None): return Symbol(name, dshape, token=token) class Symbol(Expr): """ Symbolic data. The leaf of a Blaze expression Example ------- >>> points = symbol('points', '5 * 3 * {x: int, y: int}') >>> points points >>> points.dshape dshape("5 * 3 * {x: int32, y: int32}") """ __slots__ = '_hash', '_name', 'dshape', '_token' __inputs__ = () def __init__(self, name, dshape, token=None): self._name = name if isinstance(dshape, _strtypes): dshape = datashape.dshape(dshape) if isinstance(dshape, Mono) and not isinstance(dshape, DataShape): dshape = DataShape(dshape) self.dshape = dshape self._token = token def __str__(self): return self._name or '' def _resources(self): return dict() @dispatch(Symbol, dict) def _subs(o, d): """ Subs symbols using symbol function Supports caching""" newargs = [subs(arg, d) for arg in o._args] return symbol(*newargs) class ElemWise(Expr): """ Elementwise operation. The shape of this expression matches the shape of the child. """ @property def dshape(self): return datashape.DataShape(*(self._child.dshape.shape + tuple(self.schema))) class Field(ElemWise): """ A single field from an expression Get a single field from an expression with record-type schema. Collapses that record. We store the name of the field in the ``_name`` attribute. SELECT a FROM table >>> points = symbol('points', '5 * 3 * {x: int32, y: int32}') >>> points.x.dshape dshape("5 * 3 * int32") """ __slots__ = '_hash', '_child', '_name' def __str__(self): if re.match('^\w+$', self._name): return '%s.%s' % (self._child, self._name) else: return "%s['%s']" % (self._child, self._name) @property def _expr(self): return symbol(self._name, datashape.DataShape(self.dshape.measure)) @property def dshape(self): shape = self._child.dshape.shape schema = self._child.dshape.measure.dict[self._name] shape = shape + schema.shape schema = (schema.measure,) return DataShape(*(shape + schema)) class Projection(ElemWise): """ Select fields from data SELECT a, b, c FROM table Examples -------- >>> accounts = symbol('accounts', ... 'var * {name: string, amount: int, id: int}') >>> accounts[['name', 'amount']].schema dshape("{name: string, amount: int32}") >>> accounts[['name', 'amount']] accounts[['name', 'amount']] See Also -------- blaze.expr.expressions.Field """ __slots__ = '_hash', '_child', '_fields' @property def fields(self): return list(self._fields) @property def schema(self): d = self._child.schema[0].dict return DataShape(Record([(name, d[name]) for name in self.fields])) def __str__(self): return '%s[%s]' % (self._child, self.fields) def _project(self, key): if isinstance(key, list) and set(key).issubset(set(self.fields)): return self._child[key] raise ValueError("Column Mismatch: %s" % key) def _get_field(self, fieldname): if fieldname in self.fields: return Field(self._child, fieldname) raise ValueError("Field %s not found in columns %s" % (fieldname, self.fields)) def projection(expr, names): if not names: raise ValueError("Projection with no names") if not isinstance(names, (tuple, list)): raise TypeError("Wanted list of strings, got %s" % names) if not set(names).issubset(expr.fields): raise ValueError("Mismatched names. Asking for names %s " "where expression has names %s" % (names, expr.fields)) return Projection(expr, tuple(names)) projection.__doc__ = Projection.__doc__ from .utils import hashable_index, replace_slices def sanitize_index_lists(ind): """ Handle lists/arrays of integers/bools as indexes >>> sanitize_index_lists([2, 3, 5]) [2, 3, 5] >>> sanitize_index_lists([True, False, True, False]) [0, 2] >>> sanitize_index_lists(np.array([1, 2, 3])) [1, 2, 3] >>> sanitize_index_lists(np.array([False, True, True])) [1, 2] """ if not isinstance(ind, (list, np.ndarray)): return ind if isinstance(ind, np.ndarray): ind = ind.tolist() if isinstance(ind, list) and ind and isinstance(ind[0], bool): ind = [a for a, b in enumerate(ind) if b] return ind def sliceit(child, index): index2 = tuple(map(sanitize_index_lists, index)) index3 = hashable_index(index2) s = Slice(child, index3) hash(s) return s class Slice(Expr): __slots__ = '_hash', '_child', '_index' @property def dshape(self): return self._child.dshape.subshape[self.index] @property def index(self): return replace_slices(self._index) def __str__(self): if type(self.index) == tuple: return '%s[%s]' % (self._child, ', '.join(map(str, self._index))) else: return '%s[%s]' % (self._child, self._index) class Selection(Expr): """ Filter elements of expression based on predicate Examples -------- >>> accounts = symbol('accounts', ... 'var * {name: string, amount: int, id: int}') >>> deadbeats = accounts[accounts.amount < 0] """ __slots__ = '_hash', '_child', 'predicate' def __str__(self): return "%s[%s]" % (self._child, self.predicate) @property def dshape(self): shape = list(self._child.dshape.shape) shape[0] = Var() return DataShape(*(shape + [self._child.dshape.measure])) def selection(table, predicate): subexpr = common_subexpression(table, predicate) if not builtins.all(isinstance(node, (ElemWise, Symbol)) or node.isidentical(subexpr) for node in concat([path(predicate, subexpr), path(table, subexpr)])): raise ValueError("Selection not properly matched with table:\n" "child: %s\n" "apply: %s\n" "predicate: %s" % (subexpr, table, predicate)) if not isboolean(predicate.dshape): raise TypeError("Must select over a boolean predicate. Got:\n" "%s[%s]" % (table, predicate)) return table._subs({subexpr: Selection(subexpr, predicate)}) selection.__doc__ = Selection.__doc__ class Label(ElemWise): """A Labeled expression Examples -------- >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> expr = accounts.amount * 100 >>> expr._name 'amount' >>> expr.label('new_amount')._name 'new_amount' See Also -------- blaze.expr.expressions.ReLabel """ __slots__ = '_hash', '_child', 'label' @property def schema(self): return self._child.schema @property def _name(self): return self.label def _get_field(self, key): if key[0] == self.fields[0]: return self else: raise ValueError("Column Mismatch: %s" % key) def __str__(self): return "label(%s, %r)" % (self._child, self.label) def label(expr, lab): if expr._name == lab: return expr return Label(expr, lab) label.__doc__ = Label.__doc__ class ReLabel(ElemWise): """ Table with same content but with new labels Examples -------- >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> accounts.schema dshape("{name: string, amount: int32}") >>> accounts.relabel(amount='balance').schema dshape("{name: string, balance: int32}") >>> accounts.relabel(not_a_column='definitely_not_a_column') Traceback (most recent call last): ... ValueError: Cannot relabel non-existent child fields: {'not_a_column'} See Also -------- blaze.expr.expressions.Label """ __slots__ = '_hash', '_child', 'labels' @property def schema(self): subs = dict(self.labels) param = self._child.dshape.measure.parameters[0] return DataShape(Record([[subs.get(name, name), dtype] for name, dtype in param])) def __str__(self): return ('%s.relabel(%s)' % (self._child, ', '.join('%s=%r' % l for l in self.labels))) def relabel(child, labels=None, **kwargs): labels = labels or dict() labels = toolz.merge(labels, kwargs) labels = dict((k, v) for k, v in labels.items() if k != v) label_keys = set(labels) fields = child.fields if not label_keys.issubset(fields): non_existent_fields = label_keys.difference(fields) raise ValueError("Cannot relabel non-existent child fields: {%s}" % ', '.join(map(repr, non_existent_fields))) if not labels: return child if isinstance(labels, dict): # Turn dict into tuples labels = tuple(sorted(labels.items())) if isscalar(child.dshape.measure): if child._name == labels[0][0]: return child.label(labels[0][1]) else: return child return ReLabel(child, labels) relabel.__doc__ = ReLabel.__doc__ class Map(ElemWise): """ Map an arbitrary Python function across elements in a collection Examples -------- >>> from datetime import datetime >>> t = symbol('t', 'var * {price: real, time: int64}') # times as integers >>> datetimes = t.time.map(datetime.utcfromtimestamp) Optionally provide extra schema information >>> datetimes = t.time.map(datetime.utcfromtimestamp, ... schema='{time: datetime}') See Also -------- blaze.expr.expresions.Apply """ __slots__ = '_hash', '_child', 'func', '_schema', '_name0' @property def schema(self): if self._schema: return dshape(self._schema) else: raise NotImplementedError("Schema of mapped column not known.\n" "Please specify datashape keyword in " ".map method.\nExample: " "t.columnname.map(function, 'int64')") def label(self, name): assert isscalar(self.dshape.measure) return Map(self._child, self.func, self.schema, name) @property def shape(self): return self._child.shape @property def ndim(self): return self._child.ndim @property def _name(self): if self._name0: return self._name0 else: return self._child._name class Apply(Expr): """ Apply an arbitrary Python function onto an expression Examples -------- >>> t = symbol('t', 'var * {name: string, amount: int}') >>> h = t.apply(hash, dshape='int64') # Hash value of resultant dataset You must provide the datashape of the result with the ``dshape=`` keyword. For datashape examples see http://datashape.pydata.org/grammar.html#some-simple-examples If using a chunking backend and your operation may be safely split and concatenated then add the ``splittable=True`` keyword argument >>> t.apply(f, dshape='...', splittable=True) # doctest: +SKIP See Also -------- blaze.expr.expressions.Map """ __slots__ = '_hash', '_child', 'func', '_dshape', '_splittable' @property def schema(self): if iscollection(self.dshape): return self.dshape.subshape[0] else: raise TypeError("Non-tabular datashape, %s" % self.dshape) @property def dshape(self): return dshape(self._dshape) def apply(expr, func, dshape, splittable=False): return Apply(expr, func, datashape.dshape(dshape), splittable) apply.__doc__ = Apply.__doc__ dshape_method_list = list() schema_method_list = list() method_properties = set() dshape_methods = memoize(partial(select_functions, dshape_method_list)) schema_methods = memoize(partial(select_functions, schema_method_list)) @dispatch(DataShape) def shape(ds): s = ds.shape s = tuple(int(d) if isinstance(d, Fixed) else d for d in s) return s @dispatch(object) def shape(expr): """ Shape of expression >>> symbol('s', '3 * 5 * int32').shape (3, 5) Works on anything discoverable >>> shape([[1, 2], [3, 4]]) (2, 2) """ s = list(discover(expr).shape) for i, elem in enumerate(s): try: s[i] = int(elem) except TypeError: pass return tuple(s) def ndim(expr): """ Number of dimensions of expression >>> symbol('s', '3 * var * int32').ndim 2 """ return len(shape(expr)) dshape_method_list.extend([ (lambda ds: True, set([apply])), (iscollection, set([shape, ndim])), ]) schema_method_list.extend([ (isscalar, set([label, relabel])), (isrecord, set([relabel])), ]) method_properties.update([shape, ndim]) @dispatch(Expr) def discover(expr): return expr.dshape
{ "repo_name": "mrocklin/blaze", "path": "blaze/expr/expressions.py", "copies": "1", "size": "20763", "license": "bsd-3-clause", "hash": 4959353198440828000, "line_mean": 27.1341463415, "line_max": 80, "alpha_frac": 0.5606607908, "autogenerated": false, "ratio": 3.8933058316144757, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9951922598532676, "avg_score": 0.00040880477635978643, "num_lines": 738 }
from __future__ import absolute_import, division, print_function import toolz import datashape import re from keyword import iskeyword import numpy as np from toolz import concat, memoize, partial, first from toolz.curried import map, filter from datashape import dshape, DataShape, Record, Var, Mono, Fixed from datashape.predicates import isscalar, iscollection, isboolean, isrecord from ..compatibility import _strtypes, builtins, boundmethod from .core import Node, subs, common_subexpression, path from .method_dispatch import select_functions from ..dispatch import dispatch from .utils import hashable_index, replace_slices __all__ = ['Expr', 'ElemWise', 'Field', 'Symbol', 'discover', 'Projection', 'projection', 'Selection', 'selection', 'Label', 'label', 'Map', 'ReLabel', 'relabel', 'Apply', 'Slice', 'shape', 'ndim', 'label', 'symbol', 'Coerce'] _attr_cache = dict() def isvalid_identifier(s): """Check whether a string is a valid Python identifier Examples -------- >>> isvalid_identifier('Hello') True >>> isvalid_identifier('Hello world') False >>> isvalid_identifier('Helloworld!') False >>> isvalid_identifier('1a') False >>> isvalid_identifier('a1') True >>> isvalid_identifier('for') False >>> isvalid_identifier(None) False """ # the re module compiles and caches regexs so no need to compile it return (s is not None and not iskeyword(s) and re.match(r'^[_a-zA-Z][_a-zA-Z0-9]*$', s) is not None) def valid_identifier(s): """Rewrite a string to be a valid identifier if it contains >>> valid_identifier('hello') 'hello' >>> valid_identifier('hello world') 'hello_world' >>> valid_identifier('hello.world') 'hello_world' >>> valid_identifier('hello-world') 'hello_world' >>> valid_identifier(None) >>> valid_identifier('1a') """ if isinstance(s, _strtypes): if s[0].isdigit(): return return s.replace(' ', '_').replace('.', '_').replace('-', '_') return s class Expr(Node): """ Symbolic expression of a computation All Blaze expressions (Join, By, Sort, ...) descend from this class. It contains shared logic and syntax. It in turn inherits from ``Node`` which holds all tree traversal logic """ def _get_field(self, fieldname): if not isinstance(self.dshape.measure, Record): if fieldname == self._name: return self raise ValueError( "Can not get field '%s' of non-record expression %s" % (fieldname, self)) return Field(self, fieldname) def __getitem__(self, key): if isinstance(key, _strtypes) and key in self.fields: return self._get_field(key) elif isinstance(key, Expr) and iscollection(key.dshape): return selection(self, key) elif (isinstance(key, list) and builtins.all(isinstance(k, _strtypes) for k in key)): if set(key).issubset(self.fields): return self._project(key) else: raise ValueError('Names %s not consistent with known names %s' % (key, self.fields)) elif (isinstance(key, tuple) and all(isinstance(k, (int, slice, type(None), list, np.ndarray)) for k in key)): return sliceit(self, key) elif isinstance(key, (slice, int, type(None), list, np.ndarray)): return sliceit(self, (key,)) raise ValueError("Not understood %s[%s]" % (self, key)) def map(self, func, schema=None, name=None): return Map(self, func, schema, name) def _project(self, key): return projection(self, key) @property def schema(self): return datashape.dshape(self.dshape.measure) @property def fields(self): if isinstance(self.dshape.measure, Record): return self.dshape.measure.names name = getattr(self, '_name', None) if name is not None: return [self._name] return [] def _len(self): try: return int(self.dshape[0]) except TypeError: raise ValueError('Can not determine length of table with the ' 'following datashape: %s' % self.dshape) def __len__(self): # pragma: no cover return self._len() def __iter__(self): raise NotImplementedError( 'Iteration over expressions is not supported.\n' 'Iterate over computed result instead, e.g. \n' "\titer(expr) # don't do this\n" "\titer(compute(expr)) # do this instead") def __dir__(self): result = dir(type(self)) if isrecord(self.dshape.measure) and self.fields: result.extend(list(map(valid_identifier, self.fields))) d = toolz.merge(schema_methods(self.dshape.measure), dshape_methods(self.dshape)) result.extend(list(d)) return sorted(set(filter(isvalid_identifier, result))) def __getattr__(self, key): if key == '_hash': raise AttributeError() try: return _attr_cache[(self, key)] except: pass try: result = object.__getattribute__(self, key) except AttributeError: fields = dict(zip(map(valid_identifier, self.fields), self.fields)) if self.fields and key in fields: if isscalar(self.dshape.measure): # t.foo.foo is t.foo result = self else: result = self[fields[key]] else: d = toolz.merge(schema_methods(self.dshape.measure), dshape_methods(self.dshape)) if key in d: func = d[key] if func in method_properties: result = func(self) else: result = boundmethod(func, self) else: raise _attr_cache[(self, key)] = result return result @property def _name(self): if (isscalar(self.dshape.measure) and len(self._inputs) == 1 and isscalar(self._child.dshape.measure)): return self._child._name def __enter__(self): """ Enter context """ return self def __exit__(self, *args): """ Exit context Close any open resource if we are called in context """ for value in self._resources().values(): try: value.close() except AttributeError: pass return True _symbol_cache = dict() def _symbol_key(args, kwargs): if len(args) == 1: name, = args ds = None token = None if len(args) == 2: name, ds = args token = None elif len(args) == 3: name, ds, token = args ds = kwargs.get('dshape', ds) token = kwargs.get('token', token) ds = dshape(ds) return (name, ds, token) @memoize(cache=_symbol_cache, key=_symbol_key) def symbol(name, dshape, token=None): return Symbol(name, dshape, token=token) class Symbol(Expr): """ Symbolic data. The leaf of a Blaze expression Examples -------- >>> points = symbol('points', '5 * 3 * {x: int, y: int}') >>> points points >>> points.dshape dshape("5 * 3 * {x: int32, y: int32}") """ __slots__ = '_hash', '_name', 'dshape', '_token' __inputs__ = () def __init__(self, name, dshape, token=None): self._name = name if isinstance(dshape, _strtypes): dshape = datashape.dshape(dshape) if isinstance(dshape, Mono) and not isinstance(dshape, DataShape): dshape = DataShape(dshape) self.dshape = dshape self._token = token def __str__(self): return self._name or '' def _resources(self): return dict() @dispatch(Symbol, dict) def _subs(o, d): """ Subs symbols using symbol function Supports caching""" newargs = [subs(arg, d) for arg in o._args] return symbol(*newargs) class ElemWise(Expr): """ Elementwise operation. The shape of this expression matches the shape of the child. """ @property def dshape(self): return datashape.DataShape(*(self._child.dshape.shape + tuple(self.schema))) class Field(ElemWise): """ A single field from an expression. Get a single field from an expression with record-type schema. We store the name of the field in the ``_name`` attribute. Examples -------- >>> points = symbol('points', '5 * 3 * {x: int32, y: int32}') >>> points.x.dshape dshape("5 * 3 * int32") For fields that aren't valid Python identifiers, use ``[]`` syntax: >>> points = symbol('points', '5 * 3 * {"space station": float64}') >>> points['space station'].dshape dshape("5 * 3 * float64") """ __slots__ = '_hash', '_child', '_name' def __str__(self): fmt = '%s.%s' if isvalid_identifier(self._name) else '%s[%r]' return fmt % (self._child, self._name) @property def _expr(self): return symbol(self._name, datashape.DataShape(self.dshape.measure)) @property def dshape(self): shape = self._child.dshape.shape schema = self._child.dshape.measure.dict[self._name] shape = shape + schema.shape schema = (schema.measure,) return DataShape(*(shape + schema)) class Projection(ElemWise): """Select a subset of fields from data. Examples -------- >>> accounts = symbol('accounts', ... 'var * {name: string, amount: int, id: int}') >>> accounts[['name', 'amount']].schema dshape("{name: string, amount: int32}") >>> accounts[['name', 'amount']] accounts[['name', 'amount']] See Also -------- blaze.expr.expressions.Field """ __slots__ = '_hash', '_child', '_fields' @property def fields(self): return list(self._fields) @property def schema(self): d = self._child.schema[0].dict return DataShape(Record([(name, d[name]) for name in self.fields])) def __str__(self): return '%s[%s]' % (self._child, self.fields) def _project(self, key): if isinstance(key, list) and set(key).issubset(set(self.fields)): return self._child[key] raise ValueError("Column Mismatch: %s" % key) def _get_field(self, fieldname): if fieldname in self.fields: return Field(self._child, fieldname) raise ValueError("Field %s not found in columns %s" % (fieldname, self.fields)) def projection(expr, names): if not names: raise ValueError("Projection with no names") if not isinstance(names, (tuple, list)): raise TypeError("Wanted list of strings, got %s" % names) if not set(names).issubset(expr.fields): raise ValueError("Mismatched names. Asking for names %s " "where expression has names %s" % (names, expr.fields)) return Projection(expr, tuple(names)) projection.__doc__ = Projection.__doc__ def sanitize_index_lists(ind): """ Handle lists/arrays of integers/bools as indexes >>> sanitize_index_lists([2, 3, 5]) [2, 3, 5] >>> sanitize_index_lists([True, False, True, False]) [0, 2] >>> sanitize_index_lists(np.array([1, 2, 3])) [1, 2, 3] >>> sanitize_index_lists(np.array([False, True, True])) [1, 2] """ if not isinstance(ind, (list, np.ndarray)): return ind if isinstance(ind, np.ndarray): ind = ind.tolist() if isinstance(ind, list) and ind and isinstance(ind[0], bool): ind = [a for a, b in enumerate(ind) if b] return ind def sliceit(child, index): index2 = tuple(map(sanitize_index_lists, index)) index3 = hashable_index(index2) s = Slice(child, index3) hash(s) return s class Slice(Expr): """Elements `start` until `stop`. On many backends, a `step` parameter is also allowed. Examples -------- >>> from blaze import symbol >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> accounts[2:7].dshape dshape("5 * {name: string, amount: int32}") >>> accounts[2:7:2].dshape dshape("3 * {name: string, amount: int32}") """ __slots__ = '_hash', '_child', '_index' @property def dshape(self): return self._child.dshape.subshape[self.index] @property def index(self): return replace_slices(self._index) def __str__(self): if isinstance(self.index, tuple): index = ', '.join(map(str, self._index)) else: index = str(self._index) return '%s[%s]' % (self._child, index) class Selection(Expr): """ Filter elements of expression based on predicate Examples -------- >>> accounts = symbol('accounts', ... 'var * {name: string, amount: int, id: int}') >>> deadbeats = accounts[accounts.amount < 0] """ __slots__ = '_hash', '_child', 'predicate' def __str__(self): return "%s[%s]" % (self._child, self.predicate) @property def dshape(self): shape = list(self._child.dshape.shape) shape[0] = Var() return DataShape(*(shape + [self._child.dshape.measure])) def selection(table, predicate): subexpr = common_subexpression(table, predicate) if not builtins.all(isinstance(node, (ElemWise, Symbol)) or node.isidentical(subexpr) for node in concat([path(predicate, subexpr), path(table, subexpr)])): raise ValueError("Selection not properly matched with table:\n" "child: %s\n" "apply: %s\n" "predicate: %s" % (subexpr, table, predicate)) if not isboolean(predicate.dshape): raise TypeError("Must select over a boolean predicate. Got:\n" "%s[%s]" % (table, predicate)) return table._subs({subexpr: Selection(subexpr, predicate)}) selection.__doc__ = Selection.__doc__ class Label(ElemWise): """An expression with a name. Examples -------- >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> expr = accounts.amount * 100 >>> expr._name 'amount' >>> expr.label('new_amount')._name 'new_amount' See Also -------- blaze.expr.expressions.ReLabel """ __slots__ = '_hash', '_child', 'label' @property def schema(self): return self._child.schema @property def _name(self): return self.label def _get_field(self, key): if key[0] == self.fields[0]: return self raise ValueError("Column Mismatch: %s" % key) def __str__(self): return 'label(%s, %r)' % (self._child, self.label) def label(expr, lab): if expr._name == lab: return expr return Label(expr, lab) label.__doc__ = Label.__doc__ class ReLabel(ElemWise): """ Table with same content but with new labels Examples -------- >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> accounts.schema dshape("{name: string, amount: int32}") >>> accounts.relabel(amount='balance').schema dshape("{name: string, balance: int32}") >>> accounts.relabel(not_a_column='definitely_not_a_column') Traceback (most recent call last): ... ValueError: Cannot relabel non-existent child fields: {'not_a_column'} >>> s = symbol('s', 'var * {"0": int64}') >>> s.relabel({'0': 'foo'}) s.relabel({'0': 'foo'}) >>> s.relabel(0='foo') # doctest: +SKIP Traceback (most recent call last): ... SyntaxError: keyword can't be an expression Notes ----- When names are not valid Python names, such as integers or string with spaces, you must pass a dictionary to ``relabel``. For example .. code-block:: python >>> s = symbol('s', 'var * {"0": int64}') >>> s.relabel({'0': 'foo'}) s.relabel({'0': 'foo'}) >>> t = symbol('t', 'var * {"whoo hoo": ?float32}') >>> t.relabel({"whoo hoo": 'foo'}) t.relabel({'whoo hoo': 'foo'}) See Also -------- blaze.expr.expressions.Label """ __slots__ = '_hash', '_child', 'labels' @property def schema(self): subs = dict(self.labels) param = self._child.dshape.measure.parameters[0] return DataShape(Record([[subs.get(name, name), dtype] for name, dtype in param])) def __str__(self): labels = self.labels if all(map(isvalid_identifier, map(first, labels))): rest = ', '.join('%s=%r' % l for l in labels) else: rest = '{%s}' % ', '.join('%r: %r' % l for l in labels) return '%s.relabel(%s)' % (self._child, rest) def relabel(child, labels=None, **kwargs): labels = labels or dict() labels = toolz.merge(labels, kwargs) labels = dict((k, v) for k, v in labels.items() if k != v) label_keys = set(labels) fields = child.fields if not label_keys.issubset(fields): non_existent_fields = label_keys.difference(fields) raise ValueError("Cannot relabel non-existent child fields: {%s}" % ', '.join(map(repr, non_existent_fields))) if not labels: return child if isinstance(labels, dict): # Turn dict into tuples labels = tuple(sorted(labels.items())) if isscalar(child.dshape.measure): if child._name == labels[0][0]: return child.label(labels[0][1]) else: return child return ReLabel(child, labels) relabel.__doc__ = ReLabel.__doc__ class Map(ElemWise): """ Map an arbitrary Python function across elements in a collection Examples -------- >>> from datetime import datetime >>> t = symbol('t', 'var * {price: real, time: int64}') # times as integers >>> datetimes = t.time.map(datetime.utcfromtimestamp) Optionally provide extra schema information >>> datetimes = t.time.map(datetime.utcfromtimestamp, ... schema='{time: datetime}') See Also -------- blaze.expr.expresions.Apply """ __slots__ = '_hash', '_child', 'func', '_schema', '_name0' @property def schema(self): if self._schema: return dshape(self._schema) else: raise NotImplementedError("Schema of mapped column not known.\n" "Please specify datashape keyword in " ".map method.\nExample: " "t.columnname.map(function, 'int64')") def label(self, name): assert isscalar(self.dshape.measure) return Map(self._child, self.func, self.schema, name) @property def shape(self): return self._child.shape @property def ndim(self): return self._child.ndim @property def _name(self): if self._name0: return self._name0 else: return self._child._name class Apply(Expr): """ Apply an arbitrary Python function onto an expression Examples -------- >>> t = symbol('t', 'var * {name: string, amount: int}') >>> h = t.apply(hash, dshape='int64') # Hash value of resultant dataset You must provide the datashape of the result with the ``dshape=`` keyword. For datashape examples see http://datashape.pydata.org/grammar.html#some-simple-examples If using a chunking backend and your operation may be safely split and concatenated then add the ``splittable=True`` keyword argument >>> t.apply(f, dshape='...', splittable=True) # doctest: +SKIP See Also -------- blaze.expr.expressions.Map """ __slots__ = '_hash', '_child', 'func', '_dshape', '_splittable' @property def schema(self): if iscollection(self.dshape): return self.dshape.subshape[0] else: raise TypeError("Non-tabular datashape, %s" % self.dshape) @property def dshape(self): return dshape(self._dshape) class Coerce(Expr): """Coerce an expression to a different type. Examples -------- >>> t = symbol('t', '100 * float64') >>> t.coerce(to='int64') t.coerce(to='int64') >>> t.coerce('float32') t.coerce(to='float32') >>> t.coerce('int8').dshape dshape("100 * int8") """ __slots__ = '_hash', '_child', 'to' @property def schema(self): return self.to @property def dshape(self): return DataShape(*(self._child.shape + (self.schema,))) def __str__(self): return '%s.coerce(to=%r)' % (self._child, str(self.schema)) def apply(expr, func, dshape, splittable=False): return Apply(expr, func, datashape.dshape(dshape), splittable) apply.__doc__ = Apply.__doc__ dshape_method_list = list() schema_method_list = list() method_properties = set() dshape_methods = memoize(partial(select_functions, dshape_method_list)) schema_methods = memoize(partial(select_functions, schema_method_list)) @dispatch(DataShape) def shape(ds): s = ds.shape s = tuple(int(d) if isinstance(d, Fixed) else d for d in s) return s @dispatch(object) def shape(expr): """ Shape of expression >>> symbol('s', '3 * 5 * int32').shape (3, 5) Works on anything discoverable >>> shape([[1, 2], [3, 4]]) (2, 2) """ s = list(discover(expr).shape) for i, elem in enumerate(s): try: s[i] = int(elem) except TypeError: pass return tuple(s) def ndim(expr): """ Number of dimensions of expression >>> symbol('s', '3 * var * int32').ndim 2 """ return len(shape(expr)) def coerce(expr, to): return Coerce(expr, dshape(to) if isinstance(to, _strtypes) else to) coerce.__doc__ = Coerce.__doc__ dshape_method_list.extend([ (lambda ds: True, set([apply])), (iscollection, set([shape, ndim])), (lambda ds: iscollection(ds) and isscalar(ds.measure), set([coerce])) ]) schema_method_list.extend([ (isscalar, set([label, relabel, coerce])), (isrecord, set([relabel])), ]) method_properties.update([shape, ndim]) @dispatch(Expr) def discover(expr): return expr.dshape
{ "repo_name": "dwillmer/blaze", "path": "blaze/expr/expressions.py", "copies": "1", "size": "22953", "license": "bsd-3-clause", "hash": -3723844283422460000, "line_mean": 27.3720642769, "line_max": 80, "alpha_frac": 0.5615387967, "autogenerated": false, "ratio": 3.830607476635514, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48921462733355137, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import toolz __all__ = ['Expr', 'Scalar'] def _str(s): """ Wrap single quotes around strings """ if isinstance(s, str): return "'%s'" % s else: return str(s) class Expr(object): @property def args(self): return tuple(getattr(self, slot) for slot in self.__slots__) def isidentical(self, other): return type(self) == type(other) and self.args == other.args __eq__ = isidentical def __hash__(self): return hash((type(self), self.args)) def __str__(self): return "%s(%s)" % (type(self).__name__, ', '.join(map(_str, self.args))) def __repr__(self): return str(self) def traverse(self): """ Traverse over tree, yielding all subtrees and leaves """ yield self traversals = (arg.traverse() if isinstance(arg, Expr) else [arg] for arg in self.args) for trav in traversals: for item in trav: yield item def subs(self, d): """ Substitute terms in the tree >>> from blaze.expr.table import TableSymbol >>> t = TableSymbol('t', '{name: string, amount: int, id: int}') >>> expr = t['amount'] + 3 >>> expr.subs({3: 4, 'amount': 'id'}).isidentical(t['id'] + 4) True """ return subs(self, d) def resources(self): return toolz.merge([arg.resources() for arg in self.args if isinstance(arg, Expr)]) def subs(o, d): if o in d: d = d.copy() other = d.pop(o) return subs(other, d) if isinstance(o, (tuple, list)): return type(o)([subs(arg, d) for arg in o]) if hasattr(o, 'args'): newargs = [subs(arg, d) for arg in o.args] return type(o)(*newargs) return o class Scalar(Expr): pass
{ "repo_name": "aterrel/blaze", "path": "blaze/expr/core.py", "copies": "1", "size": "1926", "license": "bsd-3-clause", "hash": 6890287834447016000, "line_mean": 24.012987013, "line_max": 80, "alpha_frac": 0.5301142264, "autogenerated": false, "ratio": 3.661596958174905, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46917111845749054, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import traceback from functools import wraps from glue.core.session import Session from glue.core.edit_subset_mode import EditSubsetMode from glue.core.hub import HubListener from glue.core import Data, Subset from glue.core import command from glue.core.data_factories import load_data from glue.core.data_collection import DataCollection from glue.config import settings from glue.utils import as_list, PropertySetMixin __all__ = ['Application', 'ViewerBase'] def catch_error(msg): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: m = "%s\n%s" % (msg, str(e)) detail = str(traceback.format_exc()) self = args[0] self.report_error(m, detail) return wrapper return decorator def as_flat_data_list(data): datasets = [] if isinstance(data, Data): datasets.append(data) else: for d in data: datasets.extend(as_flat_data_list(d)) return datasets class Application(HubListener): def __init__(self, data_collection=None, session=None): if session is not None: self._session = session session.application = self self._data = session.data_collection else: self._data = data_collection or DataCollection() self._session = Session(data_collection=self._data, application=self) EditSubsetMode().data_collection = self._data self._hub = self._session.hub self._cmds = self._session.command_stack self._cmds.add_callback(lambda x: self._update_undo_redo_enabled()) self._settings = {} for key, value, validator in settings: self._settings[key] = [value, validator] @property def session(self): return self._session @property def data_collection(self): return self.session.data_collection def new_data_viewer(self, viewer_class, data=None): """ Create a new data viewer, add it to the UI, and populate with data """ if viewer_class is None: return c = viewer_class(self._session) c.register_to_hub(self._session.hub) if data and not c.add_data(data): c.close(warn=False) return self.add_widget(c) c.show() return c @catch_error("Failed to save session") def save_session(self, path, include_data=False): """ Save the data collection and hub to file. Can be restored via restore_session Note: Saving of client is not currently supported. Thus, restoring this session will lose all current viz windows """ from glue.core.state import GlueSerializer gs = GlueSerializer(self, include_data=include_data) state = gs.dumps(indent=2) with open(path, 'w') as out: out.write(state) @staticmethod def restore_session(path): """ Reload a previously-saved session Parameters ---------- path : str Path to the file to load Returns ------- app : :class:`Application` The loaded application """ from glue.core.state import GlueUnSerializer with open(path) as infile: state = GlueUnSerializer.load(infile) return state.object('__main__') def new_tab(self): raise NotImplementedError() def add_widget(self, widget, label=None, tab=None): raise NotImplementedError() def close_tab(self): raise NotImplementedError() def get_setting(self, key): """ Fetch the value of an application setting """ return self._settings[key][0] def set_setting(self, key, value): """ Set the value of an application setting Raises a KeyError if the setting does not exist Raises a ValueError if the value is invalid """ validator = self._settings[key][1] self._settings[key][0] = validator(value) @property def settings(self): """Iterate over settings""" for key, (value, _) in self._settings.items(): yield key, value @catch_error("Could not load data") def load_data(self, path): d = load_data(path) self.add_datasets(self.data_collection, d) @catch_error("Could not add data") def add_data(self, *args, **kwargs): """ Add data to the session. Positional arguments are interpreted using the data factories, while keyword arguments are interpreted using the same infrastructure as the `qglue` command. """ datasets = [] for path in args: datasets.append(load_data(path)) links = kwargs.pop('links', None) from glue.qglue import parse_data, parse_links for label, data in kwargs.items(): datasets.extend(parse_data(data, label)) self.add_datasets(self.data_collection, datasets) if links is not None: self.data_collection.add_link(parse_links(self.data_collection, links)) def report_error(self, message, detail): """ Report an error message to the user. Must be implemented in a subclass Parameters ---------- message : str The message to display detail : str Longer context about the error """ raise NotImplementedError() def do(self, command): self._cmds.do(command) def undo(self): try: self._cmds.undo() except RuntimeError: pass def redo(self): try: self._cmds.redo() except RuntimeError: pass def _update_undo_redo_enabled(self): raise NotImplementedError() @classmethod def add_datasets(cls, data_collection, datasets): """ Utility method to interactively add datasets to a data_collection Parameters ---------- data_collection : :class:`~glue.core.data_collection.DataCollection` datasets : :class:`~glue.core.data.Data` or list of Data One or more :class:`~glue.core.data.Data` instances Adds datasets to the collection """ datasets = as_flat_data_list(datasets) data_collection.extend(datasets) # We now check whether any of the datasets can be merged. We need to # make sure that datasets are only ever shown once, as we don't want # to repeat the menu multiple times. suggested = [] for data in datasets: # If the data was already suggested, we skip over it if data in suggested: continue shp = data.shape other = [d for d in data_collection if d.shape == shp and d is not data] # If no other datasets have the same shape, we go to the next one if not other: continue merges, label = cls._choose_merge(data, other) if merges: data_collection.merge(*merges, label=label) suggested.append(data) suggested.extend(other) @staticmethod def _choose_merge(data, other): """ Present an interface to the user for approving or rejecting a proposed data merger. Returns a list of datasets from other that the user has approved to merge with data """ raise NotImplementedError @property def viewers(self): """Return a tuple of tuples of viewers currently open The i'th tuple stores the viewers in the i'th close_tab """ return [] def set_data_color(self, color, alpha): """ Reset all the data colors to that specified. """ for data in self.data_collection: data.style.color = color data.style.alpha = alpha def __gluestate__(self, context): viewers = [list(map(context.id, tab)) for tab in self.viewers] data = self.session.data_collection from glue.main import _loaded_plugins return dict(session=context.id(self.session), viewers=viewers, data=context.id(data), plugins=_loaded_plugins) @classmethod def __setgluestate__(cls, rec, context): self = cls(data_collection=context.object(rec['data'])) # manually register the newly-created session, which # the viewers need context.register_object(rec['session'], self.session) for i, tab in enumerate(rec['viewers']): if self.tab(i) is None: self.new_tab() for v in tab: viewer = context.object(v) self.add_widget(viewer, tab=i, hold_position=True) return self class ViewerBase(HubListener, PropertySetMixin): """ Base class for data viewers in an application """ # the glue.core.layer_artist.LayerArtistContainer # class/subclass to use _layer_artist_container_cls = None def __init__(self, session): HubListener.__init__(self) PropertySetMixin.__init__(self) self._session = session self._data = session.data_collection self._hub = None self._layer_artist_container = self._layer_artist_container_cls() def register_to_hub(self, hub): self._hub = hub def unregister(self, hub): """ Abstract method to unsubscribe from messages """ raise NotImplementedError def request_add_layer(self, layer): """ Issue a command to add a layer """ cmd = command.AddLayer(layer=layer, viewer=self) self._session.command_stack.do(cmd) def add_layer(self, layer): if isinstance(layer, Data): self.add_data(layer) elif isinstance(layer, Subset): self.add_subset(layer) # else: SubsetGroup def add_data(self, data): """ Add a data instance to the viewer This must be overridden by a subclass Parameters ---------- data : :class:`~glue.core.data.Data` Data object to add. """ raise NotImplementedError def add_subset(self, subset): """ Add a subset to the viewer This must be overridden by a subclass Parameters ---------- subset : :class:`~glue.core.subset.Subset` Subset instance to add. """ raise NotImplementedError def apply_roi(self, roi): """ Apply an ROI to the client Parameters ---------- roi : :class:`~glue.core.roi.Roi` The ROI to apply. """ cmd = command.ApplyROI(client=self.client, roi=roi) self._session.command_stack.do(cmd) @property def session(self): return self._session @property def axes(self): return self.client.axes def layer_view(self): raise NotImplementedError() def options_widget(self): raise NotImplementedError() def move(self, x=None, y=None): """ Reposition a viewer within the application. x : int, optional Offset of viewer's left edge from the left edge of the parent window. y : int, optional Offset of the viewer's top edge from the top edge of the parent window. """ raise NotImplementedError() @property def position(self): """ Return the location of the viewer as a tuple of ``(x, y)`` """ raise NotImplementedError() @property def viewer_size(self): """ Return the size of the viewer as a tuple of ``(width, height)`` """ raise NotImplementedError() @viewer_size.setter def viewer_size(self, value): """ Resize the width and/or height of the viewer Parameters ---------- value : tuple of int The width and height of the viewer. width : int, optional New width. height : int, optional New height. """ raise NotImplementedError() def restore_layers(self, rec, context): """ Given a list of glue-serialized layers, restore them to the viewer """ # if this viewer manages a client, rely on it to restore layers if hasattr(self, 'client'): return self.client.restore_layers(rec, context) raise NotImplementedError() @property def layers(self): """Return a tuple of layers in this viewer. A layer is a visual representation of a dataset or subset within the viewer""" return tuple(self._layer_artist_container) def __gluestate__(self, context): return dict(session=context.id(self._session), size=self.viewer_size, pos=self.position, properties=dict((k, context.id(v)) for k, v in self.properties.items()), layers=list(map(context.do, self.layers)) ) @classmethod def __setgluestate__(cls, rec, context): session = context.object(rec['session']) result = cls(session) result.register_to_hub(session.hub) result.viewer_size = rec['size'] x, y = rec['pos'] result.move(x=x, y=y) prop = dict((k, context.object(v)) for k, v in rec['properties'].items()) result.restore_layers(rec['layers'], context) result.properties = prop return result
{ "repo_name": "saimn/glue", "path": "glue/core/application_base.py", "copies": "1", "size": "13952", "license": "bsd-3-clause", "hash": 947870857902747400, "line_mean": 27.9460580913, "line_max": 83, "alpha_frac": 0.5788417431, "autogenerated": false, "ratio": 4.41100221308884, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000024698676150958306, "num_lines": 482 }
from __future__ import absolute_import, division, print_function import traceback import warnings from .dataarray import DataArray from .dataset import Dataset from .pycompat import PY2 class AccessorRegistrationWarning(Warning): """Warning for conflicts in accessor registration.""" class _CachedAccessor(object): """Custom property-like object (descriptor) for caching accessors.""" def __init__(self, name, accessor): self._name = name self._accessor = accessor def __get__(self, obj, cls): if obj is None: # we're accessing the attribute of the class, i.e., Dataset.geo return self._accessor try: accessor_obj = self._accessor(obj) except AttributeError: # __getattr__ on data object will swallow any AttributeErrors # raised when initializing the accessor, so we need to raise as # something else (GH933): msg = 'error initializing %r accessor.' % self._name if PY2: msg += ' Full traceback:\n' + traceback.format_exc() raise RuntimeError(msg) # Replace the property with the accessor object. Inspired by: # http://www.pydanny.com/cached-property.html # We need to use object.__setattr__ because we overwrite __setattr__ on # AttrAccessMixin. object.__setattr__(obj, self._name, accessor_obj) return accessor_obj def _register_accessor(name, cls): def decorator(accessor): if hasattr(cls, name): warnings.warn( 'registration of accessor %r under name %r for type %r is ' 'overriding a preexisting attribute with the same name.' % (accessor, name, cls), AccessorRegistrationWarning, stacklevel=2) setattr(cls, name, _CachedAccessor(name, accessor)) return accessor return decorator def register_dataarray_accessor(name): """Register a custom accessor on xarray.DataArray objects. Parameters ---------- name : str Name under which the accessor should be registered. A warning is issued if this name conflicts with a preexisting attribute. See also -------- register_dataset_accessor """ return _register_accessor(name, DataArray) def register_dataset_accessor(name): """Register a custom property on xarray.Dataset objects. Parameters ---------- name : str Name under which the accessor should be registered. A warning is issued if this name conflicts with a preexisting attribute. Examples -------- In your library code:: import xarray as xr @xr.register_dataset_accessor('geo') class GeoAccessor(object): def __init__(self, xarray_obj): self._obj = xarray_obj @property def center(self): # return the geographic center point of this dataset lon = self._obj.latitude lat = self._obj.longitude return (float(lon.mean()), float(lat.mean())) def plot(self): # plot this array's data on a map, e.g., using Cartopy pass Back in an interactive IPython session: >>> ds = xarray.Dataset({'longitude': np.linspace(0, 10), ... 'latitude': np.linspace(0, 20)}) >>> ds.geo.center (5.0, 10.0) >>> ds.geo.plot() # plots data on a map See also -------- register_dataarray_accessor """ return _register_accessor(name, Dataset)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/extensions.py", "copies": "1", "size": "3666", "license": "apache-2.0", "hash": 2109780267357222700, "line_mean": 29.8067226891, "line_max": 79, "alpha_frac": 0.5927441353, "autogenerated": false, "ratio": 4.599749058971142, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5692493194271142, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import traceback __all__ = ['die_on_error', 'avoid_circular'] def die_on_error(msg): """ Non-GUI version of the decorator in glue.utils.qt.decorators. In this case we just let the Python exception terminate the execution. """ def decorator(func): def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: print('=' * 72) print(msg + ' (traceback below)') print('-' * 72) traceback.print_exc() print('=' * 72) return wrapper return decorator def avoid_circular(meth): def wrapper(self, *args, **kwargs): if not hasattr(self, '_in_avoid_circular') or not self._in_avoid_circular: self._in_avoid_circular = True try: return meth(self, *args, **kwargs) finally: self._in_avoid_circular = False return wrapper
{ "repo_name": "stscieisenhamer/glue", "path": "glue/utils/decorators.py", "copies": "3", "size": "1050", "license": "bsd-3-clause", "hash": -6189258101026877000, "line_mean": 28.1666666667, "line_max": 82, "alpha_frac": 0.5466666667, "autogenerated": false, "ratio": 4.251012145748988, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6297678812448988, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import types import logging from functools import wraps import numpy as np # We avoid importing matplotlib up here otherwise Matplotlib and therefore Qt # get imported as soon as glue.utils is imported. from glue.external.axescache import AxesCache from glue.utils.misc import DeferredMethod __all__ = ['renderless_figure', 'all_artists', 'new_artists', 'remove_artists', 'get_extent', 'view_cascade', 'fast_limits', 'defer_draw', 'color2rgb', 'point_contour', 'cache_axes', 'DeferDrawMeta'] def renderless_figure(): # Matplotlib figure that skips the render step, for test speed from mock import MagicMock import matplotlib.pyplot as plt fig = plt.figure() fig.canvas.draw = MagicMock() plt.close('all') return fig def all_artists(fig): """ Build a set of all Matplotlib artists in a Figure """ return set(item for axes in fig.axes for container in [axes.collections, axes.patches, axes.lines, axes.texts, axes.artists, axes.images] for item in container) def new_artists(fig, old_artists): """ Find the newly-added artists in a figure :param fig: Matplotlib figure :param old_artists: Return value from :func:all_artists :returns: All artists added since all_artists was called """ return all_artists(fig) - old_artists def remove_artists(artists): """ Remove a collection of matplotlib artists from a scene :param artists: Container of artists """ for a in artists: try: a.remove() except ValueError: # already removed pass def get_extent(view, transpose=False): sy, sx = [s for s in view if isinstance(s, slice)] if transpose: return (sy.start, sy.stop, sx.start, sx.stop) return (sx.start, sx.stop, sy.start, sy.stop) def view_cascade(data, view): """ Return a set of views progressively zoomed out of input at roughly constant pixel count Parameters ---------- data : array-like The array to view view : The original view into the data """ shp = data.shape v2 = list(view) logging.debug("image shape: %s, view: %s", shp, view) # choose stride length that roughly samples entire image # at roughly the same pixel count step = max(shp[i - 1] * v.step // max(v.stop - v.start, 1) for i, v in enumerate(view) if isinstance(v, slice)) step = max(step, 1) for i, v in enumerate(v2): if not(isinstance(v, slice)): continue v2[i] = slice(0, shp[i - 1], step) return tuple(v2), view def _scoreatpercentile(values, percentile, limit=None): # Avoid using the scipy version since it is available in Numpy if limit is not None: values = values[(values >= limit[0]) & (values <= limit[1])] return np.percentile(values, percentile) def fast_limits(data, plo, phi): """ Quickly estimate percentiles in an array, using a downsampled version Parameters ---------- data : `numpy.ndarray` The array to estimate the percentiles for plo, phi : float The percentile values Returns ------- lo, hi : float The percentile values """ shp = data.shape view = tuple([slice(None, None, np.intp(max(s / 50, 1))) for s in shp]) values = np.asarray(data)[view] if ~np.isfinite(values).any(): return (0.0, 1.0) limits = (-np.inf, np.inf) lo = _scoreatpercentile(values.flat, plo, limit=limits) hi = _scoreatpercentile(values.flat, phi, limit=limits) return lo, hi def defer_draw(func): """ Decorator that globally defers all Agg canvas draws until function exit. If a Canvas instance's draw method is invoked multiple times, it will only be called once after the wrapped function returns. """ @wraps(func) def wrapper(*args, **kwargs): from matplotlib.backends.backend_agg import FigureCanvasAgg # don't recursively defer draws if isinstance(FigureCanvasAgg.draw, DeferredMethod): return func(*args, **kwargs) try: FigureCanvasAgg.draw = DeferredMethod(FigureCanvasAgg.draw) result = func(*args, **kwargs) finally: # We need to use another try...finally block here in case the # executed deferred draw calls fail for any reason try: FigureCanvasAgg.draw.execute_deferred_calls() finally: FigureCanvasAgg.draw = FigureCanvasAgg.draw.original_method return result wrapper._is_deferred = True return wrapper class DeferDrawMeta(type): """ Metaclass that decorates all methods on a class with @defer_draw """ def __new__(cls, name, bases, attrs): for attr_name, attr_value in attrs.items(): if isinstance(attr_value, types.FunctionType): attrs[attr_name] = defer_draw(attr_value) return type.__new__(cls, name, bases, attrs) def color2rgb(color): from matplotlib.colors import ColorConverter result = ColorConverter().to_rgb(color) return result def point_contour(x, y, data): """Calculate the contour that passes through (x,y) in data :param x: x location :param y: y location :param data: 2D image :type data: :class:`numpy.ndarray` Returns: * A (nrow, 2column) numpy array. The two columns give the x and y locations of the contour vertices """ try: from scipy import ndimage except ImportError: raise ImportError("Image processing in Glue requires SciPy") inten = data[y, x] labeled, nr_objects = ndimage.label(data >= inten) z = data * (labeled == labeled[y, x]) y, x = np.mgrid[0:data.shape[0], 0:data.shape[1]] from matplotlib import _cntr cnt = _cntr.Cntr(x, y, z) xy = cnt.trace(inten) if not xy: return None xy = xy[0] return xy class AxesResizer(object): def __init__(self, ax, margins): self.ax = ax self.margins = margins @property def margins(self): return self._margins @margins.setter def margins(self, margins): self._margins = margins def on_resize(self, event): fig_width = self.ax.figure.get_figwidth() fig_height = self.ax.figure.get_figheight() x0 = self.margins[0] / fig_width x1 = 1 - self.margins[1] / fig_width y0 = self.margins[2] / fig_height y1 = 1 - self.margins[3] / fig_height dx = max(0.01, x1 - x0) dy = max(0.01, y1 - y0) self.ax.set_position([x0, y0, dx, dy]) self.ax.figure.canvas.draw() def freeze_margins(axes, margins=[1, 1, 1, 1]): """ Make sure margins of axes stay fixed. Parameters ---------- ax_class : matplotlib.axes.Axes The axes class for which to fix the margins margins : iterable The margins, in inches. The order of the margins is ``[left, right, bottom, top]`` Notes ----- The object that controls the resizing is stored as the resizer attribute of the Axes. This can be used to then change the margins: >> ax.resizer.margins = [0.5, 0.5, 0.5, 0.5] """ axes.resizer = AxesResizer(axes, margins) axes.figure.canvas.mpl_connect('resize_event', axes.resizer.on_resize) def cache_axes(axes, toolbar): """ Set up caching for an axes object. After this, cached renders will be used to quickly re-render an axes during window resizing or interactive pan/zooming. This function returns an AxesCache instance. Parameters ---------- axes : `~matplotlib.axes.Axes` The axes to cache toolbar : `~glue.viewers.common.qt.toolbar.GlueToolbar` The toolbar managing the axes' canvas """ canvas = axes.figure.canvas cache = AxesCache(axes) canvas.resize_begin.connect(cache.enable) canvas.resize_end.connect(cache.disable) toolbar.pan_begin.connect(cache.enable) toolbar.pan_end.connect(cache.disable) return cache
{ "repo_name": "stscieisenhamer/glue", "path": "glue/utils/matplotlib.py", "copies": "2", "size": "8258", "license": "bsd-3-clause", "hash": -5841126655630998000, "line_mean": 26.4352159468, "line_max": 79, "alpha_frac": 0.6248486316, "autogenerated": false, "ratio": 3.726534296028881, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5351382927628882, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import types import re from datashape.typesets import TypeSet, matches_typeset from datashape import (from_numba_str, to_numba, broadcastable) from blaze.py2help import _strtypes, PY2 from .. import llvm_array as lla from .blaze_kernels import BlazeElementKernel, frompyfunc def process_signature(ranksignature): """ Convert list of comma-separated strings into a list of integers showing the rank of each argument and a list of sets of tuples. Each set shows dimensions of arguments that must match by indicating a 2-tuple where the first integer is the argument number (output is argument -1) and the second integer is the dimension Examples -------- >>> from blaze.bkernel.blfuncs import process_signature >>> process_signature(['M,L', 'L,K', 'K', '']) ([2, 2, 1, 0], [set([(2, 0), (1, 1)]), set([(0, 1), (1, 0)])]) """ ranklist = [0 if not arg else len(arg.split(',')) for arg in ranksignature] varmap = {} for i, arg in enumerate(ranksignature): if not arg: continue for k, var in enumerate(arg.split(',')): varmap.setdefault(var, []).append((i, k)) connections = [set(val) for val in varmap.values() if len(val) > 1] return ranklist, connections def get_signature(typetuple): sig = [','.join((str(x) for x in arg.shape)) for arg in typetuple] return process_signature(sig) def _convert_string(kind, source): try: func = getattr(blaze_kernels, 'from%s' % kind) except AttributeError: return ValueError("No conversion function for %s found." % kind) return func(source) # Parse numba-style calling string convention # and construct dshapes regex = re.compile('([^(]*)[(]([^)]*)[)]') def to_dshapes(mystr, output=False): ma = regex.match(mystr) if ma is None: raise ValueError("Cannot understand signature string % s" % mystr) else: ret, args = ma.groups() result = tuple(from_numba_str(x) for x in args.split(',')) if output: result += (from_numba_str(ret),) return result def convert_kernel(value, dshapes=None): template = None from llvm.core import FunctionType if isinstance(value, tuple): # Ex: ('cpp', source) or ('f8(f8,f8)', _add) if len(value) == 2 and isinstance(value[1], types.FunctionType) and \ isinstance(value[0], _strtypes): if '*' in value[0]: return None, (to_dshapes(value[0]), value[1]) krnl = frompyfunc(value[1], value[0]) # use Numba elif len(value) == 2 and isinstance(value[1], _strtypes) and \ isinstance(value[0], _strtypes): krnl = _convert_string(value[0], value[1]) # Use blaze_kernels.from<val0> else: raise TypeError("Cannot parse kernel specification %s" % value) elif isinstance(value, types.FunctionType): # Called when a function is used for value directly # dshapes must be present as the mapping and as datashapes istemplate = any(isinstance(ds, TypeSet) for ds in dshapes[:-1]) if istemplate: krnl = None template = (dshapes[:-1], value) else: args = ','.join(str(to_numba(ds)) for ds in dshapes[:-1]) signature = '{0}({1})'.format(str(to_numba(dshapes[-1])), args) krnl = frompyfunc(value, signature, dshapes=dshapes) elif isinstance(value, FunctionType): # Called the LLVM Function is used in directly krnl = BlazeElementKernel(value, dshapes=dshapes) else: raise TypeError("Cannot convert value = %s and dshapes = %s" % (value, dshapes)) return krnl, template def process_typetable(typetable): """ Process type-table dictionary which maps a signature list with (input-type1, input-type2, output_type) to a kernel into a lookup-table dictionary which maps an input-only signature list to a kernel matching those inputs. The output is placed with a tuple of the output-type plus the signature So far it assumes the types all have the same rank and deduces the signature from the first kernel found Also allows the typetable to have "templates" which don't resolve to kernels and are used if no matching kernel can be found. templates are list of 2-tuple (input signature data-shape, template) Numba will be used to jit the template at call-time to create a BlazeElementKernel. The input signature is a tuple of data-shape objects and TypeSets """ newtable = {} templates = [] if isinstance(typetable, list): for item in typetable: krnl, template = convert_kernel(item) if template is None: in_shapes = krnl.dshapes[:-1] newtable[in_shapes] = krnl else: templates.append(template) else: for key, value in typetable.items(): if not isinstance(value, BlazeElementKernel): value, template = convert_kernel(value, dshapes=key) if template is None: in_shapes = value.dshapes[:-1] newtable[in_shapes] = value else: templates.append(template) # FIXME: # Assumes the same ranklist and connections for all the keys if len(newtable.values()) > 0: key = next(iter(newtable.values())).dshapes ranklist, connections = get_signature(key) else: # Currently templates are all rank-0 ranklist = [0]*len(templates[0][0]) connections = [] return ranklist, connections, newtable, templates # Define the Blaze Function # * A Blaze Function is a callable that takes Concrete Arrays and returns # Deferred Concrete Arrays # * At the core of the Blaze Function is a kernel which is a type-resolved # element-wise expression graph where elements can be any contiguous # primitive type (right-most part of the data-shape) # * Kernels have a type signature which we break up into the rank-signature # and the primitive type signature because a BlazeFuncDeprecated will have one # rank-signature but possibly multiple primitive type signatures. # * Example BlazeFuncDeprecateds are sin, svd, eig, fft, sum, prod, inner1d, add, mul # etc --- kernels all work on in-memory "elements" class BlazeFuncDeprecated(object): # DEPRECATION NOTE: # This particular blaze func class is being deprecated in favour of # a new implementation, using the pykit system. Functionality will # be moved/copied from here as needed until this class can be removed. def __init__(self, name, typetable=None, template=None, inouts=[]): """ Construct a Blaze Function from a rank-signature and keyword arguments. The typetable is a dictionary with keys a tuple of types and values as corresponding BlazeScalarKernel objects. The tuple of types has Input types first with the Output Type last Arguments ========= name : string Name of the Blaze Function. typetable : dict Dictionary mapping argument types to blaze kernels. The kernels must all be BlazeElementKernel instances or convertible to BlazeElementKernel via the following mechanisms: python-function: converted via numba llvm-function: directly wrapped ctypes-function: wrapped via an llvm function call inouts : list of integers A list of the parameter indices which may be written to in addition to read from. (NotImplemented) """ self.name = name if typetable is None: self.ranks = None self.rankconnect = [] self.dispatch = {} self.templates = [] else: res = process_typetable(typetable) self.ranks, self.rankconnect, self.dispatch, self.templates = res self.inouts = inouts self._add_template(template) def _add_template(self, template): if template is None: return if lla.isiterable(template): for temp in template: self._add_template_sub(temp) else: self._add_template_sub(template) def _add_template_sub(self, template): if isinstance(template, tuple): self.add_template(template[0], signature=template[1]) else: self.add_template(template) @property def nin(self): return len(self.ranks)-1 def compatible(self, args): # check for broadcastability # TODO: figure out correct types as well dshapes = [arg._data.dshape for arg in args] return broadcastable(dshapes, self.ranks, rankconnect=self.rankconnect) # FIXME: This just does a dumb look-up # assumes input kernels all have the same rank def find_best_kernel(self, types): mtypes = [ds.sigform() for ds in types] ranks = [len(ds)-1 for ds in types] test_rank = min(ranks) mtypes = tuple(ds.subarray(rank-test_rank) for ds, rank in zip(mtypes, ranks)) krnl = None while test_rank >= 0: krnl = self.dispatch.get(mtypes, None) if krnl is not None or test_rank==0: break test_rank -= 1 mtypes = tuple(ds.subarray(1) for ds in mtypes) # Templates Only works for "measures" if krnl is None: measures = tuple(ds.measure for ds in types) for sig, template in self.templates: if sig == measures or matches_typeset(measures, sig): krnl = frompyfunc(template, [to_numba(x) for x in measures]) self.dispatch[measures] = krnl break if krnl is None: raise ValueError("Did not find matching kernel for " + str(mtypes)) return krnl def add_funcs(self, value): res = process_typetable(value) ranklist, connections, newtable, templates = res if self.ranks is None: self.ranks = ranklist self.rankconnect = connections self.dispatch.update(newtable) self.templates.extend(templates) def add_template(self, func, signature=None): if signature is None: fc = func.func_code if PY2 else func.__code__ signature = '*(%s)' % (','.join(['*']*fc.co_argcount)) keysig = to_dshapes(signature) self.templates.append((keysig, func)) # All templates are 0-rank if self.ranks is None: self.ranks = [0]*len(keysig)
{ "repo_name": "zeeshanali/blaze", "path": "blaze/compute/bkernel/blaze_func.py", "copies": "2", "size": "10904", "license": "bsd-3-clause", "hash": 6671404794311050000, "line_mean": 36.9930313589, "line_max": 88, "alpha_frac": 0.6161958914, "autogenerated": false, "ratio": 4, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.56161958914, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import types import datashape from datashape import dshape, var, datetime_, float32, int64, bool_ from datashape.util.testing import assert_dshape_equal import pandas as pd import pytest from blaze.compatibility import pickle from blaze.expr import ( Expr, Field, Node, coalesce, label, symbol, transform, ) def test_arguments(): assert Expr._arguments == ('_child',) assert Node._arguments == ('_child',) def test_Symbol(): e = symbol('e', '3 * 5 * {name: string, amount: int}') assert e.dshape == dshape('3 * 5 * {name: string, amount: int}') assert e.shape == (3, 5) assert str(e) == 'e' def test_symbol_caches(): assert symbol('e', 'int') is symbol('e', 'int') def test_Symbol_tokens(): assert symbol('x', 'int').isidentical(symbol('x', 'int')) assert not symbol('x', 'int').isidentical(symbol('x', 'int', 1)) def test_Field(): e = symbol('e', '3 * 5 * {name: string, amount: int}') assert 'name' in dir(e) assert e.name.dshape == dshape('3 * 5 * string') assert e.name.schema == dshape('string') assert e.amount._name == 'amount' def test_nested_fields(): e = symbol( 'e', '3 * {name: string, payments: var * {amount: int, when: datetime}}') assert e.payments.dshape == dshape( '3 * var * {amount: int, when: datetime}') assert e.payments.schema == dshape('{amount: int, when: datetime}') assert 'amount' in dir(e.payments) assert e.payments.amount.dshape == dshape('3 * var * int') @pytest.mark.xfail def test_partialed_methods_have_docstrings(): e = symbol('e', '3 * 5 * {name: string, amount: int}') assert 'string comparison' in e.name.str.like.__doc__ def test_relabel(): e = symbol('e', '{name: string, amount: int}') assert e.relabel(amount='balance').fields == ['name', 'balance'] def test_meaningless_relabel_doesnt_change_input(): e = symbol('e', '{name: string, amount: int}') assert e.relabel(amount='amount').isidentical(e) def test_relabel_with_invalid_identifiers_reprs_as_dict(): s = symbol('s', '{"0": int64}') assert str(s.relabel({'0': 'foo'})) == "s.relabel({'0': 'foo'})" def test_dir(): e = symbol('e', '3 * 5 * {name: string, amount: int, x: real}') assert 'name' in dir(e) assert 'name' not in dir(e.name) assert 'isnan' in dir(e.x) assert 'isnan' not in dir(e.amount) def test_label(): e = symbol('e', '3 * int') assert e._name == 'e' assert label(e, 'foo')._name == 'foo' assert label(e, 'e').isidentical(e) def test_fields_with_spaces(): e = symbol('e', '{x: int, "a b": int}') assert isinstance(e['a b'], Field) assert 'a b' not in dir(e) assert 'a_b' in dir(e) assert e.a_b.isidentical(e['a b']) def test_selection_name_matches_child(): t = symbol('t', 'var * {x: int, "a.b": int}') assert t.x[t.x > 0]._name == t.x._name assert t.x[t.x > 0].fields == t.x.fields def test_symbol_subs(): assert symbol('e', '{x: int}').isidentical(symbol('e', '{x: int}', None)) assert symbol('e', '{x: int}').isidentical(symbol('e', dshape('{x: int}'))) e = symbol('e', '{x: int, y: int}') f = symbol('f', '{x: int, y: int}') d = {'e': 'f'} assert e._subs(d).isidentical(f) def test_multiple_renames_on_series_fails(): t = symbol('s', 'var * {timestamp: datetime}') with pytest.raises(ValueError): t.timestamp.relabel(timestamp='date', hello='world') def test_map_with_rename(): t = symbol('s', 'var * {timestamp: datetime}') result = t.timestamp.map(lambda x: x.date(), schema='{date: datetime}') with pytest.raises(ValueError): result.relabel(timestamp='date') assert result.fields == ['date'] def test_non_option_does_not_have_notnull(): s = symbol('s', '5 * int32') assert not hasattr(s, 'notnull') def test_notnull_dshape(): assert symbol('s', '5 * ?int32').notnull().dshape == 5 * bool_ def test_hash_to_different_values(): s = symbol('s', var * datetime_) expr = s >= pd.Timestamp('20121001') expr2 = s >= '20121001' assert expr2 & expr is not None assert hash(expr) == hash(expr2) def test_hash(): e = symbol('e', 'int') h = hash(e) assert isinstance(h, int) assert h == hash(e) assert hash(symbol('e', 'int')) == hash(symbol('e', 'int')) f = symbol('f', 'int') assert hash(e) != hash(f) assert hash(e._subs({'e': 'f'})) != hash(e) assert hash(e._subs({'e': 'f'})) == hash(f) @pytest.mark.parametrize('dshape', [var * float32, dshape('var * float32'), 'var * float32']) def test_coerce(dshape): s = symbol('s', dshape) expr = s.coerce('int64') assert str(expr) == "s.coerce(to='int64')" assert expr.dshape == var * int64 assert expr.schema == datashape.dshape('int64') assert expr.schema == expr.to @pytest.mark.xfail(raises=AttributeError, reason='Should this be valid?') def test_coerce_record(): s = symbol('s', 'var * {a: int64, b: float64}') expr = s.coerce('{a: float64, b: float32}') assert str(expr) == "s.coerce(to='{a: float64, b: float32}')" def test_method_before_name(): t = symbol('t', 'var * {isin: int64, max: float64, count: int64}') assert isinstance(t['isin'], Field) assert isinstance(t['max'], Field) assert isinstance(t.max, Field) assert isinstance(t.isin, Field) assert isinstance(t['isin'].isin, types.MethodType) assert isinstance(t['max'].max, types.MethodType) assert isinstance(t.max.max, types.MethodType) assert isinstance(t.isin.isin, types.MethodType) with pytest.raises(AttributeError): t.count.max() def test_pickle_roundtrip(): t = symbol('t', 'var * int64') expr = (t + 1).mean() # some expression with more than one node. assert expr.isidentical(pickle.loads( pickle.dumps(expr, protocol=pickle.HIGHEST_PROTOCOL), )) def test_coalesce(): # check case where lhs is not optional s = symbol('s', 'int32') t = symbol('t', 'int32') expr = coalesce(s, t) assert expr.isidentical(s) s_expr = s + s t_expr = t * 3 expr = coalesce(s_expr, t_expr) assert expr.isidentical(s_expr) a = symbol('a', 'string') b = symbol('b', 'string') expr = coalesce(a, b) assert expr.isidentical(a) a_expr = a + a b_expr = b * 3 expr = coalesce(a_expr, b_expr) assert expr.isidentical(a_expr) c = symbol('c', 'var * {a: int32, b: int32}') d = symbol('d', 'var * {a: int32, b: int32}') expr = coalesce(c, d) assert expr.isidentical(c) c_expr = transform(c, a=c.a + 1) d_expr = transform(d, a=d.a * 3) expr = coalesce(c_expr, d_expr) assert expr.isidentical(c_expr) # check case where lhs is null dshape u = symbol('u', 'null') expr = coalesce(u, s) assert expr.isidentical(s) expr = coalesce(u, a) assert expr.isidentical(a) expr = coalesce(u, c) assert expr.isidentical(c) # check optional lhs non-optional rhs v = symbol('v', '?int32') expr = coalesce(v, s) # rhs is not optional so the expression cannot be null assert_dshape_equal(expr.dshape, dshape('int32')) assert expr.lhs.isidentical(v) assert expr.rhs.isidentical(s) e = symbol('e', '?string') expr = coalesce(e, a) assert_dshape_equal(expr.dshape, dshape('string')) assert expr.lhs.isidentical(e) assert expr.rhs.isidentical(a) f = symbol('f', '?{a: int32, b: int32}') expr = coalesce(f, c) assert_dshape_equal(expr.dshape, dshape('{a: int32, b: int32}')) assert expr.lhs.isidentical(f) assert expr.rhs.isidentical(c) # check optional lhs non-optional rhs with promotion w = symbol('w', 'int64') expr = coalesce(v, w) # rhs is not optional so the expression cannot be null # there are no either types in datashape so we are a type large enough # to hold either result assert_dshape_equal(expr.dshape, dshape('int64')) assert expr.lhs.isidentical(v) assert expr.rhs.isidentical(w) # check optional lhs and rhs x = symbol('x', '?int32') expr = coalesce(v, x) # rhs and lhs are optional so this might be null assert_dshape_equal(expr.dshape, dshape('?int32')) assert expr.lhs.isidentical(v) assert expr.rhs.isidentical(x) # check optional lhs and rhs with promotion y = symbol('y', '?int64') expr = coalesce(v, y) # rhs and lhs are optional so this might be null # there are no either types in datashape so we are a type large enough # to hold either result assert_dshape_equal(expr.dshape, dshape('?int64')) assert expr.lhs.isidentical(v) assert expr.rhs.isidentical(y) @pytest.mark.xfail(TypeError, reason='currently invalid type promotion') @pytest.mark.parametrize('lhs,rhs,expected', ( ('?{a: int32}', '{a: int64}', '{a: int64}'), ('?{a: int32}', '?{a: int64}', '?{a: int64}'), )) def test_coalesce_invalid_promotion(lhs, rhs, expected): # Joe 2016-03-16: imho promote(record, record) should check that the keys # are the same and then create a new record from: # zip(keys, map(promote, lhs, rhs)) f = symbol('e', lhs) g = symbol('g', rhs) expr = coalesce(f, g) assert_dshape_equal(expr.dshape, dshape(expected)) assert expr.lhs.isidentical(f) assert expr.rhs.isidentical(g) def test_cast(): s = symbol('s', 'int32') assert_dshape_equal(s.cast('int64').dshape, dshape('int64')) assert_dshape_equal(s.cast(dshape('int64')).dshape, dshape('int64')) assert_dshape_equal(s.cast('var * int32').dshape, dshape('var * int32')) assert_dshape_equal( s.cast(dshape('var * int64')).dshape, dshape('var * int64'), ) assert_dshape_equal(s.cast('var * int64').dshape, dshape('var * int64')) assert_dshape_equal( s.cast(dshape('var * int64')).dshape, dshape('var * int64'), ) def test_drop_field(): s = symbol('s', 'var * {a: int32, b: int64, c: float32, d: float64}') # dropping one field preserves order assert s.drop_field('a').isidentical(s[['b', 'c', 'd']]) assert s.drop_field('b').isidentical(s[['a', 'c', 'd']]) assert s.drop_field('c').isidentical(s[['a', 'b', 'd']]) assert s.drop_field('d').isidentical(s[['a', 'b', 'c']]) # dropping two fields preserves order assert s.drop_field('a', 'b').isidentical(s[['c', 'd']]) assert s.drop_field('a', 'c').isidentical(s[['b', 'd']]) assert s.drop_field('b', 'c').isidentical(s[['a', 'd']]) assert s.drop_field('b', 'd').isidentical(s[['a', 'c']]) # test dropping a field that is not actually a field of ``expr``. with pytest.raises(ValueError) as e: s.drop_field('fake') assert ( str(e.value) == "fields ['fake'] were not in the fields of expr (['a', 'b', 'c', 'd'])" ) # test dropping a multiple fields that is not actually a field of ``expr``. with pytest.raises(ValueError) as e: s.drop_field('e', 'f') assert ( str(e.value) == "fields ['e', 'f'] were not in the fields of expr" " (['a', 'b', 'c', 'd'])" ) # test dropping a mix of correct and missing fields with pytest.raises(ValueError) as e: s.drop_field('a', 'fake') assert ( str(e.value) == "fields ['fake'] were not in the fields of expr (['a', 'b', 'c', 'd'])" )
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/expr/tests/test_expr.py", "copies": "3", "size": "11527", "license": "bsd-3-clause", "hash": 5820691553834571000, "line_mean": 29.820855615, "line_max": 81, "alpha_frac": 0.600242908, "autogenerated": false, "ratio": 3.067323044172432, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0000326072779444372, "num_lines": 374 }
from __future__ import absolute_import, division, print_function import types import datashape from datashape import dshape, var, datetime_, float32, int64, bool_ import pandas as pd import pytest from blaze.compatibility import pickle from blaze.expr import symbol, label, Field, Expr, Node def test_slots(): assert Expr.__slots__ == ('_hash', '__weakref__', '__dict__') assert Node.__slots__ == () def test_Symbol(): e = symbol('e', '3 * 5 * {name: string, amount: int}') assert e.dshape == dshape('3 * 5 * {name: string, amount: int}') assert e.shape == (3, 5) assert str(e) == 'e' def test_symbol_caches(): assert symbol('e', 'int') is symbol('e', 'int') def test_Symbol_tokens(): assert symbol('x', 'int').isidentical(symbol('x', 'int')) assert not symbol('x', 'int').isidentical(symbol('x', 'int', 1)) def test_Field(): e = symbol('e', '3 * 5 * {name: string, amount: int}') assert 'name' in dir(e) assert e.name.dshape == dshape('3 * 5 * string') assert e.name.schema == dshape('string') assert e.amount._name == 'amount' def test_nested_fields(): e = symbol( 'e', '3 * {name: string, payments: var * {amount: int, when: datetime}}') assert e.payments.dshape == dshape( '3 * var * {amount: int, when: datetime}') assert e.payments.schema == dshape('{amount: int, when: datetime}') assert 'amount' in dir(e.payments) assert e.payments.amount.dshape == dshape('3 * var * int') def test_partialed_methods_have_docstrings(): e = symbol('e', '3 * 5 * {name: string, amount: int}') assert 'string comparison' in e.name.like.__doc__ def test_relabel(): e = symbol('e', '{name: string, amount: int}') assert e.relabel(amount='balance').fields == ['name', 'balance'] def test_meaningless_relabel_doesnt_change_input(): e = symbol('e', '{name: string, amount: int}') assert e.relabel(amount='amount').isidentical(e) def test_relabel_with_invalid_identifiers_reprs_as_dict(): s = symbol('s', '{"0": int64}') assert repr(s.relabel({'0': 'foo'})) == "s.relabel({'0': 'foo'})" def test_dir(): e = symbol('e', '3 * 5 * {name: string, amount: int, x: real}') assert 'name' in dir(e) assert 'name' not in dir(e.name) assert 'isnan' in dir(e.x) assert 'isnan' not in dir(e.amount) def test_label(): e = symbol('e', '3 * int') assert e._name == 'e' assert label(e, 'foo')._name == 'foo' assert label(e, 'e').isidentical(e) def test_fields_with_spaces(): e = symbol('e', '{x: int, "a b": int}') assert isinstance(e['a b'], Field) assert 'a b' not in dir(e) assert 'a_b' in dir(e) assert e.a_b.isidentical(e['a b']) def test_fields_with_spaces(): e = symbol('e', '{x: int, "a.b": int}') assert isinstance(e['a.b'], Field) assert 'a.b' not in dir(e) assert 'a_b' in dir(e) assert e.a_b.isidentical(e['a.b']) def test_selection_name_matches_child(): t = symbol('t', 'var * {x: int, "a.b": int}') assert t.x[t.x > 0]._name == t.x._name assert t.x[t.x > 0].fields == t.x.fields def test_symbol_subs(): assert symbol('e', '{x: int}') is symbol('e', '{x: int}', None) assert symbol('e', '{x: int}') is symbol('e', dshape('{x: int}')) e = symbol('e', '{x: int, y: int}') f = symbol('f', '{x: int, y: int}') d = {'e': 'f'} assert e._subs(d) is f def test_multiple_renames_on_series_fails(): t = symbol('s', 'var * {timestamp: datetime}') with pytest.raises(ValueError): t.timestamp.relabel(timestamp='date', hello='world') def test_map_with_rename(): t = symbol('s', 'var * {timestamp: datetime}') result = t.timestamp.map(lambda x: x.date(), schema='{date: datetime}') with pytest.raises(ValueError): result.relabel(timestamp='date') assert result.fields == ['date'] def test_non_option_does_not_have_notnull(): s = symbol('s', '5 * int32') assert not hasattr(s, 'notnull') def test_notnull_dshape(): assert symbol('s', '5 * ?int32').notnull().dshape == 5 * bool_ def test_hash_to_different_values(): s = symbol('s', var * datetime_) expr = s >= pd.Timestamp('20121001') expr2 = s >= '20121001' assert expr2 & expr is not None assert hash(expr) == hash(expr2) @pytest.mark.parametrize('dshape', [var * float32, dshape('var * float32'), 'var * float32']) def test_coerce(dshape): s = symbol('s', dshape) expr = s.coerce('int64') assert str(expr) == "s.coerce(to='int64')" assert expr.dshape == var * int64 assert expr.schema == datashape.dshape('int64') assert expr.schema == expr.to @pytest.mark.xfail(raises=AttributeError, reason='Should this be valid?') def test_coerce_record(): s = symbol('s', 'var * {a: int64, b: float64}') expr = s.coerce('{a: float64, b: float32}') assert str(expr) == "s.coerce(to='{a: float64, b: float32}')" def test_method_before_name(): t = symbol('t', 'var * {isin: int64, max: float64, count: int64}') assert isinstance(t['isin'], Field) assert isinstance(t['max'], Field) assert isinstance(t.max, Field) assert isinstance(t.isin, Field) assert isinstance(t['isin'].isin, types.MethodType) assert isinstance(t['max'].max, types.MethodType) assert isinstance(t.max.max, types.MethodType) assert isinstance(t.isin.isin, types.MethodType) with pytest.raises(AttributeError): t.count.max() def test_pickle_roundtrip(): t = symbol('t', 'var * int64') expr = (t + 1).mean() # some expression with more than one node. assert expr.isidentical(pickle.loads(pickle.dumps(expr)))
{ "repo_name": "cpcloud/blaze", "path": "blaze/expr/tests/test_expr.py", "copies": "2", "size": "5714", "license": "bsd-3-clause", "hash": -9188664547619333000, "line_mean": 29.2328042328, "line_max": 81, "alpha_frac": 0.5994049702, "autogenerated": false, "ratio": 3.1071234366503533, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9706205784576512, "avg_score": 0.00006452445476835722, "num_lines": 189 }
from __future__ import absolute_import, division, print_function import unicodedata import numpy as np from .. import Variable, coding from ..core.pycompat import OrderedDict, basestring, unicode_type # Special characters that are permitted in netCDF names except in the # 0th position of the string _specialchars = '_.@+- !"#$%&\()*,:;<=>?[]^`{|}~' # The following are reserved names in CDL and may not be used as names of # variables, dimension, attributes _reserved_names = set(['byte', 'char', 'short', 'ushort', 'int', 'uint', 'int64', 'uint64', 'float' 'real', 'double', 'bool', 'string']) # These data-types aren't supported by netCDF3, so they are automatically # coerced instead as indicated by the "coerce_nc3_dtype" function _nc3_dtype_coercions = {'int64': 'int32', 'bool': 'int8'} # encode all strings as UTF-8 STRING_ENCODING = 'utf-8' def coerce_nc3_dtype(arr): """Coerce an array to a data type that can be stored in a netCDF-3 file This function performs the following dtype conversions: int64 -> int32 bool -> int8 Data is checked for equality, or equivalence (non-NaN values) with `np.allclose` with the default keyword arguments. """ dtype = str(arr.dtype) if dtype in _nc3_dtype_coercions: new_dtype = _nc3_dtype_coercions[dtype] # TODO: raise a warning whenever casting the data-type instead? cast_arr = arr.astype(new_dtype) if not (cast_arr == arr).all(): raise ValueError('could not safely cast array from dtype %s to %s' % (dtype, new_dtype)) arr = cast_arr return arr def encode_nc3_attr_value(value): if isinstance(value, bytes): pass elif isinstance(value, unicode_type): value = value.encode(STRING_ENCODING) else: value = coerce_nc3_dtype(np.atleast_1d(value)) if value.ndim > 1: raise ValueError("netCDF attributes must be 1-dimensional") return value def encode_nc3_attrs(attrs): return OrderedDict([(k, encode_nc3_attr_value(v)) for k, v in attrs.items()]) def encode_nc3_variable(var): for coder in [coding.strings.EncodedStringCoder(allows_unicode=False), coding.strings.CharacterArrayCoder()]: var = coder.encode(var) data = coerce_nc3_dtype(var.data) attrs = encode_nc3_attrs(var.attrs) return Variable(var.dims, data, attrs, var.encoding) def _isalnumMUTF8(c): """Return True if the given UTF-8 encoded character is alphanumeric or multibyte. Input is not checked! """ return c.isalnum() or (len(c.encode('utf-8')) > 1) def is_valid_nc3_name(s): """Test whether an object can be validly converted to a netCDF-3 dimension, variable or attribute name Earlier versions of the netCDF C-library reference implementation enforced a more restricted set of characters in creating new names, but permitted reading names containing arbitrary bytes. This specification extends the permitted characters in names to include multi-byte UTF-8 encoded Unicode and additional printing characters from the US-ASCII alphabet. The first character of a name must be alphanumeric, a multi-byte UTF-8 character, or '_' (reserved for special names with meaning to implementations, such as the "_FillValue" attribute). Subsequent characters may also include printing special characters, except for '/' which is not allowed in names. Names that have trailing space characters are also not permitted. """ if not isinstance(s, basestring): return False if not isinstance(s, unicode_type): s = s.decode('utf-8') num_bytes = len(s.encode('utf-8')) return ((unicodedata.normalize('NFC', s) == s) and (s not in _reserved_names) and (num_bytes >= 0) and ('/' not in s) and (s[-1] != ' ') and (_isalnumMUTF8(s[0]) or (s[0] == '_')) and all((_isalnumMUTF8(c) or c in _specialchars for c in s)))
{ "repo_name": "jcmgray/xarray", "path": "xarray/backends/netcdf3.py", "copies": "1", "size": "4111", "license": "apache-2.0", "hash": -7908629870655553000, "line_mean": 35.3805309735, "line_max": 78, "alpha_frac": 0.6489905133, "autogenerated": false, "ratio": 3.7924354243542435, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9940540981902031, "avg_score": 0.00017699115044247788, "num_lines": 113 }
from __future__ import absolute_import, division, print_function import unittest from datetime import date, time, datetime import blaze from datashape import dshape from blaze.datadescriptor import ddesc_as_py class TestDate(unittest.TestCase): def test_create(self): a = blaze.array(date(2000, 1, 1)) self.assertEqual(a.dshape, dshape('date')) self.assertEqual(ddesc_as_py(a.ddesc), date(2000, 1, 1)) a = blaze.array([date(1490, 3, 12), date(2020, 7, 15)]) self.assertEqual(a.dshape, dshape('2 * date')) self.assertEqual(list(a), [date(1490, 3, 12), date(2020, 7, 15)]) a = blaze.array(['1490-03-12', '2020-07-15'], dshape='date') self.assertEqual(a.dshape, dshape('2 * date')) self.assertEqual(list(a), [date(1490, 3, 12), date(2020, 7, 15)]) def test_properties(self): a = blaze.array(['1490-03-12', '2020-07-15'], dshape='date') self.assertEqual(list(a.year), [1490, 2020]) self.assertEqual(list(a.month), [3, 7]) self.assertEqual(list(a.day), [12, 15]) class TestTime(unittest.TestCase): def test_create(self): a = blaze.array(time(14, 30)) self.assertEqual(a.dshape, dshape('time')) self.assertEqual(ddesc_as_py(a.ddesc), time(14, 30)) a = blaze.array([time(14, 30), time(12, 25, 39, 123456)]) self.assertEqual(a.dshape, dshape('2 * time')) self.assertEqual(list(a), [time(14, 30), time(12, 25, 39, 123456)]) a = blaze.array(['2:30 pm', '12:25:39.123456'], dshape='time') self.assertEqual(a.dshape, dshape('2 * time')) self.assertEqual(list(a), [time(14, 30), time(12, 25, 39, 123456)]) def test_properties(self): a = blaze.array([time(14, 30), time(12, 25, 39, 123456)], dshape='time') self.assertEqual(list(a.hour), [14, 12]) self.assertEqual(list(a.minute), [30, 25]) self.assertEqual(list(a.second), [0, 39]) self.assertEqual(list(a.microsecond), [0, 123456]) class TestDateTime(unittest.TestCase): def test_create(self): a = blaze.array(datetime(1490, 3, 12, 14, 30)) self.assertEqual(a.dshape, dshape('datetime')) self.assertEqual(ddesc_as_py(a.ddesc), datetime(1490, 3, 12, 14, 30)) a = blaze.array([datetime(1490, 3, 12, 14, 30), datetime(2020, 7, 15, 12, 25, 39, 123456)]) self.assertEqual(a.dshape, dshape('2 * datetime')) self.assertEqual(list(a), [datetime(1490, 3, 12, 14, 30), datetime(2020, 7, 15, 12, 25, 39, 123456)]) a = blaze.array(['1490-mar-12 2:30 pm', '2020-07-15T12:25:39.123456'], dshape='datetime') self.assertEqual(a.dshape, dshape('2 * datetime')) self.assertEqual(list(a), [datetime(1490, 3, 12, 14, 30), datetime(2020, 7, 15, 12, 25, 39, 123456)]) def test_properties(self): a = blaze.array([datetime(1490, 3, 12, 14, 30), datetime(2020, 7, 15, 12, 25, 39, 123456)], dshape='datetime') self.assertEqual(list(a.date), [date(1490, 3, 12), date(2020, 7, 15)]) self.assertEqual(list(a.time), [time(14, 30), time(12, 25, 39, 123456)]) self.assertEqual(list(a.year), [1490, 2020]) self.assertEqual(list(a.month), [3, 7]) self.assertEqual(list(a.day), [12, 15]) self.assertEqual(list(a.hour), [14, 12]) self.assertEqual(list(a.minute), [30, 25]) self.assertEqual(list(a.second), [0, 39]) self.assertEqual(list(a.microsecond), [0, 123456])
{ "repo_name": "sethkontny/blaze", "path": "blaze/tests/test_datetime.py", "copies": "2", "size": "3637", "license": "bsd-3-clause", "hash": 6781223384999112000, "line_mean": 46.8552631579, "line_max": 80, "alpha_frac": 0.5812482816, "autogenerated": false, "ratio": 3.0717905405405403, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46530388221405405, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import ctypes from datashape import dshape from blaze.datadescriptor import data_descriptor_from_ctypes, dd_as_py class TestCTypesMemBufDataDescriptor(unittest.TestCase): def test_scalar(self): a = ctypes.c_int(3) dd = data_descriptor_from_ctypes(a, writable=True) self.assertEqual(dd.dshape, dshape('int32')) self.assertEqual(dd_as_py(dd), 3) self.assertTrue(isinstance(dd_as_py(dd), int)) a = ctypes.c_float(3.25) dd = data_descriptor_from_ctypes(a, writable=True) self.assertEqual(dd.dshape, dshape('float32')) self.assertEqual(dd_as_py(dd), 3.25) self.assertTrue(isinstance(dd_as_py(dd), float)) def test_1d_array(self): a = (ctypes.c_short * 32)() for i in range(32): a[i] = 2*i dd = data_descriptor_from_ctypes(a, writable=True) self.assertEqual(dd.dshape, dshape('32, int16')) self.assertEqual(dd_as_py(dd), [2*i for i in range(32)]) a = (ctypes.c_double * 32)() for i in range(32): a[i] = 1.5*i dd = data_descriptor_from_ctypes(a, writable=True) self.assertEqual(dd.dshape, dshape('32, float64')) self.assertEqual(dd_as_py(dd), [1.5*i for i in range(32)]) def test_2d_array(self): a = (ctypes.c_double * 35 * 32)() vals = [[2**i + j for i in range(35)] for j in range(32)] for i in range(32): for j in range(35): a[i][j] = vals[i][j] dd = data_descriptor_from_ctypes(a, writable=True) self.assertEqual(dd.dshape, dshape('32, 35, float64')) self.assertEqual(dd_as_py(dd), vals) a = (ctypes.c_uint8 * 35 * 32)() vals = [[i + j*2 for i in range(35)] for j in range(32)] for i in range(32): for j in range(35): a[i][j] = vals[i][j] dd = data_descriptor_from_ctypes(a, writable=True) self.assertEqual(dd.dshape, dshape('32, 35, uint8')) self.assertEqual(dd_as_py(dd), vals) def test_3d_array(self): # Simple 3D array a = (ctypes.c_uint32 * 10 * 12 * 14)() vals = [[[(i + 2*j + 3*k) for i in range(10)] for j in range(12)] for k in range(14)] for i in range(14): for j in range(12): for k in range(10): a[i][j][k] = vals[i][j][k] dd = data_descriptor_from_ctypes(a, writable=True) self.assertEqual(dd.dshape, dshape('14, 12, 10, uint32')) self.assertEqual(dd_as_py(dd), vals) if __name__ == '__main__': unittest.main()
{ "repo_name": "aaronmartin0303/blaze", "path": "blaze/datadescriptor/tests/test_ctypes_membuf_data_descriptor.py", "copies": "1", "size": "2747", "license": "bsd-3-clause", "hash": -2510047899395444000, "line_mean": 35.1447368421, "line_max": 70, "alpha_frac": 0.552238806, "autogenerated": false, "ratio": 3.2016317016317015, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4253870507631701, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import ctypes import blaze from blaze.datadescriptor import data_descriptor_from_ctypes class TestArrayStr(unittest.TestCase): def test_scalar(self): self.assertEqual(str(blaze.array(100)), '100') self.assertEqual(str(blaze.array(-3.25)), '-3.25') self.assertEqual(str(blaze.array(True)), 'True') self.assertEqual(str(blaze.array(False)), 'False') def test_deferred_scalar(self): a = blaze.array(3) + blaze.array(5) self.assertEqual(str(a), '8') def test_ctypes_scalar(self): dd = data_descriptor_from_ctypes(ctypes.c_int32(1022), writable=True) a = blaze.array(dd) self.assertEqual(str(a), '1022') def test_1d_array(self): self.assertEqual(str(blaze.array([1,2,3])), '[1 2 3]') def test_ctypes_1d_array(self): cdat = (ctypes.c_int64 * 3)() cdat[0] = 3 cdat[1] = 6 cdat[2] = 10 dd = data_descriptor_from_ctypes(cdat, writable=True) a = blaze.array(dd) self.assertEqual(str(a), '[ 3 6 10]') def test_ragged_array(self): a = blaze.array([[1,2,3],[4,5]]) self.assertEqual(str(a), '[[ 1 2 3]\n [ 4 5]]') def test_empty_array(self): a = blaze.array([[], []]) self.assertEqual(str(a), '[[]\n []]') a = blaze.array([[], [1, 2]]) self.assertEqual(str(a), '[[]\n [ 1 2]]') def test_str_array(self): # Basically check that it doesn't raise an exception to # get the string a = blaze.array(['this', 'is', 'a', 'test']) self.assertTrue(str(a) != '') self.assertTrue(repr(a) != '') def test_struct_array(self): # Basically check that it doesn't raise an exception to # get the string a = blaze.array([(1, 2), (3, 4), (5, 6)], dshape='{x: int32; y: float64}') self.assertTrue(str(a) != '') self.assertTrue(repr(a) != '') if __name__ == '__main__': unittest.main(verbosity=2)
{ "repo_name": "aaronmartin0303/blaze", "path": "blaze/tests/test_array_str.py", "copies": "1", "size": "2135", "license": "bsd-3-clause", "hash": -5126686716650982000, "line_mean": 31.8461538462, "line_max": 77, "alpha_frac": 0.5489461358, "autogenerated": false, "ratio": 3.1913303437967113, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4240276479596711, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import math import blaze from blaze.datadescriptor import ddesc_as_py class TestBasic(unittest.TestCase): def test_add(self): types = ['int8', 'int16', 'int32', 'int64'] for type_ in types: a = blaze.array(range(3), dshape=type_) c = blaze.eval(a+a) self.assertEqual(ddesc_as_py(c.ddesc), [0, 2, 4]) c = blaze.eval(((a+a)*a)) self.assertEqual(ddesc_as_py(c.ddesc), [0, 2, 8]) def test_add_with_pyobj(self): a = blaze.array(3) + 3 self.assertEqual(ddesc_as_py(a.ddesc), 6) a = 3 + blaze.array(4) self.assertEqual(ddesc_as_py(a.ddesc), 7) a = blaze.array([1, 2]) + 4 self.assertEqual(ddesc_as_py(a.ddesc), [5, 6]) a = [1, 2] + blaze.array(5) self.assertEqual(ddesc_as_py(a.ddesc), [6, 7]) #FIXME: Need to convert uint8 from dshape to ctypes # in _get_ctypes of blaze_kernel.py def test_mixed(self): types1 = ['int8', 'int16', 'int32', 'int64'] types2 = ['int16', 'int32', 'float32', 'float64'] for ty1, ty2 in zip(types1, types2): a = blaze.array(range(1,6), dshape=ty1) b = blaze.array(range(5), dshape=ty2) c = (a+b)*(a-b) c = blaze.eval(c) result = [a*a - b*b for (a,b) in zip(range(1,6),range(5))] self.assertEqual(ddesc_as_py(c.ddesc), result) def test_ragged(self): a = blaze.array([[1], [2, 3], [4, 5, 6]]) b = blaze.array([[1, 2, 3], [4, 5], [6]]) c = blaze.eval(a + b) self.assertEqual(ddesc_as_py(c.ddesc), [[2, 3, 4], [6, 8], [10, 11, 12]]) c = blaze.eval(2 * a - b) self.assertEqual(ddesc_as_py(c.ddesc), [[1, 0, -1], [0, 1], [2, 4, 6]]) class TestReduction(unittest.TestCase): def test_min_zerosize(self): # Empty min operations should raise, because it has no # reduction identity self.assertRaises(ValueError, blaze.eval, blaze.min([])) self.assertRaises(ValueError, blaze.eval, blaze.min([], keepdims=True)) self.assertRaises(ValueError, blaze.eval, blaze.min([[], []])) self.assertRaises(ValueError, blaze.eval, blaze.min([[], []], keepdims=True)) self.assertRaises(ValueError, blaze.eval, blaze.min([[], []], axis=-1)) self.assertRaises(ValueError, blaze.eval, blaze.min([[], []], axis=-1, keepdims=True)) # However, if we're only reducing on a non-empty dimension, it's ok self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[], []], axis=0)).ddesc), []) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[], []], axis=0, keepdims=True)).ddesc), [[]]) def test_min(self): # Min element of scalar case is the element itself self.assertEqual(ddesc_as_py(blaze.eval(blaze.min(10)).ddesc), 10) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min(-5.0)).ddesc), -5.0) # One-dimensional size one self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([10])).ddesc), 10) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([-5.0])).ddesc), -5.0) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([-5.0], axis=0)).ddesc), -5.0) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([10], keepdims=True)).ddesc), [10]) # One dimensional self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([1, 2])).ddesc), 1) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([2, 1])).ddesc), 1) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([0, 1, 0])).ddesc), 0) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([0, 1, 0])).ddesc), 0) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([1, 0, 2])).ddesc), 0) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([2, 1, 0])).ddesc), 0) # Two dimensional, test with minimum at all possible positions self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[1, 2, 3], [4, 5, 6]])).ddesc), 1) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[2, 1, 3], [4, 5, 6]])).ddesc), 1) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[3, 2, 1], [4, 5, 6]])).ddesc), 1) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[3, 2, 5], [4, 1, 6]])).ddesc), 1) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[3, 2, 5], [4, 6, 1]])).ddesc), 1) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[3, 2, 5], [1, 6, 4]])).ddesc), 1) # Two dimensional, with axis= argument both positive and negative self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[1, 5, 3], [4, 2, 6]], axis=0)).ddesc), [1, 2, 3]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[1, 5, 3], [4, 2, 6]], axis=-2)).ddesc), [1, 2, 3]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[1, 2, 3], [4, 5, 6]], axis=1)).ddesc), [1, 4]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[1, 2, 3], [4, 5, 6]], axis=-1)).ddesc), [1, 4]) # Two dimensional, with keepdims=True self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[1, 2, 3], [4, 5, 6]], keepdims=True)).ddesc), [[1]]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[1, 2, 3], [5, 4, 6]], axis=0, keepdims=True)).ddesc), [[1, 2, 3]]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.min([[1, 5, 3], [4, 2, 6]], axis=1, keepdims=True)).ddesc), [[1], [2]]) def test_sum_zerosize(self): # Empty sum operations should produce 0, the reduction identity self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([])).ddesc), 0) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([], keepdims=True)).ddesc), [0]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[], []])).ddesc), 0) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[], []], keepdims=True)).ddesc), [[0]]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[], []], axis=-1)).ddesc), [0, 0]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[], []], axis=-1, keepdims=True)).ddesc), [[0], [0]]) # If we're only reducing on a non-empty dimension, we might still # end up with zero-sized outputs self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[], []], axis=0)).ddesc), []) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[], []], axis=0, keepdims=True)).ddesc), [[]]) def test_sum(self): # Sum of scalar case is the element itself self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum(10)).ddesc), 10) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum(-5.0)).ddesc), -5.0) # One-dimensional size one self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([10])).ddesc), 10) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([-5.0])).ddesc), -5.0) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([-5.0], axis=0)).ddesc), -5.0) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([10], keepdims=True)).ddesc), [10]) # One dimensional self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([1, 2])).ddesc), 3) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([0, 1, 2])).ddesc), 3) # Two dimensional self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[1, 2, 3], [4, 5, 6]])).ddesc), 21) # Two dimensional, with axis= argument both positive and negative self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[1, 5, 3], [4, 2, 6]], axis=0)).ddesc), [5, 7, 9]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[1, 5, 3], [4, 2, 6]], axis=-2)).ddesc), [5, 7, 9]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[1, 2, 3], [4, 5, 6]], axis=1)).ddesc), [6, 15]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[1, 2, 3], [4, 5, 6]], axis=-1)).ddesc), [6, 15]) # Two dimensional, with keepdims=True self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[1, 2, 3], [4, 5, 6]], keepdims=True)).ddesc), [[21]]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[1, 2, 3], [5, 4, 6]], axis=0, keepdims=True)).ddesc), [[6, 6, 9]]) self.assertEqual(ddesc_as_py(blaze.eval(blaze.sum([[1, 5, 3], [4, 2, 6]], axis=1, keepdims=True)).ddesc), [[9], [12]]) def test_all(self): # Sanity check of reduction op self.assertEqual(ddesc_as_py(blaze.eval(blaze.all(True)).ddesc), True) self.assertEqual(ddesc_as_py(blaze.eval(blaze.all(False)).ddesc), False) self.assertEqual(ddesc_as_py(blaze.eval(blaze.all(blaze.array([], dshape='0 * bool'))).ddesc), True) self.assertEqual(ddesc_as_py(blaze.eval(blaze.all([False, True])).ddesc), False) self.assertEqual(ddesc_as_py(blaze.eval(blaze.all([True, True])).ddesc), True) def test_any(self): # Sanity check of reduction op self.assertEqual(ddesc_as_py(blaze.eval(blaze.any(True)).ddesc), True) self.assertEqual(ddesc_as_py(blaze.eval(blaze.any(False)).ddesc), False) self.assertEqual(ddesc_as_py(blaze.eval(blaze.any(blaze.array([], dshape='0 * bool'))).ddesc), False) self.assertEqual(ddesc_as_py(blaze.eval(blaze.any([False, True])).ddesc), True) self.assertEqual(ddesc_as_py(blaze.eval(blaze.any([False, False])).ddesc), False) def test_max(self): # Sanity check of reduction op self.assertEqual(ddesc_as_py(blaze.eval(blaze.max(5)).ddesc), 5) self.assertRaises(ValueError, blaze.eval, blaze.max([])) self.assertEqual(ddesc_as_py(blaze.eval(blaze.max([3, -2])).ddesc), 3) self.assertEqual(ddesc_as_py(blaze.eval(blaze.max([1.5, 2.0])).ddesc), 2.0) def test_product(self): # Sanity check of reduction op self.assertEqual(ddesc_as_py(blaze.eval(blaze.product(5)).ddesc), 5) self.assertEqual(ddesc_as_py(blaze.eval(blaze.product([])).ddesc), 1) self.assertEqual(ddesc_as_py(blaze.eval(blaze.product([3, -2])).ddesc), -6) self.assertEqual(ddesc_as_py(blaze.eval(blaze.product([1.5, 2.0])).ddesc), 3.0) class TestRolling(unittest.TestCase): def test_rolling_mean(self): a = blaze.eval(blaze.rolling_mean([1., 3, 4, 2, 5], window=4)) self.assertTrue(all(math.isnan(x) for x in a[:3])) self.assertEqual(list(a[3:]), [10./4, 14./4]) def test_diff(self): a = blaze.eval(blaze.diff([1., 2, 4, 4, 2, 0])) self.assertTrue(math.isnan(a[0])) self.assertEqual(list(a[1:]), [1, 2, 0, -2, -2]) class TestTake(unittest.TestCase): def test_masked_take(self): a = blaze.take([1, 3, 5, 7], [True, False, True, False]) self.assertEqual(list(a), [1, 5]) x = blaze.array([(1, "test"), (2, "one"), (3, "two"), (4, "three")], dshape="{x: int, y: string}") a = blaze.take(x, [True, True, True, True]) self.assertEqual(list(a), list(x)) a = blaze.take(x, [True, True, False, False]) self.assertEqual(list(a), [x[0], x[1]]) a = blaze.take(x, [False, False, True, True]) self.assertEqual(list(a), [x[2], x[3]]) a = blaze.take(x, [True, False, True, False]) self.assertEqual(list(a), [x[0], x[2]]) def test_indexed_take(self): a = blaze.take([1, 3, 5, 7], [-1, -2, -3, -4, 0, 1, 2, 3]) self.assertEqual(list(a), [7, 5, 3, 1, 1, 3, 5, 7]) x = blaze.array([(1, "test"), (2, "one"), (3, "two"), (4, "three")], dshape="{x: int, y: string}") a = blaze.take(x, [2, -3]) self.assertEqual(list(a), [x[2], x[-3]]) if __name__ == '__main__': unittest.main()
{ "repo_name": "sethkontny/blaze", "path": "blaze/tests/test_calc.py", "copies": "1", "size": "15622", "license": "bsd-3-clause", "hash": -8707900961701460000, "line_mean": 51.9559322034, "line_max": 109, "alpha_frac": 0.4357956728, "autogenerated": false, "ratio": 3.585494606380537, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9506679899669886, "avg_score": 0.0029220759021301623, "num_lines": 295 }
from __future__ import absolute_import, division, print_function import unittest import os import os.path from astropy.io import fits import numpy as np import desispec.scripts.preproc from desispec.preproc import preproc, _parse_sec_keyword, _clipped_std_bias from desispec import io def xy2hdr(xyslice): ''' convert 2D slice into IRAF style [a:b,c:d] header value e.g. xyslice2header(np.s_[0:10, 5:20]) -> '[6:20,1:10]' ''' yy, xx = xyslice value = '[{}:{},{}:{}]'.format(xx.start+1, xx.stop, yy.start+1, yy.stop) return value class TestPreProc(unittest.TestCase): def tearDown(self): for filename in [self.calibfile, self.rawfile, self.pixfile]: if os.path.exists(filename): os.remove(filename) def setUp(self): self.calibfile = 'test-calib-askjapqwhezcpasehadfaqp.fits' self.rawfile = 'test-raw-askjapqwhezcpasehadfaqp.fits' self.pixfile = 'test-pix-askjapqwhezcpasehadfaqp.fits' hdr = dict() hdr['CAMERA'] = 'b0' hdr['DATE-OBS'] = '2018-09-23T08:17:03.988' #- [x,y] 1-indexed for FITS; in reality the amps will be symmetric #- but the header definitions don't require that to make sure we are #- getting dimensions correct #- Dimensions per amp, not full 4-quad CCD self.ny = ny = 500 self.nx = nx = 400 self.noverscan = nover = 50 #- BIASSEC = overscan region in raw image #- DATASEC = data region in raw image #- CCDSEC = where should this go in output hdr['BIASSEC1'] = xy2hdr(np.s_[0:ny, nx:nx+nover]) hdr['DATASEC1'] = xy2hdr(np.s_[0:ny, 0:nx]) hdr['CCDSEC1'] = xy2hdr(np.s_[0:ny, 0:nx]) hdr['BIASSEC2'] = xy2hdr(np.s_[0:ny, nx+nover:nx+2*nover]) hdr['DATASEC2'] = xy2hdr(np.s_[0:ny, nx+2*nover:nx+2*nover+nx]) hdr['CCDSEC2'] = xy2hdr(np.s_[0:ny, nx:nx+nx]) hdr['BIASSEC3'] = xy2hdr(np.s_[ny:ny+ny, nx:nx+nover]) hdr['DATASEC3'] = xy2hdr(np.s_[ny:ny+ny, 0:nx]) hdr['CCDSEC3'] = xy2hdr(np.s_[ny:ny+ny, 0:nx]) hdr['BIASSEC4'] = xy2hdr(np.s_[ny:ny+ny, nx+nover:nx+2*nover]) hdr['DATASEC4'] = xy2hdr(np.s_[ny:ny+ny, nx+2*nover:nx+2*nover+nx]) hdr['CCDSEC4'] = xy2hdr(np.s_[ny:ny+ny, nx:nx+nx]) hdr['NIGHT'] = '20150102' hdr['EXPID'] = 1 self.header = hdr self.rawimage = np.zeros((2*self.ny, 2*self.nx+2*self.noverscan)) self.offset = {'1':100.0, '2':100.5, '3':50.3, '4':200.4} self.gain = {'1':1.0, '2':1.5, '3':0.8, '4':1.2} self.rdnoise = {'1':2.0, '2':2.2, '3':2.4, '4':2.6} self.quad = { '1': np.s_[0:ny, 0:nx], '2': np.s_[0:ny, nx:nx+nx], '3': np.s_[ny:ny+ny, 0:nx], '4': np.s_[ny:ny+ny, nx:nx+nx], } for amp in ('1', '2', '3', '4'): self.header['GAIN'+amp] = self.gain[amp] self.header['RDNOISE'+amp] = self.rdnoise[amp] xy = _parse_sec_keyword(hdr['BIASSEC'+amp]) shape = [xy[0].stop-xy[0].start, xy[1].stop-xy[1].start] self.rawimage[xy] += self.offset[amp] self.rawimage[xy] += np.random.normal(scale=self.rdnoise[amp], size=shape)/self.gain[amp] xy = _parse_sec_keyword(hdr['DATASEC'+amp]) shape = [xy[0].stop-xy[0].start, xy[1].stop-xy[1].start] self.rawimage[xy] += self.offset[amp] self.rawimage[xy] += np.random.normal(scale=self.rdnoise[amp], size=shape)/self.gain[amp] #- raw data are integers, not floats self.rawimage = self.rawimage.astype(np.int32) #- Confirm that all regions were correctly offset assert not np.any(self.rawimage == 0.0) def test_preproc(self): image = preproc(self.rawimage, self.header) self.assertEqual(image.pix.shape, (2*self.ny, 2*self.nx)) self.assertTrue(np.all(image.ivar <= 1/image.readnoise**2)) for amp in ('1', '2', '3', '4'): pix = image.pix[self.quad[amp]] rdnoise = np.median(image.readnoise[self.quad[amp]]) npixover = self.ny * self.noverscan self.assertAlmostEqual(np.mean(pix), 0.0, delta=3*rdnoise/np.sqrt(npixover)) self.assertAlmostEqual(np.std(pix), self.rdnoise[amp], delta=0.2) self.assertAlmostEqual(rdnoise, self.rdnoise[amp], delta=0.2) def test_bias(self): image = preproc(self.rawimage, self.header, bias=False) bias = np.zeros(self.rawimage.shape) image = preproc(self.rawimage, self.header, bias=bias) fits.writeto(self.calibfile, bias) image = preproc(self.rawimage, self.header, bias=self.calibfile) with self.assertRaises(ValueError): image = preproc(self.rawimage, self.header, bias=bias[0:10, 0:10]) def test_pixflat(self): image = preproc(self.rawimage, self.header, pixflat=False) pixflat = np.ones_like(image.pix) image = preproc(self.rawimage, self.header, pixflat=pixflat) fits.writeto(self.calibfile, pixflat) image = preproc(self.rawimage, self.header, pixflat=self.calibfile) with self.assertRaises(ValueError): image = preproc(self.rawimage, self.header, pixflat=pixflat[0:10, 0:10]) def test_mask(self): image = preproc(self.rawimage, self.header, mask=False) mask = np.random.randint(0, 2, size=image.pix.shape) image = preproc(self.rawimage, self.header, mask=mask) self.assertTrue(np.all(image.mask == mask)) fits.writeto(self.calibfile, mask) image = preproc(self.rawimage, self.header, mask=self.calibfile) self.assertTrue(np.all(image.mask == mask)) with self.assertRaises(ValueError): image = preproc(self.rawimage, self.header, mask=mask[0:10, 0:10]) def test_pixflat_mask(self): from desispec.maskbits import ccdmask pixflat = np.ones((2*self.ny, 2*self.nx)) pixflat[0:10, 0:10] = 0.0 pixflat[10:20, 10:20] = 0.05 image = preproc(self.rawimage, self.header, pixflat=pixflat) self.assertTrue(np.all(image.mask[0:10,0:10] & ccdmask.PIXFLATZERO)) self.assertTrue(np.all(image.mask[10:20,10:20] & ccdmask.PIXFLATLOW)) def test_io(self): io.write_raw(self.rawfile, self.rawimage, self.header, camera='b0') io.write_raw(self.rawfile, self.rawimage, self.header, camera='R1') io.write_raw(self.rawfile, self.rawimage, self.header, camera='z9') self.header['CAMERA'] = 'B1' io.write_raw(self.rawfile, self.rawimage, self.header) b0 = io.read_raw(self.rawfile, 'b0') b1 = io.read_raw(self.rawfile, 'b1') r1 = io.read_raw(self.rawfile, 'r1') z9 = io.read_raw(self.rawfile, 'Z9') self.assertEqual(b0.meta['CAMERA'], 'b0') self.assertEqual(b1.meta['CAMERA'], 'b1') self.assertEqual(r1.meta['CAMERA'], 'r1') self.assertEqual(z9.meta['CAMERA'], 'z9') def test_32_64(self): ''' 64-bit integers aren't supported for compressed HDUs; make sure we handle that gracefully ''' data64 = np.linspace(0, 2**60, 10, dtype=np.int64) datasmall64 = np.linspace(0, 2**30, 10, dtype=np.int64) data32 = np.linspace(0, 2**30, 10, dtype=np.int32) data16 = np.linspace(0, 2**10, 10, dtype=np.int16) #- Primary HDU should be blank #- Should be written as vanilla ImageHDU io.write_raw(self.rawfile, data64, self.header, camera='b0') #- Should be written as vanilla ImageHDU io.write_raw(self.rawfile, data64, self.header, camera='b1') #- Should be converted to 32-bit CompImageHDU io.write_raw(self.rawfile, datasmall64, self.header, camera='b2') #- Should be 32-bit CompImageHDU io.write_raw(self.rawfile, data32, self.header, camera='b3') #- Should be 16-bit CompImageHDU io.write_raw(self.rawfile, data16, self.header, camera='b4') fx = fits.open(self.rawfile) #- Blank PrimaryHDU should have been inserted self.assertTrue(isinstance(fx[0], fits.PrimaryHDU)) self.assertTrue(fx[0].data == None) #- 64-bit image written uncompressed after blank HDU self.assertTrue(isinstance(fx[1], fits.ImageHDU)) self.assertEqual(fx[1].data.dtype, np.dtype('>i8')) self.assertEqual(fx[1].header['EXTNAME'], 'B0') #- 64-bit image written uncompressed self.assertTrue(isinstance(fx[2], fits.ImageHDU)) self.assertEqual(fx[2].data.dtype, np.dtype('>i8')) self.assertEqual(fx[2].header['EXTNAME'], 'B1') #- 64-bit image with small numbers converted to 32-bit compressed self.assertTrue(isinstance(fx[3], fits.CompImageHDU)) self.assertEqual(fx[3].data.dtype, np.int32) self.assertEqual(fx[3].header['EXTNAME'], 'B2') #- 32-bit image written compressed self.assertTrue(isinstance(fx[4], fits.CompImageHDU)) self.assertEqual(fx[4].data.dtype, np.int32) self.assertEqual(fx[4].header['EXTNAME'], 'B3') #- 16-bit image written compressed self.assertTrue(isinstance(fx[5], fits.CompImageHDU)) self.assertEqual(fx[5].data.dtype, np.int16) self.assertEqual(fx[5].header['EXTNAME'], 'B4') def test_keywords(self): for keyword in self.header.keys(): #- Missing GAIN* and RDNOISE* are warnings but not errors if keyword.startswith('GAIN') or keyword.startswith('RDNOISE'): continue #- DATE-OBS, NIGHT, and EXPID are also optional #- (but maybe they should be required...) if keyword in ('DATE-OBS', 'NIGHT', 'EXPID'): continue if os.path.exists(self.rawfile): os.remove(self.rawfile) value = self.header[keyword] del self.header[keyword] with self.assertRaises(KeyError): io.write_raw(self.rawfile, self.rawimage, self.header) self.header[keyword] = value dateobs = self.header #- striving for 100% coverage... def test_pedantic(self): with self.assertRaises(ValueError): _parse_sec_keyword('blat') #- should log a warning about large readnoise rawimage = self.rawimage + np.random.normal(scale=2, size=self.rawimage.shape) image = preproc(rawimage, self.header) #- should log an error about huge readnoise rawimage = self.rawimage + np.random.normal(scale=10, size=self.rawimage.shape) image = preproc(rawimage, self.header) #- should log a warning about small readnoise rdnoise = 0.7 * np.mean(self.rdnoise.values()) rawimage = np.random.normal(scale=rdnoise, size=self.rawimage.shape) image = preproc(rawimage, self.header) #- should log a warning about tiny readnoise rdnoise = 0.01 * np.mean(self.rdnoise.values()) rawimage = np.random.normal(scale=rdnoise, size=self.rawimage.shape) image = preproc(rawimage, self.header) #- Missing expected RDNOISE keywords shouldn't be fatal hdr = self.header.copy() del hdr['RDNOISE1'] del hdr['RDNOISE2'] del hdr['RDNOISE3'] del hdr['RDNOISE4'] image = preproc(self.rawimage, hdr) #- Missing expected GAIN keywords should log error but not crash hdr = self.header.copy() del hdr['GAIN1'] del hdr['GAIN2'] del hdr['GAIN3'] del hdr['GAIN4'] image = preproc(self.rawimage, hdr) def test_preproc_script(self): io.write_raw(self.rawfile, self.rawimage, self.header, camera='b0') io.write_raw(self.rawfile, self.rawimage, self.header, camera='b1') args = ['--infile', self.rawfile, '--cameras', 'b1', '--pixfile', self.pixfile] if os.path.exists(self.pixfile): os.remove(self.pixfile) desispec.scripts.preproc.main(args) img = io.read_image(self.pixfile) self.assertEqual(img.pix.shape, (2*self.ny, 2*self.nx)) def test_clipped_std_bias(self): '''Compare to www.wolframalpha.com integrals''' self.assertAlmostEqual(_clipped_std_bias(1), 0.53956, places=5) self.assertAlmostEqual(_clipped_std_bias(2), 0.879626, places=6) self.assertAlmostEqual(_clipped_std_bias(3), 0.986578, places=6) np.random.seed(1) x = np.random.normal(size=1000000) biased_std = np.std(x[np.abs(x)<3]) self.assertAlmostEqual(biased_std, _clipped_std_bias(3), places=3) #- Not implemented yet, but flag these as expectedFailures instead of #- successful tests of raising NotImplementedError @unittest.expectedFailure def test_default_bias(self): image = preproc(self.rawimage, self.header, bias=True) @unittest.expectedFailure def test_default_pixflat(self): image = preproc(self.rawimage, self.header, pixflat=True) @unittest.expectedFailure def test_default_mask(self): image = preproc(self.rawimage, self.header, mask=True) if __name__ == '__main__': unittest.main()
{ "repo_name": "gdhungana/desispec", "path": "py/desispec/test/test_preproc.py", "copies": "2", "size": "13446", "license": "bsd-3-clause", "hash": 912529586417514100, "line_mean": 42.3741935484, "line_max": 101, "alpha_frac": 0.6002528633, "autogenerated": false, "ratio": 3.16153303550435, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47617858988043504, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import os import tempfile from blaze.datadescriptor import ( JSONDataDescriptor, DyNDDataDescriptor, IDataDescriptor, dd_as_py) # TODO: This isn't actually being used! _json_buf = u"""{ "type": "ImageCollection", "images": [ "Image": { "Width": 800, "Height": 600, "Title": "View from 15th Floor", "Thumbnail": { "Url": "http://www.example.com/image/481989943", "Height": 125, "Width": "100" }, "IDs": [116, 943, 234, 38793] } ] } """ # TODO: This isn't actually being used! _json_schema = """{ type: string, images: var * { Width: int16, Height: int16, Title: string, Thumbnail: { Url: string, Height: int16, Width: int16, }, IDs: var * int32, }; } """ json_buf = u"[1, 2, 3, 4, 5]" json_schema = "var * int8" class TestJSONDataDescriptor(unittest.TestCase): def setUp(self): handle, self.json_file = tempfile.mkstemp(".json") with os.fdopen(handle, "w") as f: f.write(json_buf) def tearDown(self): os.remove(self.json_file) def test_basic_object_type(self): self.assertTrue(issubclass(JSONDataDescriptor, IDataDescriptor)) dd = JSONDataDescriptor(self.json_file, schema=json_schema) self.assertTrue(isinstance(dd, IDataDescriptor)) self.assertEqual(dd_as_py(dd), [1, 2, 3, 4, 5]) def test_iter(self): dd = JSONDataDescriptor(self.json_file, schema=json_schema) # This equality does not work yet # self.assertEqual(dd.dshape, datashape.dshape( # 'Var, %s' % json_schema)) # Iteration should produce DyNDDataDescriptor instances vals = [] for el in dd: self.assertTrue(isinstance(el, DyNDDataDescriptor)) self.assertTrue(isinstance(el, IDataDescriptor)) vals.append(dd_as_py(el)) self.assertEqual(vals, [1, 2, 3, 4, 5]) def test_getitem(self): dd = JSONDataDescriptor(self.json_file, schema=json_schema) el = dd[1:3] self.assertTrue(isinstance(el, DyNDDataDescriptor)) vals = dd_as_py(el) self.assertEqual(vals, [2,3]) if __name__ == '__main__': unittest.main()
{ "repo_name": "mwiebe/blaze", "path": "blaze/datadescriptor/tests/test_json_data_descriptor.py", "copies": "2", "size": "2444", "license": "bsd-3-clause", "hash": 937997391621558800, "line_mean": 26.4606741573, "line_max": 72, "alpha_frac": 0.5683306056, "autogenerated": false, "ratio": 3.4914285714285715, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5059759177028572, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import sys if sys.version_info <= (3, 0): from mock import patch, Mock else: from unittest.mock import patch, Mock from panoptes_client.subject_set import SubjectSet class TestSubjectSet(unittest.TestCase): def test_create(self): with patch('panoptes_client.panoptes.Panoptes') as pc: pc.client().post = Mock(return_value=( { 'subject_sets': [{ 'id': 0, 'display_name': '', }], }, '', )) subject_set = SubjectSet() subject_set.links.project = 1234 subject_set.display_name = 'Name' subject_set.save() pc.client().post.assert_called_with( '/subject_sets', json={ 'subject_sets': { 'display_name': 'Name', 'links': { 'project': 1234, } } }, etag=None, )
{ "repo_name": "zooniverse/panoptes-python-client", "path": "panoptes_client/tests/test_subject_set.py", "copies": "1", "size": "1195", "license": "apache-2.0", "hash": 6573846257469512000, "line_mean": 27.4523809524, "line_max": 64, "alpha_frac": 0.4343096234, "autogenerated": false, "ratio": 4.742063492063492, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 42 }
from __future__ import absolute_import, division, print_function import unittest import tempfile import os import csv import sys from collections import Iterator import datashape from datashape import dshape from blaze.compatibility import skipIf from blaze.data.core import DataDescriptor from blaze.data import CSV from blaze.data.csv import has_header, discover_dialect from blaze.utils import filetext from blaze.data.utils import tuplify from dynd import nd from nose.tools import assert_equal def sanitize(lines): return '\n'.join(line.strip() for line in lines.split('\n')) class Test_Other(unittest.TestCase): def test_schema_detection_modifiers(self): text = "name amount date\nAlice 100 20120101\nBob 200 20120102" with filetext(text) as fn: self.assertEqual(CSV(fn).schema, dshape('{name: string, amount: int64, date: int64}')) self.assertEqual(CSV(fn, columns=['NAME', 'AMOUNT', 'DATE']).schema, dshape('{NAME: string, AMOUNT: int64, DATE: int64}')) self.assertEqual( str(CSV(fn, types=['string', 'int32', 'date']).schema), str(dshape('{name: string, amount: int32, date: date}'))) a = CSV(fn, typehints={'date': 'date'}).schema b = dshape('{name: string, amount: int64, date: date}') self.assertEqual(str(a), str(b)) def test_homogenous_schema(self): text = "1,1\n2,2\n3,3" with filetext(text) as fn: self.assertEqual(CSV(fn, columns=['x', 'y']).schema, dshape('{x: int64, y: int64}')) def test_a_mode(self): text = ("id, name, balance\n1, Alice, 100\n2, Bob, 200\n" "3, Charlie, 300\n4, Denis, 400\n5, Edith, 500") with filetext(text) as fn: csv = CSV(fn, 'a') csv.extend([(6, 'Frank', 600), (7, 'Georgina', 700)]) assert 'Georgina' in set(csv.py[:, 'name']) def test_sep_kwarg(self): csv = CSV('foo', 'w', sep=';', schema='{x: int, y: int}') self.assertEqual(csv.dialect['delimiter'], ';') def test_columns(self): # This is really testing the core interface dd = CSV('foo', 'w', schema='{name: string, amount: int}') assert list(dd.columns) == ['name', 'amount'] class Test_Indexing(unittest.TestCase): buf = sanitize( u"""Name Amount Alice 100 Bob 200 Alice 50 """) schema = "{ name: string, amount: int }" def setUp(self): self.csv_file = tempfile.mktemp(".csv") with open(self.csv_file, "w") as f: f.write(self.buf) self.dd = CSV(self.csv_file, dialect='excel', schema=self.schema, delimiter=' ', mode='r+') assert self.dd.header def tearDown(self): if os.path.exists(self.csv_file): os.remove(self.csv_file) def test_row(self): self.assertEqual(tuplify(self.dd.py[0]), ('Alice', 100)) self.assertEqual(tuplify(self.dd.py[1]), ('Bob', 200)) def test_dynd(self): assert isinstance(self.dd.dynd[0], nd.array) def test_rows(self): self.assertEqual(tuplify(self.dd.py[[0, 1]]), (('Alice', 100), ('Bob', 200))) def test_point(self): self.assertEqual(self.dd.py[0, 0], 'Alice') self.assertEqual(self.dd.py[1, 1], 200) def test_nested(self): self.assertEqual(tuplify(self.dd.py[[0, 1], 0]), ('Alice', 'Bob')) self.assertEqual(tuplify(self.dd.py[[0, 1], 1]), (100, 200)) self.assertEqual(tuplify(self.dd.py[0, [0, 1]]), ('Alice', 100)) self.assertEqual(tuplify(self.dd.py[[1, 0], [0, 1]]), (('Bob', 200), ('Alice', 100))) def test_slices(self): self.assertEqual(list(self.dd.py[:, 1]), [100, 200, 50]) self.assertEqual(list(self.dd.py[1:, 1]), [200, 50]) self.assertEqual(list(self.dd.py[0, :]), ['Alice', 100]) def test_names(self): self.assertEqual(list(self.dd.py[:, 'name']), ['Alice', 'Bob', 'Alice']) self.assertEqual(tuplify(self.dd.py[:, ['amount', 'name']]), ((100, 'Alice'), (200, 'Bob'), (50, 'Alice'))) def test_dynd_complex(self): self.assertEqual(tuplify(self.dd.py[:, ['amount', 'name']]), tuplify(nd.as_py(self.dd.dynd[:, ['amount', 'name']], tuple=True))) def test_laziness(self): print(type(self.dd.py[:, 1])) assert isinstance(self.dd.py[:, 1], Iterator) class Test_Dialect(unittest.TestCase): buf = sanitize( u"""Name Amount Alice 100 Bob 200 Alice 50 """) schema = "{ f0: string, f1: int }" def setUp(self): self.csv_file = tempfile.mktemp(".csv") with open(self.csv_file, "w") as f: f.write(self.buf) self.dd = CSV(self.csv_file, dialect='excel', schema=self.schema, delimiter=' ', mode='r+') def tearDown(self): os.remove(self.csv_file) def test_schema_detection(self): dd = CSV(self.csv_file) assert dd.schema == dshape('{Name: string, Amount: int64}') dd = CSV(self.csv_file, columns=['foo', 'bar']) assert dd.schema == dshape('{foo: string, bar: int64}') @skipIf(sys.version_info[:2] < (2, 7), 'CSV module unable to parse') def test_has_header(self): assert has_header(self.buf) def test_overwrite_delimiter(self): self.assertEquals(self.dd.dialect['delimiter'], ' ') def test_content(self): s = str(list(self.dd)) assert 'Alice' in s and 'Bob' in s def test_append(self): self.dd.extend([('Alice', 100)]) with open(self.csv_file) as f: self.assertEqual(f.readlines()[-1].strip(), 'Alice 100') def test_append_dict(self): self.dd.extend([{'f0': 'Alice', 'f1': 100}]) with open(self.csv_file) as f: self.assertEqual(f.readlines()[-1].strip(), 'Alice 100') def test_extend_structured(self): with filetext('1,1.0\n2,2.0\n') as fn: csv = CSV(fn, 'r+', schema='{x: int32, y: float32}', delimiter=',') csv.extend([(3, 3)]) assert tuplify(tuple(csv)) == ((1, 1.0), (2, 2.0), (3, 3.0)) def test_discover_dialect(self): s = '1,1\r\n2,2' self.assertEqual(discover_dialect(s), {'escapechar': None, 'skipinitialspace': False, 'quoting': 0, 'delimiter': ',', 'lineterminator': '\r\n', 'quotechar': '"', 'doublequote': False}) class TestCSV_New_File(unittest.TestCase): data = (('Alice', 100), ('Bob', 200), ('Alice', 50)) schema = "{ f0: string, f1: int32 }" def setUp(self): self.filename = tempfile.mktemp(".csv") def tearDown(self): if os.path.exists(self.filename): os.remove(self.filename) def test_errs_without_dshape(self): self.assertRaises(ValueError, lambda: CSV(self.filename, 'w')) def test_creation(self): dd = CSV(self.filename, 'w', schema=self.schema, delimiter=' ') def test_creation_rw(self): dd = CSV(self.filename, 'w+', schema=self.schema, delimiter=' ') def test_append(self): dd = CSV(self.filename, 'w', schema=self.schema, delimiter=' ') dd.extend([self.data[0]]) with open(self.filename) as f: self.assertEqual(f.readlines()[0].strip(), 'Alice 100') def test_extend(self): dd = CSV(self.filename, 'w', schema=self.schema, delimiter=' ') dd.extend(self.data) with open(self.filename) as f: lines = f.readlines() self.assertEqual(lines[0].strip(), 'Alice 100') self.assertEqual(lines[1].strip(), 'Bob 200') self.assertEqual(lines[2].strip(), 'Alice 50') expected_dshape = datashape.DataShape(datashape.Var(), self.schema) # TODO: datashape comparison is broken self.assertEqual(str(dd.dshape).replace(' ', ''), str(expected_dshape).replace(' ', '')) class TestTransfer(unittest.TestCase): def test_re_dialect(self): dialect1 = {'delimiter': ',', 'lineterminator': '\n'} dialect2 = {'delimiter': ';', 'lineterminator': '--'} text = '1,1\n2,2\n' schema = '2 * int32' with filetext(text) as source_fn: with filetext('') as dest_fn: src = CSV(source_fn, schema=schema, **dialect1) dst = CSV(dest_fn, mode='w', schema=schema, **dialect2) # Perform copy dst.extend(src) with open(dest_fn) as f: self.assertEquals(f.read(), '1;1--2;2--') def test_iter(self): with filetext('1,1\n2,2\n') as fn: dd = CSV(fn, schema='2 * int32') self.assertEquals(tuplify(list(dd)), ((1, 1), (2, 2))) def test_chunks(self): with filetext('1,1\n2,2\n3,3\n4,4\n') as fn: dd = CSV(fn, schema='2 * int32') assert all(isinstance(chunk, nd.array) for chunk in dd.chunks()) self.assertEquals(len(list(dd.chunks(blen=2))), 2) self.assertEquals(len(list(dd.chunks(blen=3))), 2) def test_iter_structured(self): with filetext('1,2\n3,4\n') as fn: dd = CSV(fn, schema='{x: int, y: int}') self.assertEquals(tuplify(list(dd)), ((1, 2), (3, 4))) class TestCSV(unittest.TestCase): # A CSV toy example buf = sanitize( u"""k1,v1,1,False k2,v2,2,True k3,v3,3,False """) data = (('k1', 'v1', 1, False), ('k2', 'v2', 2, True), ('k3', 'v3', 3, False)) schema = "{ f0: string, f1: string, f2: int16, f3: bool }" def setUp(self): self.csv_file = tempfile.mktemp(".csv") with open(self.csv_file, "w") as f: f.write(self.buf) def tearDown(self): os.remove(self.csv_file) def test_compute(self): dd = CSV(self.csv_file, schema=self.schema) from blaze.expr.table import TableSymbol from blaze.compute.python import compute t = TableSymbol('t', self.schema) self.assertEqual(compute(t['f2'].sum(), dd), 1 + 2 + 3) def test_has_header(self): assert not has_header(self.buf) def test_basic_object_type(self): dd = CSV(self.csv_file, schema=self.schema) self.assertTrue(isinstance(dd, DataDescriptor)) self.assertTrue(isinstance(dd.dshape.shape[0], datashape.Var)) def test_iter(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(tuplify(tuple(dd)), self.data) def test_as_py(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(tuplify(dd.as_py()), self.data) def test_getitem_start(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(tuplify(dd.py[0]), self.data[0]) def test_getitem_stop(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(tuplify(dd.py[:1]), self.data[:1]) def test_getitem_step(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(tuplify(dd.py[::2]), self.data[::2]) def test_getitem_start_step(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(tuplify(dd.py[1::2]), self.data[1::2]) if __name__ == '__main__': unittest.main()
{ "repo_name": "aterrel/blaze", "path": "blaze/data/tests/test_csv.py", "copies": "1", "size": "11700", "license": "bsd-3-clause", "hash": 5125669127557384000, "line_mean": 31.4099722992, "line_max": 85, "alpha_frac": 0.5537606838, "autogenerated": false, "ratio": 3.3883579496090355, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9433410556585051, "avg_score": 0.0017416153647969355, "num_lines": 361 }
from __future__ import absolute_import, division, print_function import unittest import tempfile import os import csv import datashape from blaze.data.core import DataDescriptor from blaze.data import CSV from blaze.data.csv import has_header from blaze.utils import filetext from dynd import nd def sanitize(lines): return '\n'.join(line.strip() for line in lines.split('\n')) class Test_Dialect(unittest.TestCase): buf = sanitize( u"""Name Amount Alice 100 Bob 200 Alice 50 """) schema = "{ f0: string, f1: int }" def setUp(self): self.csv_file = tempfile.mktemp(".csv") with open(self.csv_file, "w") as f: f.write(self.buf) self.dd = CSV(self.csv_file, dialect='excel', schema=self.schema, delimiter=' ', mode='r+') def tearDown(self): os.remove(self.csv_file) def test_has_header(self): assert has_header(self.buf) def test_overwrite_delimiter(self): self.assertEquals(self.dd.dialect['delimiter'], ' ') def test_content(self): s = str(list(self.dd)) assert 'Alice' in s and 'Bob' in s def test_append(self): self.dd.extend([('Alice', 100)]) with open(self.csv_file) as f: self.assertEqual(f.readlines()[-1].strip(), 'Alice 100') def test_append_dict(self): self.dd.extend([{'f0': 'Alice', 'f1': 100}]) with open(self.csv_file) as f: self.assertEqual(f.readlines()[-1].strip(), 'Alice 100') def test_extend_structured(self): with filetext('1,1.0\n2,2.0\n') as fn: csv = CSV(fn, 'r+', schema='{x: int32, y: float32}', delimiter=',') csv.extend([(3, 3)]) assert (list(csv) == [[1, 1.0], [2, 2.0], [3, 3.0]] or list(csv) == [{'x': 1, 'y': 1.0}, {'x': 2, 'y': 2.0}, {'x': 3, 'y': 3.0}]) class TestCSV_New_File(unittest.TestCase): data = [('Alice', 100), ('Bob', 200), ('Alice', 50)] schema = "{ f0: string, f1: int32 }" def setUp(self): self.filename = tempfile.mktemp(".csv") def tearDown(self): if os.path.exists(self.filename): os.remove(self.filename) def test_errs_without_dshape(self): self.assertRaises(ValueError, lambda: CSV(self.filename, 'w')) def test_creation(self): dd = CSV(self.filename, 'w', schema=self.schema, delimiter=' ') def test_creation_rw(self): dd = CSV(self.filename, 'w+', schema=self.schema, delimiter=' ') def test_append(self): dd = CSV(self.filename, 'w', schema=self.schema, delimiter=' ') dd.extend([self.data[0]]) with open(self.filename) as f: self.assertEqual(f.readlines()[0].strip(), 'Alice 100') def test_extend(self): dd = CSV(self.filename, 'w', schema=self.schema, delimiter=' ') dd.extend(self.data) with open(self.filename) as f: lines = f.readlines() self.assertEqual(lines[0].strip(), 'Alice 100') self.assertEqual(lines[1].strip(), 'Bob 200') self.assertEqual(lines[2].strip(), 'Alice 50') expected_dshape = datashape.DataShape(datashape.Var(), self.schema) # TODO: datashape comparison is broken self.assertEqual(str(dd.dshape).replace(' ', ''), str(expected_dshape).replace(' ', '')) class TestTransfer(unittest.TestCase): def test_re_dialect(self): dialect1 = {'delimiter': ',', 'lineterminator': '\n'} dialect2 = {'delimiter': ';', 'lineterminator': '--'} text = '1,1\n2,2\n' schema = '2 * int32' with filetext(text) as source_fn: with filetext('') as dest_fn: src = CSV(source_fn, schema=schema, **dialect1) dst = CSV(dest_fn, mode='w', schema=schema, **dialect2) # Perform copy dst.extend(src) with open(dest_fn) as f: self.assertEquals(f.read(), '1;1--2;2--') def test_iter(self): with filetext('1,1\n2,2\n') as fn: dd = CSV(fn, schema='2 * int32') self.assertEquals(list(dd), [[1, 1], [2, 2]]) def test_chunks(self): with filetext('1,1\n2,2\n3,3\n4,4\n') as fn: dd = CSV(fn, schema='2 * int32') assert all(isinstance(chunk, nd.array) for chunk in dd.chunks()) self.assertEquals(len(list(dd.chunks(blen=2))), 2) self.assertEquals(len(list(dd.chunks(blen=3))), 2) def test_iter_structured(self): with filetext('1,2\n3,4\n') as fn: dd = CSV(fn, schema='{x: int, y: int}') self.assertEquals(list(dd), [{'x': 1, 'y': 2}, {'x': 3, 'y': 4}]) class TestCSV(unittest.TestCase): # A CSV toy example buf = sanitize( u"""k1,v1,1,False k2,v2,2,True k3,v3,3,False """) schema = "{ f0: string, f1: string, f2: int16, f3: bool }" def setUp(self): self.csv_file = tempfile.mktemp(".csv") with open(self.csv_file, "w") as f: f.write(self.buf) def tearDown(self): os.remove(self.csv_file) def test_has_header(self): assert not has_header(self.buf) def test_basic_object_type(self): dd = CSV(self.csv_file, schema=self.schema) self.assertTrue(isinstance(dd, DataDescriptor)) self.assertTrue(isinstance(dd.dshape.shape[0], datashape.Var)) self.assertEqual(list(dd), [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}]) def test_iter(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(list(dd), [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}]) def test_as_py(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(dd.as_py(), [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}]) def test_chunks(self): dd = CSV(self.csv_file, schema=self.schema) vals = [] for el in dd.chunks(blen=2): self.assertTrue(isinstance(el, nd.array)) vals.extend(nd.as_py(el)) self.assertEqual(vals, [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}]) def test_append(self): # Get a private file so as to not mess the original one csv_file = tempfile.mktemp(".csv") with open(csv_file, "w") as f: f.write(self.buf) dd = CSV(csv_file, schema=self.schema, mode='r+') dd.extend([["k4", "v4", 4, True]]) vals = [nd.as_py(v) for v in dd.chunks(blen=2)] self.assertEqual(vals, [ [{u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}], [{u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}, {u'f0': u'k4', u'f1': u'v4', u'f2': 4, u'f3': True}]]) self.assertRaises(ValueError, lambda: dd.extend([3.3])) os.remove(csv_file) def test_getitem_start(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(dd[0], {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}) def test_getitem_stop(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(dd[:1], [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}]) def test_getitem_step(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(dd[::2], [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}]) def test_getitem_start_step(self): dd = CSV(self.csv_file, schema=self.schema) self.assertEqual(dd[1::2], [ {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}]) if __name__ == '__main__': unittest.main()
{ "repo_name": "sethkontny/blaze", "path": "blaze/data/tests/test_csv.py", "copies": "1", "size": "8543", "license": "bsd-3-clause", "hash": 3352021965356333000, "line_mean": 32.2412451362, "line_max": 77, "alpha_frac": 0.5212454641, "autogenerated": false, "ratio": 2.9694125825512687, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.39906580466512687, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import tempfile import os import datashape from blaze.datadescriptor import ( CSVDataDescriptor, DyNDDataDescriptor, IDataDescriptor, dd_as_py) # A CSV toy example csv_buf = u"""k1,v1,1,False k2,v2,2,True k3,v3,3,False """ csv_schema = "{ f0: string, f1: string, f2: int16, f3: bool }" class TestCSVDataDescriptor(unittest.TestCase): def setUp(self): handle, self.csv_file = tempfile.mkstemp(".csv") with os.fdopen(handle, "w") as f: f.write(csv_buf) def tearDown(self): os.remove(self.csv_file) def test_basic_object_type(self): self.assertTrue(issubclass(CSVDataDescriptor, IDataDescriptor)) dd = CSVDataDescriptor(self.csv_file, schema=csv_schema) self.assertTrue(isinstance(dd, IDataDescriptor)) self.assertTrue(isinstance(dd.dshape.shape[0], datashape.Var)) self.assertEqual(dd_as_py(dd), [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}]) def test_iter(self): dd = CSVDataDescriptor(self.csv_file, schema=csv_schema) # Iteration should produce DyNDDataDescriptor instances vals = [] for el in dd: self.assertTrue(isinstance(el, DyNDDataDescriptor)) self.assertTrue(isinstance(el, IDataDescriptor)) vals.append(dd_as_py(el)) self.assertEqual(vals, [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}]) def test_iterchunks(self): dd = CSVDataDescriptor(self.csv_file, schema=csv_schema) # Iteration should produce DyNDDataDescriptor instances vals = [] for el in dd.iterchunks(blen=2): self.assertTrue(isinstance(el, DyNDDataDescriptor)) self.assertTrue(isinstance(el, IDataDescriptor)) vals.extend(dd_as_py(el)) self.assertEqual(vals, [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}]) def test_iterchunks_start(self): dd = CSVDataDescriptor(self.csv_file, schema=csv_schema) vals = [] for el in dd.iterchunks(blen=2, start=1): vals.extend(dd_as_py(el)) self.assertEqual(vals, [ {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}]) def test_iterchunks_stop(self): dd = CSVDataDescriptor(self.csv_file, schema=csv_schema) vals = [dd_as_py(v) for v in dd.iterchunks(blen=1, stop=2)] self.assertEqual(vals, [ [{u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}], [{u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}]]) def test_iterchunks_start_stop(self): dd = CSVDataDescriptor(self.csv_file, schema=csv_schema) vals = [dd_as_py(v) for v in dd.iterchunks(blen=1, start=1, stop=2)] self.assertEqual(vals, [[ {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}]]) def test_append(self): # Get a private file so as to not mess the original one handle, csv_file = tempfile.mkstemp(".csv") with os.fdopen(handle, "w") as f: f.write(csv_buf) dd = CSVDataDescriptor(csv_file, schema=csv_schema) dd.append(["k4", "v4", 4, True]) vals = [dd_as_py(v) for v in dd.iterchunks(blen=1, start=3)] self.assertEqual(vals, [[ {u'f0': u'k4', u'f1': u'v4', u'f2': 4, u'f3': True}]]) os.remove(csv_file) def test_getitem_start(self): dd = CSVDataDescriptor(self.csv_file, schema=csv_schema) el = dd[0] self.assertTrue(isinstance(el, DyNDDataDescriptor)) vals = dd_as_py(el) self.assertEqual(vals, [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}]) def test_getitem_stop(self): dd = CSVDataDescriptor(self.csv_file, schema=csv_schema) el = dd[:1] self.assertTrue(isinstance(el, DyNDDataDescriptor)) vals = dd_as_py(el) self.assertEqual(vals, [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}]) def test_getitem_step(self): dd = CSVDataDescriptor(self.csv_file, schema=csv_schema) el = dd[::2] self.assertTrue(isinstance(el, DyNDDataDescriptor)) vals = dd_as_py(el) self.assertEqual(vals, [ {u'f0': u'k1', u'f1': u'v1', u'f2': 1, u'f3': False}, {u'f0': u'k3', u'f1': u'v3', u'f2': 3, u'f3': False}]) def test_getitem_start_step(self): dd = CSVDataDescriptor(self.csv_file, schema=csv_schema) el = dd[1::2] self.assertTrue(isinstance(el, DyNDDataDescriptor)) vals = dd_as_py(el) self.assertEqual(vals, [ {u'f0': u'k2', u'f1': u'v2', u'f2': 2, u'f3': True}]) if __name__ == '__main__': unittest.main()
{ "repo_name": "mwiebe/blaze", "path": "blaze/datadescriptor/tests/test_csv_data_descriptor.py", "copies": "2", "size": "5241", "license": "bsd-3-clause", "hash": -4940539992154953000, "line_mean": 37.2554744526, "line_max": 76, "alpha_frac": 0.5601984354, "autogenerated": false, "ratio": 2.7862838915470496, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.434648232694705, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest from datashape import coercion_cost, dshape, dshapes, error from datashape.tests import common from datashape.py2help import skip class TestCoercion(common.BTestCase): def test_coerce_ctype(self): a, b, c = dshapes('float32', 'float32', 'float64') self.assertLess(coercion_cost(a, b), coercion_cost(a, c)) a, b, c = dshapes('uint64', 'uint64', 'int64') self.assertLess(coercion_cost(a, b), coercion_cost(a, c)) a, b, c = dshapes('int64', 'int64', 'uint64') self.assertLess(coercion_cost(a, b), coercion_cost(a, c)) a, b, c = dshapes('float64', 'float64', 'complex[float32]') self.assertLess(coercion_cost(a, b), coercion_cost(a, c)) a, b, c = dshapes('int16', 'float64', 'complex[float32]') self.assertLess(coercion_cost(a, b), coercion_cost(a, c)) a, b, c = dshapes('int8', 'float64', 'complex[float32]') self.assertLess(coercion_cost(a, b), coercion_cost(a, c)) def test_coerce_ctype_float_vs_complex(self): # int -> float32 is preferred over int -> complex[float32] a, b, c = dshapes('int32', 'float32', 'complex[float32]') self.assertLess(coercion_cost(a, b), coercion_cost(a, c)) # int -> float64 is preferred over int -> complex[float64] a, b, c = dshapes('int32', 'float64', 'complex[float64]') self.assertLess(coercion_cost(a, b), coercion_cost(a, c)) # int -> float64 is preferred over int -> complex[float32] a, b, c = dshapes('int32', 'float64', 'complex[float32]') self.assertLess(coercion_cost(a, b), coercion_cost(a, c)) def test_coerce_numeric(self): a, b = dshapes('float32', 'float64') self.assertGreater(coercion_cost(a, b), 0) def test_coercion_transitivity(self): a, b, c = dshapes('int8', 'complex128', 'float64') self.assertGreater(coercion_cost(a, b), coercion_cost(a, c)) @skip('This is something that needs to be handled by overloading') def test_coerce_typevars(self): a, b, c = dshapes('10 * 11 * float32', 'X * Y * float64', '10 * Y * float64') self.assertGreater(coercion_cost(a, b), coercion_cost(a, c)) @skip('This is something that needs to be handled by overloading') def test_coerce_constrained_typevars(self): a, b, c = dshapes('10 * 10 * float32', 'X * Y * float64', 'X * X * float64') self.assertGreater(coercion_cost(a, b), coercion_cost(a, c)) def test_coerce_broadcasting(self): a, b, c = dshapes('10 * 10 * float32', '10 * Y * Z * float64', 'X * Y * float64') self.assertGreater(coercion_cost(a, b), coercion_cost(a, c)) def test_coerce_broadcasting2(self): a, b, c = dshapes('10 * 10 * float32', '1 * 10 * 10 * float32', '10 * 10 * float32') self.assertGreater(coercion_cost(a, b), coercion_cost(a, c)) def test_coerce_broadcasting3(self): a, b, c = dshapes('10 * 10 * float32', '10 * 10 * 10 * float32', '1 * 10 * 10 * float32') self.assertGreater(coercion_cost(a, b), coercion_cost(a, c)) @skip('implements has not been implemented in the new parser') def test_coerce_traits(self): a, b, c = dshapes('10 * 10 * float32', '10 * X * A : floating', '10 * X * float32') self.assertGreater(coercion_cost(a, b), coercion_cost(a, c)) def test_coerce_dst_ellipsis(self): a, b, c = dshapes('10 * 10 * float32', 'X * ... * float64', 'X * Y * float64') self.assertGreater(coercion_cost(a, b), coercion_cost(a, c)) @skip('not dealing with ellipsis in the src of a coercion') def test_coerce_src_ellipsis(self): a, b, c = dshapes('10 * ... * float32', 'X * Y * float64', 'X * ... * float64') self.assertGreater(coercion_cost(a, b), coercion_cost(a, c)) def test_allow_anything_to_bool(self): # The cost should be large min_cost = coercion_cost(dshape('int8'), dshape('complex[float64]')) for ds in ['int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'float32', 'float64', 'complex[float32]', 'complex[float64]']: self.assertGreater(coercion_cost(dshape(ds), dshape('bool')), min_cost) class TestCoercionErrors(unittest.TestCase): def test_downcast(self): a, b = dshapes('float32', 'int32') self.assertRaises(error.CoercionError, coercion_cost, a, b) def test_disallow_bool_to_anything(self): for ds in ['int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'float32', 'float64', 'complex[float32]', 'complex[float64]']: self.assertRaises(error.CoercionError, coercion_cost, dshape('bool'), dshape(ds)) if __name__ == '__main__': unittest.main()
{ "repo_name": "aterrel/datashape", "path": "datashape/tests/test_coercion.py", "copies": "2", "size": "5147", "license": "bsd-2-clause", "hash": -6575026463690014000, "line_mean": 44.5486725664, "line_max": 76, "alpha_frac": 0.5731494074, "autogenerated": false, "ratio": 3.270012706480305, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4843162113880305, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest from datashape import coretypes as T from datashape.type_equation_solver import (matches_datashape_pattern, match_argtypes_to_signature, _match_equation) from datashape import dshape from datashape import error from datashape.coercion import dim_coercion_cost, dtype_coercion_cost class TestPatternMatch(unittest.TestCase): def test_simple_matches(self): self.assertTrue(matches_datashape_pattern(dshape('int32'), dshape('int32'))) self.assertTrue(matches_datashape_pattern(dshape('int32'), dshape('M'))) self.assertTrue(matches_datashape_pattern(dshape('int32'), dshape('A... * int32'))) self.assertTrue(matches_datashape_pattern(dshape('int32'), dshape('A... * M'))) self.assertFalse(matches_datashape_pattern(dshape('int32'), dshape('int64'))) self.assertFalse(matches_datashape_pattern(dshape('3 * int32'), dshape('M'))) self.assertFalse(matches_datashape_pattern(dshape('int16'), dshape('A... * int32'))) self.assertFalse(matches_datashape_pattern(dshape('4 * int32'), dshape('A... * 3 * M'))) class TestSignatureArgMatching(unittest.TestCase): def test_nargs_mismatch(self): # Make sure an error is rased when the # of arguments is wrong self.assertRaises(TypeError, match_argtypes_to_signature, dshape('(int32, float64)'), dshape('(int32) -> int32')) self.assertRaises(TypeError, match_argtypes_to_signature, dshape('(int32, float64)'), dshape('(int32, float64, int16) -> int32')) def test_dtype_matches_concrete(self): # Exact match, same signature and zero cost at = dshape('(int32, float64)') sig = dshape('(int32, float64) -> int16') self.assertEqual(match_argtypes_to_signature(at, sig), (sig[0], 0)) # Requires a coercion, cost is that of the coercion at = dshape('(int32, int32)') sig = dshape('(int32, float64) -> int16') self.assertEqual(match_argtypes_to_signature(at, sig), (sig[0], dtype_coercion_cost(T.int32, T.float64))) # Requires two coercions, cost is maximum of the two at = dshape('(int16, int32)') sig = dshape('(int32, float64) -> int16') self.assertEqual(match_argtypes_to_signature(at, sig), (sig[0], dtype_coercion_cost(T.int32, T.float64))) def test_dtype_coerce_error(self): at = dshape('(int32, float64)') sig = dshape('(int32, int32) -> int16') self.assertRaises(error.CoercionError, match_argtypes_to_signature, at, sig) def test_dtype_matches_typevar(self): # Exact match, and zero cost at = dshape('(int32, float64)') sig = dshape('(int32, T) -> T') self.assertEqual(match_argtypes_to_signature(at, sig), (dshape('(int32, float64) -> float64')[0], 0.125)) # Type promotion between the inputs at = dshape('(int32, float64)') sig = dshape('(T, T) -> T') self.assertEqual(match_argtypes_to_signature(at, sig), (dshape('(float64, float64) -> float64')[0], 0.125)) # Type promotion between the inputs at = dshape('(int32, bool, float64)') sig = dshape('(T, S, T) -> S') self.assertEqual(match_argtypes_to_signature(at, sig), (dshape('(float64, bool, float64) -> bool')[0], 0.125)) def test_dshape_matches_concrete(self): # Exact match, same signature and zero cost at = dshape('(3 * int32, 2 * var * float64)') sig = dshape('(3 * int32, 2 * var * float64) -> 4 * int16') self.assertEqual(match_argtypes_to_signature(at, sig), (sig[0], 0)) # Requires broadcasting at = dshape('(1 * int32, 2 * 4 * float64)') sig = dshape('(3 * int32, 2 * var * float64) -> 4 * int16') self.assertEqual(match_argtypes_to_signature(at, sig), (sig[0], max(dim_coercion_cost(T.Fixed(1), T.Fixed(3)), dim_coercion_cost(T.Fixed(4), T.Var())))) def test_dshape_matches_typevar(self): # Arrays with matching size at = dshape('(5 * int32, 5 * float64)') sig = dshape('(N * int32, N * float64) -> N * int16') self.assertEqual(match_argtypes_to_signature(at, sig), (dshape('(5 * int32, 5 * float64) -> 5 * int16')[0], 0.125)) # Matrix multiplication at = dshape('(3 * 5 * float64, 5 * 6 * float32)') sig = dshape('(M * N * A, N * R * A) -> M * R * A') self.assertEqual(match_argtypes_to_signature(at, sig), (dshape('(3 * 5 * float64, 5 * 6 * float64) ->' + ' 3 * 6 * float64')[0], 0.375)) # Broadcasted matrix multiplication at = dshape('(20 * 3 * 5 * float64, 3 * 1 * 5 * 6 * float32)') sig = dshape('(Dims... * M * N * A, Dims... * N * R * A) ->' + ' Dims... * M * R * A') self.assertEqual(match_argtypes_to_signature(at, sig), (dshape('(20 * 3 * 5 * float64,' + ' 3 * 1 * 5 * 6 * float64) ->' + ' 3 * 20 * 3 * 6 * float64')[0], 0.625)) def test_dshape_dim_mismatch_error(self): # Single dimension type variables must match up exactly at = dshape('(1 * int32, 3 * float64)') sig = dshape('(M * int32, M * int32) -> M * int16') self.assertRaises(error.CoercionError, match_argtypes_to_signature, at, sig) # Ellipsis typevars must broadcast at = dshape('(2 * int32, 3 * float64)') sig = dshape('(Dims... * int32, Dims... * int32) -> Dims... * int16') self.assertRaises(error.CoercionError, match_argtypes_to_signature, at, sig) def test_broadcast_vs_not(self): # Single dimension type variables must match up exactly at = dshape('(int32, float64)') sig_scalar = dshape('(float64, float64) -> int16') sig_bcast = dshape('(A... * float64, A... * float64) -> A... * int16') match_scalar = match_argtypes_to_signature(at, sig_scalar) match_bcast = match_argtypes_to_signature(at, sig_bcast) self.assertEqual(match_scalar[0], dshape('(float64, float64) -> int16')[0]) self.assertEqual(match_bcast[0], dshape('(float64, float64) -> int16')[0]) # Should be cheaper to match without the broadcasting self.assertTrue(match_scalar[1] < match_bcast[1]) def test_tv_matches_struct(self): at = dshape('(3 * {x: int, y: string}, 3 * bool)') sig = dshape('(M * T, M * bool) -> var * T') match = match_argtypes_to_signature(at, sig) self.assertEqual(match[0], dshape('(3 * {x: int, y: string}, 3 * bool) -> var * {x: int, y: string}')[0]) def test_match_with_resolver(self): # Test matching with a resolver function # This is a contrived resolver which combines the A... and # B typevars in a way that cannot be done with simple pattern # matching. While not a useful example in and of itself, it # exhibits the needed behavior in reduction function signature # matching. def resolver(tvar, tvdict): if tvar == T.Ellipsis(T.TypeVar('R')): a = tvdict[T.Ellipsis(T.TypeVar('A'))] b = tvdict[T.TypeVar('B')] result = [b] for x in a: result.extend([x, b]) return result elif tvar == T.TypeVar('T'): return T.int16 at = dshape('(5 * int32, 4 * float64)') sig = dshape('(B * int32, A... * float64) -> R... * T') self.assertEqual(match_argtypes_to_signature(at, sig, resolver), (dshape('(5 * int32, 4 * float64) -> 5 * 4 * 5 * int16')[0], 0.25)) at = dshape('(5 * var * 2 * int32, 4 * float64)') sig = dshape('(A... * int32, B * float64) -> R... * 2 * T') self.assertEqual(match_argtypes_to_signature(at, sig, resolver), (dshape('(5 * var * 2 * int32, 4 * float64) ->' + ' 4 * 5 * 4 * var * 4 * 2 * 4 * 2 * int16')[0], 0.25)) class TestEquationMatching(unittest.TestCase): def test_match_equation_dtype(self): # A simple coercion eqns = _match_equation(dshape('int32'), dshape('int64')) self.assertEqual(eqns, [(T.int32, T.int64)]) # Matching a data type variable eqns = _match_equation(dshape('int32'), dshape('D')) self.assertEqual(eqns, [(T.int32, T.TypeVar('D'))]) def test_match_equation_dim(self): # Broadcasting a single dimension eqns = _match_equation(dshape('1 * int32'), dshape('10 * int32')) self.assertEqual(eqns, [(T.Fixed(1), T.Fixed(10)), (T.int32, T.int32)]) # Matching a dim type variable eqns = _match_equation(dshape('3 * int32'), dshape('M * int32')) self.assertEqual(eqns, [(T.Fixed(3), T.TypeVar('M')), (T.int32, T.int32)]) def test_match_equation_ellipsis(self): # Matching an ellipsis eqns = _match_equation(dshape('int32'), dshape('... * int32')) self.assertEqual(eqns, [([], T.Ellipsis()), (T.int32, T.int32)]) eqns = _match_equation(dshape('3 * int32'), dshape('... * int32')) self.assertEqual(eqns, [([T.Fixed(3)], T.Ellipsis()), (T.int32, T.int32)]) eqns = _match_equation(dshape('3 * var * int32'), dshape('... * int32')) self.assertEqual(eqns, [([T.Fixed(3), T.Var()], T.Ellipsis()), (T.int32, T.int32)]) # Matching an ellipsis type variable eqns = _match_equation(dshape('int32'), dshape('A... * int32')) self.assertEqual(eqns, [([], T.Ellipsis(T.TypeVar('A'))), (T.int32, T.int32)]) eqns = _match_equation(dshape('3 * int32'), dshape('A... * int32')) self.assertEqual(eqns, [([T.Fixed(3)], T.Ellipsis(T.TypeVar('A'))), (T.int32, T.int32)]) eqns = _match_equation(dshape('3 * var * int32'), dshape('A... * int32')) self.assertEqual(eqns, [([T.Fixed(3), T.Var()], T.Ellipsis(T.TypeVar('A'))), (T.int32, T.int32)]) # Matching an ellipsis with a dim type variable on the left eqns = _match_equation(dshape('3 * var * int32'), dshape('A * B... * int32')) self.assertEqual(eqns, [(T.Fixed(3), T.TypeVar('A')), ([T.Var()], T.Ellipsis(T.TypeVar('B'))), (T.int32, T.int32)]) # Matching an ellipsis with a dim type variable on the right eqns = _match_equation(dshape('3 * var * int32'), dshape('A... * B * int32')) self.assertEqual(eqns, [([T.Fixed(3)], T.Ellipsis(T.TypeVar('A'))), (T.Var(), T.TypeVar('B')), (T.int32, T.int32)]) # Matching an ellipsis with a dim type variable on both sides eqns = _match_equation(dshape('3 * var * int32'), dshape('A * B... * C * int32')) self.assertEqual(eqns, [(T.Fixed(3), T.TypeVar('A')), ([], T.Ellipsis(T.TypeVar('B'))), (T.Var(), T.TypeVar('C')), (T.int32, T.int32)]) eqns = _match_equation(dshape('3 * var * 4 * M * int32'), dshape('A * B... * C * int32')) self.assertEqual(eqns, [(T.Fixed(3), T.TypeVar('A')), ([T.Var(), T.Fixed(4)], T.Ellipsis(T.TypeVar('B'))), (T.TypeVar('M'), T.TypeVar('C')), (T.int32, T.int32)])
{ "repo_name": "aterrel/datashape", "path": "datashape/tests/test_type_equation_solver.py", "copies": "1", "size": "12820", "license": "bsd-2-clause", "hash": 3002905241598810600, "line_mean": 51.9752066116, "line_max": 103, "alpha_frac": 0.5030421217, "autogenerated": false, "ratio": 3.6744052737173973, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9673151546304292, "avg_score": 0.0008591698226210632, "num_lines": 242 }
from __future__ import absolute_import, division, print_function import unittest from datashape import dshape from blaze.compute.air import explicit_coercions from blaze.compute.air.tests.utils import make_graph class TestCoercions(unittest.TestCase): def test_coercions(self): f, values, graph = make_graph() explicit_coercions(f) ops = [(op.opcode, op.type) for op in f.ops][:-1] expected = [('convert', dshape("10, float64")), ('kernel', dshape("10, float64")), ('convert', dshape("10, complex[float64]")), ('kernel', dshape("10, complex[float64]"))] self.assertEqual(ops, expected) # function 10, complex[float64] expr0(10, float64 %e0, 10, int32 %e1, 10, complex[float64] %e2) { # entry: # %3 = (10, float64) convert(%e1) # %0 = (10, float64) kernel(%const(Bytes, blaze.ops.ufuncs.add), %3, %e0) # %4 = (10, complex[float64]) convert(%0) # %1 = (10, complex[float64]) kernel(%const(Bytes, blaze.ops.ufuncs.mul), %4, %e2) # %2 = (Void) ret(%1) # # } if __name__ == '__main__': unittest.main()
{ "repo_name": "zeeshanali/blaze", "path": "blaze/compute/air/tests/test_transforms.py", "copies": "1", "size": "1205", "license": "bsd-3-clause", "hash": -6411709695848540000, "line_mean": 34.4411764706, "line_max": 105, "alpha_frac": 0.5626556017, "autogenerated": false, "ratio": 3.1627296587926508, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9220739939164655, "avg_score": 0.0009290642655990826, "num_lines": 34 }
from __future__ import absolute_import, division, print_function import unittest from datashape import dshape import blaze from blaze import array from blaze.compute.ops.ufuncs import add, mul import numpy as np #------------------------------------------------------------------------ # Utils #------------------------------------------------------------------------ def make_expr(ds1, ds2): a = array(range(10), dshape=ds1) b = array(range(10), dshape=ds2) expr = add(a, mul(a, b)) return expr #------------------------------------------------------------------------ # Tests #------------------------------------------------------------------------ class TestJit(unittest.TestCase): def test_jit(self): expr = make_expr(dshape('10, float32'), dshape('10, float32')) result = blaze.eval(expr, strategy='jit') expected = blaze.array([ 0, 2, 6, 12, 20, 30, 42, 56, 72, 90]) self.assertEqual(type(result), blaze.Array) self.assertTrue(np.all(result == expected)) def test_jit_promotion(self): expr = make_expr(dshape('10, int32'), dshape('10, float32')) result = blaze.eval(expr, strategy='jit') expected = blaze.array([ 0, 2, 6, 12, 20, 30, 42, 56, 72, 90], dshape=dshape('10, float64')) self.assertEqual(type(result), blaze.Array) self.assertTrue(np.all(result == expected)) def test_jit_scalar(self): a = blaze.array(range(10), dshape=dshape('10, int32')) b = 10 expr = add(a, mul(a, b)) result = blaze.eval(expr) np_a = np.arange(10) expected = np_a + np_a * b self.assertTrue(np.all(result == expected)) if __name__ == '__main__': # TestJit('test_jit').debug() unittest.main()
{ "repo_name": "XinSong/blaze", "path": "blaze/compute/air/execution/tests/test_jit_interp.py", "copies": "2", "size": "1800", "license": "bsd-3-clause", "hash": -4784771157975032000, "line_mean": 31.7272727273, "line_max": 73, "alpha_frac": 0.4972222222, "autogenerated": false, "ratio": 3.585657370517928, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5082879592717928, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import blaze from blaze.datadescriptor import dd_as_py class TestBasic(unittest.TestCase): def test_add(self): types = ['int8', 'int16', 'int32', 'int64'] for type_ in types: a = blaze.array(range(3), dshape=type_) c = blaze.eval(a+a) self.assertEqual(dd_as_py(c._data), [0, 2, 4]) c = blaze.eval(((a+a)*a)) self.assertEqual(dd_as_py(c._data), [0, 2, 8]) def test_add_with_pyobj(self): a = blaze.array(3) + 3 self.assertEqual(dd_as_py(a._data), 6) a = 3 + blaze.array(4) self.assertEqual(dd_as_py(a._data), 7) a = blaze.array([1, 2]) + 4 self.assertEqual(dd_as_py(a._data), [5, 6]) a = [1, 2] + blaze.array(5) self.assertEqual(dd_as_py(a._data), [6, 7]) #FIXME: Need to convert uint8 from dshape to ctypes # in _get_ctypes of blaze_kernel.py def test_mixed(self): types1 = ['int8', 'int16', 'int32', 'int64'] types2 = ['int16', 'int32', 'float32', 'float64'] for ty1, ty2 in zip(types1, types2): a = blaze.array(range(1,6), dshape=ty1) b = blaze.array(range(5), dshape=ty2) c = (a+b)*(a-b) c = blaze.eval(c) result = [a*a - b*b for (a,b) in zip(range(1,6),range(5))] self.assertEqual(dd_as_py(c._data), result) def test_ragged(self): a = blaze.array([[1], [2, 3], [4, 5, 6]]) b = blaze.array([[1, 2, 3], [4, 5], [6]]) c = blaze.eval(a + b) self.assertEqual(dd_as_py(c._data), [[2, 3, 4], [6, 8], [10, 11, 12]]) c = blaze.eval(2 * a - b) self.assertEqual(dd_as_py(c._data), [[1, 0, -1], [0, 1], [2, 4, 6]]) class TestReduction(unittest.TestCase): def test_min_zerosize(self): # Empty min operations should raise, because it has no # reduction identity self.assertRaises(ValueError, blaze.eval, blaze.min([])) self.assertRaises(ValueError, blaze.eval, blaze.min([], keepdims=True)) self.assertRaises(ValueError, blaze.eval, blaze.min([[], []])) self.assertRaises(ValueError, blaze.eval, blaze.min([[], []], keepdims=True)) self.assertRaises(ValueError, blaze.eval, blaze.min([[], []], axis=-1)) self.assertRaises(ValueError, blaze.eval, blaze.min([[], []], axis=-1, keepdims=True)) # However, if we're only reducing on a non-empty dimension, it's ok self.assertEqual(dd_as_py(blaze.eval(blaze.min([[], []], axis=0))._data), []) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[], []], axis=0, keepdims=True))._data), [[]]) def test_min(self): # Min element of scalar case is the element itself self.assertEqual(dd_as_py(blaze.eval(blaze.min(10))._data), 10) self.assertEqual(dd_as_py(blaze.eval(blaze.min(-5.0))._data), -5.0) # One-dimensional size one self.assertEqual(dd_as_py(blaze.eval(blaze.min([10]))._data), 10) self.assertEqual(dd_as_py(blaze.eval(blaze.min([-5.0]))._data), -5.0) self.assertEqual(dd_as_py(blaze.eval(blaze.min([-5.0], axis=0))._data), -5.0) self.assertEqual(dd_as_py(blaze.eval(blaze.min([10], keepdims=True))._data), [10]) # One dimensional self.assertEqual(dd_as_py(blaze.eval(blaze.min([1, 2]))._data), 1) self.assertEqual(dd_as_py(blaze.eval(blaze.min([2, 1]))._data), 1) self.assertEqual(dd_as_py(blaze.eval(blaze.min([0, 1, 0]))._data), 0) self.assertEqual(dd_as_py(blaze.eval(blaze.min([0, 1, 0]))._data), 0) self.assertEqual(dd_as_py(blaze.eval(blaze.min([1, 0, 2]))._data), 0) self.assertEqual(dd_as_py(blaze.eval(blaze.min([2, 1, 0]))._data), 0) # Two dimensional, test with minimum at all possible positions self.assertEqual(dd_as_py(blaze.eval(blaze.min([[1, 2, 3], [4, 5, 6]]))._data), 1) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[2, 1, 3], [4, 5, 6]]))._data), 1) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[3, 2, 1], [4, 5, 6]]))._data), 1) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[3, 2, 5], [4, 1, 6]]))._data), 1) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[3, 2, 5], [4, 6, 1]]))._data), 1) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[3, 2, 5], [1, 6, 4]]))._data), 1) # Two dimensional, with axis= argument both positive and negative self.assertEqual(dd_as_py(blaze.eval(blaze.min([[1, 5, 3], [4, 2, 6]], axis=0))._data), [1, 2, 3]) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[1, 5, 3], [4, 2, 6]], axis=-2))._data), [1, 2, 3]) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[1, 2, 3], [4, 5, 6]], axis=1))._data), [1, 4]) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[1, 2, 3], [4, 5, 6]], axis=-1))._data), [1, 4]) # Two dimensional, with keepdims=True self.assertEqual(dd_as_py(blaze.eval(blaze.min([[1, 2, 3], [4, 5, 6]], keepdims=True))._data), [[1]]) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[1, 2, 3], [5, 4, 6]], axis=0, keepdims=True))._data), [[1, 2, 3]]) self.assertEqual(dd_as_py(blaze.eval(blaze.min([[1, 5, 3], [4, 2, 6]], axis=1, keepdims=True))._data), [[1], [2]]) def test_sum_zerosize(self): # Empty sum operations should produce 0, the reduction identity self.assertEqual(dd_as_py(blaze.eval(blaze.sum([]))._data), 0) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([], keepdims=True))._data), [0]) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []]))._data), 0) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []], keepdims=True))._data), [[0]]) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []], axis=-1))._data), [0, 0]) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []], axis=-1, keepdims=True))._data), [[0], [0]]) # If we're only reducing on a non-empty dimension, we might still # end up with zero-sized outputs self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []], axis=0))._data), []) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[], []], axis=0, keepdims=True))._data), [[]]) def test_sum(self): # Sum of scalar case is the element itself self.assertEqual(dd_as_py(blaze.eval(blaze.sum(10))._data), 10) self.assertEqual(dd_as_py(blaze.eval(blaze.sum(-5.0))._data), -5.0) # One-dimensional size one self.assertEqual(dd_as_py(blaze.eval(blaze.sum([10]))._data), 10) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([-5.0]))._data), -5.0) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([-5.0], axis=0))._data), -5.0) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([10], keepdims=True))._data), [10]) # One dimensional self.assertEqual(dd_as_py(blaze.eval(blaze.sum([1, 2]))._data), 3) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([0, 1, 2]))._data), 3) # Two dimensional self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[1, 2, 3], [4, 5, 6]]))._data), 21) # Two dimensional, with axis= argument both positive and negative self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[1, 5, 3], [4, 2, 6]], axis=0))._data), [5, 7, 9]) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[1, 5, 3], [4, 2, 6]], axis=-2))._data), [5, 7, 9]) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[1, 2, 3], [4, 5, 6]], axis=1))._data), [6, 15]) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[1, 2, 3], [4, 5, 6]], axis=-1))._data), [6, 15]) # Two dimensional, with keepdims=True self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[1, 2, 3], [4, 5, 6]], keepdims=True))._data), [[21]]) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[1, 2, 3], [5, 4, 6]], axis=0, keepdims=True))._data), [[6, 6, 9]]) self.assertEqual(dd_as_py(blaze.eval(blaze.sum([[1, 5, 3], [4, 2, 6]], axis=1, keepdims=True))._data), [[9], [12]]) def test_all(self): # Sanity check of reduction op self.assertEqual(dd_as_py(blaze.eval(blaze.all(True))._data), True) self.assertEqual(dd_as_py(blaze.eval(blaze.all(False))._data), False) self.assertEqual(dd_as_py(blaze.eval(blaze.all(blaze.array([], dshape='0 * bool')))._data), True) self.assertEqual(dd_as_py(blaze.eval(blaze.all([False, True]))._data), False) self.assertEqual(dd_as_py(blaze.eval(blaze.all([True, True]))._data), True) def test_any(self): # Sanity check of reduction op self.assertEqual(dd_as_py(blaze.eval(blaze.any(True))._data), True) self.assertEqual(dd_as_py(blaze.eval(blaze.any(False))._data), False) self.assertEqual(dd_as_py(blaze.eval(blaze.any(blaze.array([], dshape='0 * bool')))._data), False) self.assertEqual(dd_as_py(blaze.eval(blaze.any([False, True]))._data), True) self.assertEqual(dd_as_py(blaze.eval(blaze.any([False, False]))._data), False) def test_max(self): # Sanity check of reduction op self.assertEqual(dd_as_py(blaze.eval(blaze.max(5))._data), 5) self.assertRaises(ValueError, blaze.eval, blaze.max([])) self.assertEqual(dd_as_py(blaze.eval(blaze.max([3, -2]))._data), 3) self.assertEqual(dd_as_py(blaze.eval(blaze.max([1.5, 2.0]))._data), 2.0) def test_product(self): # Sanity check of reduction op self.assertEqual(dd_as_py(blaze.eval(blaze.product(5))._data), 5) self.assertEqual(dd_as_py(blaze.eval(blaze.product([]))._data), 1) self.assertEqual(dd_as_py(blaze.eval(blaze.product([3, -2]))._data), -6) self.assertEqual(dd_as_py(blaze.eval(blaze.product([1.5, 2.0]))._data), 3.0) if __name__ == '__main__': unittest.main()
{ "repo_name": "mwiebe/blaze", "path": "blaze/tests/test_calc.py", "copies": "1", "size": "13856", "license": "bsd-3-clause", "hash": -3796418383526555600, "line_mean": 52.2923076923, "line_max": 106, "alpha_frac": 0.4131062356, "autogenerated": false, "ratio": 3.778565584946823, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4691671820546823, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import datashape import blaze from blaze.optional_packages import tables_is_here from blaze.catalog.tests.catalog_harness import CatalogHarness from blaze.py2help import skipIf class TestCatalog(unittest.TestCase): def setUp(self): self.cat = CatalogHarness() blaze.catalog.load_config(self.cat.catfile) def tearDown(self): blaze.catalog.load_default() self.cat.close() def test_dir_traversal(self): blaze.catalog.cd('/') self.assertEquals(blaze.catalog.cwd(), '/') entities = ['csv_arr', 'json_arr', 'npy_arr', 'py_arr', 'subdir'] if tables_is_here: entities.append('hdf5_arr') self.assertEquals(blaze.catalog.ls(), sorted(entities)) arrays = ['csv_arr', 'json_arr', 'npy_arr', 'py_arr'] if tables_is_here: arrays.append('hdf5_arr') self.assertEquals(blaze.catalog.ls_arrs(), sorted(arrays)) self.assertEquals(blaze.catalog.ls_dirs(), ['hdf5_dir', 'subdir']) blaze.catalog.cd('subdir') self.assertEquals(blaze.catalog.cwd(), '/subdir') self.assertEquals(blaze.catalog.ls(), ['csv_arr2']) def test_load_csv(self): # Confirms that a simple csv file can be loaded blaze.catalog.cd('/') a = blaze.catalog.get('csv_arr') ds = datashape.dshape('5 * {Letter: string, Number: int32}') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual(dat, [{'Letter': 'alpha', 'Number': 0}, {'Letter': 'beta', 'Number': 1}, {'Letter': 'gamma', 'Number': 2}, {'Letter': 'delta', 'Number': 3}, {'Letter': 'epsilon', 'Number': 4}]) def test_load_json(self): # Confirms that a simple json file can be loaded blaze.catalog.cd('/') a = blaze.catalog.get('json_arr') ds = datashape.dshape('2 * var * int32') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual(dat, [[1, 2, 3], [1, 2]]) @skipIf(not tables_is_here, 'PyTables is not installed') def test_load_hdf5(self): # Confirms that a simple hdf5 array in a file can be loaded blaze.catalog.cd('/') a = blaze.catalog.get('hdf5_arr') ds = datashape.dshape('2 * 3 * int32') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual(dat, [[1, 2, 3], [3, 2, 1]]) @skipIf(not tables_is_here, 'PyTables is not installed') def test_hdf5_dir(self): blaze.catalog.cd('/hdf5_dir') self.assertEquals(blaze.catalog.cwd(), '/hdf5_dir') self.assertEquals(blaze.catalog.ls(), sorted(['a1', 'mygroup'])) self.assertEquals(blaze.catalog.ls_dirs(), sorted(['mygroup'])) self.assertEquals(blaze.catalog.ls_arrs(), sorted(['a1'])) @skipIf(not tables_is_here, 'PyTables is not installed') def test_hdf5_subdir(self): blaze.catalog.cd('/hdf5_dir/mygroup') self.assertEquals(blaze.catalog.cwd(), '/hdf5_dir/mygroup') self.assertEquals(blaze.catalog.ls(), sorted(['a2', 'a3', 'mygroup2'])) self.assertEquals(blaze.catalog.ls_dirs(), sorted(['mygroup2'])) self.assertEquals(blaze.catalog.ls_arrs(), sorted(['a2', 'a3'])) @skipIf(not tables_is_here, 'PyTables is not installed') def test_hdf5_subdir_get(self): blaze.catalog.cd('/hdf5_dir/mygroup') a = blaze.catalog.get('a3') ds = datashape.dshape('2 * 3 * int32') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual(dat, [[1, 3, 2], [2, 1, 3]]) @skipIf(not tables_is_here, 'PyTables is not installed') def test_hdf5_subdir_ls(self): # Check top level blaze.catalog.cd('/') lall = blaze.catalog.ls_dirs() self.assertEqual(lall, ['hdf5_dir', 'subdir']) # Check HDF5 root level blaze.catalog.cd('/hdf5_dir') larrs = blaze.catalog.ls_arrs() self.assertEqual(larrs, ['a1']) ldirs = blaze.catalog.ls_dirs() self.assertEqual(ldirs, ['mygroup']) lall = blaze.catalog.ls() self.assertEqual(lall, ['a1', 'mygroup']) # Check HDF5 second level blaze.catalog.cd('/hdf5_dir/mygroup') larrs = blaze.catalog.ls_arrs() self.assertEqual(larrs, ['a2', 'a3']) ldirs = blaze.catalog.ls_dirs() self.assertEqual(ldirs, ['mygroup2']) lall = blaze.catalog.ls() self.assertEqual(lall, ['a2', 'a3', 'mygroup2']) def test_load_npy(self): # Confirms that a simple npy file can be loaded blaze.catalog.cd('/') a = blaze.catalog.get('npy_arr') ds = datashape.dshape('20 * {idx: int32, val: string}') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual([x['idx'] for x in dat], list(range(20))) self.assertEqual([x['val'] for x in dat], ['yes', 'no'] * 10) def test_load_py(self): # Confirms that a simple py file can generate a blaze array blaze.catalog.cd('/') a = blaze.catalog.get('py_arr') ds = datashape.dshape('5 * int32') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual(dat, [1, 2, 3, 4, 5]) if __name__ == '__main__': unittest.main()
{ "repo_name": "xsixing/blaze", "path": "blaze/catalog/tests/test_catalog.py", "copies": "2", "size": "5754", "license": "bsd-3-clause", "hash": 8851084069624317000, "line_mean": 39.5211267606, "line_max": 73, "alpha_frac": 0.5742092457, "autogenerated": false, "ratio": 3.289879931389365, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4864089177089366, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import numpy as np from numpy.testing import assert_array_equal, assert_allclose from dynd import nd, ndt import blaze import unittest import tempfile import os, os.path import glob import shutil import blaze # Useful superclass for disk-based tests class MayBePersistentTest(unittest.TestCase): disk = None def setUp(self): if self.disk == 'BLZ': prefix = 'blaze-' + self.__class__.__name__ suffix = '.blz' path1 = tempfile.mkdtemp(suffix=suffix, prefix=prefix) os.rmdir(path1) self.ddesc1 = blaze.BLZ_DDesc(path1, mode='w') path2 = tempfile.mkdtemp(suffix=suffix, prefix=prefix) os.rmdir(path2) self.ddesc2 = blaze.BLZ_DDesc(path2, mode='w') path3 = tempfile.mkdtemp(suffix=suffix, prefix=prefix) os.rmdir(path3) self.ddesc3 = blaze.BLZ_DDesc(path3, mode='w') elif self.disk == 'HDF5': prefix = 'hdf5-' + self.__class__.__name__ suffix = '.hdf5' dpath = "/earray" h, path1 = tempfile.mkstemp(suffix=suffix, prefix=prefix) os.close(h) # close the non needed file handle self.ddesc1 = blaze.HDF5_DDesc(path1, dpath, mode='w') h, path2 = tempfile.mkstemp(suffix=suffix, prefix=prefix) os.close(h) self.ddesc2 = blaze.HDF5_DDesc(path2, dpath, mode='w') h, path3 = tempfile.mkstemp(suffix=suffix, prefix=prefix) os.close(h) self.ddesc3 = blaze.HDF5_DDesc(path3, dpath, mode='w') else: self.ddesc1 = None self.ddesc2 = None self.ddesc3 = None def tearDown(self): if self.disk: self.ddesc1.remove() self.ddesc2.remove() self.ddesc3.remove() # Check for arrays that fit in the chunk size class evalTest(unittest.TestCase): vm = "numexpr" # if numexpr not available, it will fall back to python N = 1000 def test00(self): """Testing elwise_eval() with only scalars and constants""" a = 3 cr = blaze._elwise_eval("2 * a", vm=self.vm) self.assert_(cr == 6, "eval does not work correctly") def test01(self): """Testing with only blaze arrays""" a, b = np.arange(self.N), np.arange(1, self.N+1) c = blaze.array(a) d = blaze.array(b) cr = blaze._elwise_eval("c * d", vm=self.vm) nr = a * b assert_array_equal(cr[:], nr, "eval does not work correctly") def test02(self): """Testing with only numpy arrays""" a, b = np.arange(self.N), np.arange(1, self.N+1) cr = blaze._elwise_eval("a * b", vm=self.vm) nr = a * b assert_array_equal(cr[:], nr, "eval does not work correctly") def test03(self): """Testing with only dynd arrays""" a, b = np.arange(self.N), np.arange(1, self.N+1) c = nd.array(a) d = nd.array(b) cr = blaze._elwise_eval("c * d", vm=self.vm) nr = a * b assert_array_equal(cr[:], nr, "eval does not work correctly") def test04(self): """Testing with a mix of blaze, numpy and dynd arrays""" a, b = np.arange(self.N), np.arange(1, self.N+1) b = blaze.array(b) d = nd.array(a) cr = blaze._elwise_eval("a * b + d", vm=self.vm) nr = a * b + d assert_array_equal(cr[:], nr, "eval does not work correctly") def test05(self): """Testing with a mix of scalars and blaze, numpy and dynd arrays""" a, b = np.arange(self.N), np.arange(1, self.N+1) b = blaze.array(b) d = nd.array(a) cr = blaze._elwise_eval("a * b + d + 2", vm=self.vm) nr = a * b + d + 2 assert_array_equal(cr[:], nr, "eval does not work correctly") def test06(self): """Testing reductions on blaze arrays""" if self.vm == "python": # The reductions does not work well using Blaze expressions yet return a, b = np.arange(self.N), np.arange(1, self.N+1) b = blaze.array(b) cr = blaze._elwise_eval("sum(b + 2)", vm=self.vm) nr = np.sum(b + 2) self.assert_(cr == nr, "eval does not work correctly") # Check for arrays that fit in the chunk size # Using the Python VM (i.e. Blaze machinery) here class evalPythonTest(evalTest): vm = "python" # Check for arrays that are larger than a chunk class evalLargeTest(evalTest): N = 10000 # Check for arrays that are larger than a chunk # Using the Python VM (i.e. Blaze machinery) here class evalPythonLargeTest(evalTest): N = 10000 vm = "python" # Check for arrays stored on-disk, but fit in a chunk # Check for arrays that fit in memory class storageTest(MayBePersistentTest): N = 1000 vm = "numexpr" disk = "BLZ" def test00(self): """Testing elwise_eval() with only blaze arrays""" a, b = np.arange(self.N), np.arange(1, self.N+1) c = blaze.array(a, ddesc=self.ddesc1) d = blaze.array(b, ddesc=self.ddesc2) cr = blaze._elwise_eval("c * d", vm=self.vm, ddesc=self.ddesc3) nr = a * b assert_array_equal(cr[:], nr, "eval does not work correctly") def test01(self): """Testing elwise_eval() with blaze arrays and constants""" a, b = np.arange(self.N), np.arange(1, self.N+1) c = blaze.array(a, ddesc=self.ddesc1) d = blaze.array(b, ddesc=self.ddesc2) cr = blaze._elwise_eval("c * d + 1", vm=self.vm, ddesc=self.ddesc3) nr = a * b + 1 assert_array_equal(cr[:], nr, "eval does not work correctly") def test03(self): """Testing elwise_eval() with blaze and dynd arrays""" a, b = np.arange(self.N), np.arange(1, self.N+1) c = blaze.array(a, ddesc=self.ddesc1) d = nd.array(b) cr = blaze._elwise_eval("c * d + 1", vm=self.vm, ddesc=self.ddesc3) nr = a * b + 1 assert_array_equal(cr[:], nr, "eval does not work correctly") def test04(self): """Testing elwise_eval() with blaze, dynd and numpy arrays""" a, b = np.arange(self.N), np.arange(1, self.N+1) c = blaze.array(a, ddesc=self.ddesc1) d = nd.array(b) cr = blaze._elwise_eval("a * c + d", vm=self.vm, ddesc=self.ddesc3) nr = a * c + d assert_array_equal(cr[:], nr, "eval does not work correctly") def test05(self): """Testing reductions on blaze arrays""" if self.vm == "python": # The reductions does not work well using Blaze expressions yet return a, b = np.arange(self.N), np.arange(1, self.N+1) b = blaze.array(b, ddesc=self.ddesc1) cr = blaze._elwise_eval("sum(b + 2)", vm=self.vm, ddesc=self.ddesc3) nr = np.sum(b + 2) self.assert_(cr == nr, "eval does not work correctly") # Check for arrays stored on-disk, but fit in a chunk # Using the Python VM (i.e. Blaze machinery) here class storagePythonTest(storageTest): vm = "python" # Check for arrays stored on-disk, but are larger than a chunk class storageLargeTest(storageTest): N = 10000 # Check for arrays stored on-disk, but are larger than a chunk # Using the Python VM (i.e. Blaze machinery) here class storagePythonLargeTest(storageTest): N = 10000 vm = "python" # Check for arrays stored on-disk, but fit in a chunk class storageHDF5Test(storageTest): disk = "HDF5" # Check for arrays stored on-disk, but are larger than a chunk class storageLargeHDF5Test(storageTest): N = 10000 disk = "HDF5" #################################### # Multidimensional tests start now #################################### # Check for arrays that fit in a chunk class evalMDTest(unittest.TestCase): N = 10 M = 100 vm = "numexpr" def test00(self): """Testing elwise_eval() with only blaze arrays""" a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) c = blaze.array(a) d = blaze.array(b) cr = blaze._elwise_eval("c * d", vm=self.vm) nr = a * b assert_array_equal(cr[:], nr, "eval does not work correctly") def test01(self): """Testing elwise_eval() with blaze arrays and scalars""" a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) c = blaze.array(a) d = blaze.array(b) cr = blaze._elwise_eval("c * d + 2", vm=self.vm) nr = a * b + 2 assert_array_equal(cr[:], nr, "eval does not work correctly") def test02(self): """Testing elwise_eval() with pure dynd arrays and scalars""" a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) c = nd.array(a) d = nd.array(b) cr = blaze._elwise_eval("c * d + 2", vm=self.vm) nr = a * b + 2 assert_array_equal(cr[:], nr, "eval does not work correctly") def test03(self): """Testing elwise_eval() with blaze and dynd arrays and scalars""" a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) c = blaze.array(a) d = nd.array(b) cr = blaze._elwise_eval("c * d + 2", vm=self.vm) nr = a * b + 2 assert_array_equal(cr[:], nr, "eval does not work correctly") def test04(self): """Testing reductions on blaze arrays""" if self.vm == "python": # The reductions does not work well using Blaze expressions yet return a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) b = blaze.array(b) cr = blaze._elwise_eval("sum(b + 2)", vm=self.vm) nr = np.sum(b + 2) self.assert_(cr == nr, "eval does not work correctly") def test05(self): """Testing reductions on blaze arrays and axis=0""" if self.vm == "python": # The reductions does not work well using Blaze expressions yet return a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) b = blaze.array(b) cr = blaze._elwise_eval("sum(b + 2, axis=0)", vm=self.vm) nr = np.sum(b + 2, axis=0) assert_array_equal(cr[:], nr, "eval does not work correctly") def test06(self): """Testing reductions on blaze arrays and axis=1""" if self.vm == "python": # The reductions does not work well using Blaze expressions yet return self.assertRaises(NotImplementedError, blaze._elwise_eval, "sum([[1,2],[3,4]], axis=1)") # Check for arrays that fit in a chunk # Using the Python VM (i.e. Blaze machinery) here class evalPythonMDTest(evalMDTest): vm = "python" # Check for arrays that does not fit in a chunk class evalLargeMDTest(evalMDTest): N = 100 M = 100 # Check for arrays that does not fit in a chunk, but using python VM class evalPythonLargeMDTest(evalMDTest): N = 100 M = 100 vm = "python" # Check for arrays that fit in a chunk (HDF5) class evalMDHDF5Test(evalMDTest): disk = "HDF5" # Check for arrays that does not fit in a chunk (HDF5) class evalLargeMDHDF5Test(evalMDTest): N = 100 M = 100 disk = "HDF5" # Check for arrays stored on-disk, but fit in a chunk # Check for arrays that fit in memory class storageMDTest(MayBePersistentTest): N = 10 M = 100 vm = "numexpr" disk = "BLZ" def test00(self): """Testing elwise_eval() with only blaze arrays""" a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) c = blaze.array(a, ddesc=self.ddesc1) d = blaze.array(b, ddesc=self.ddesc2) cr = blaze._elwise_eval("c * d", vm=self.vm, ddesc=self.ddesc3) nr = a * b assert_array_equal(cr[:], nr, "eval does not work correctly") def test01(self): """Testing elwise_eval() with blaze arrays and constants""" a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) c = blaze.array(a, ddesc=self.ddesc1) d = blaze.array(b, ddesc=self.ddesc2) cr = blaze._elwise_eval("c * d + 1", vm=self.vm, ddesc=self.ddesc3) nr = a * b + 1 assert_array_equal(cr[:], nr, "eval does not work correctly") def test03(self): """Testing elwise_eval() with blaze and dynd arrays""" a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) c = blaze.array(a, ddesc=self.ddesc1) d = nd.array(b) cr = blaze._elwise_eval("c * d + 1", vm=self.vm, ddesc=self.ddesc3) nr = a * b + 1 assert_array_equal(cr[:], nr, "eval does not work correctly") def test04(self): """Testing elwise_eval() with blaze, dynd and numpy arrays""" a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) c = blaze.array(a, ddesc=self.ddesc1) d = nd.array(b) cr = blaze._elwise_eval("a * c + d", vm=self.vm, ddesc=self.ddesc3) nr = a * c + d assert_array_equal(cr[:], nr, "eval does not work correctly") def test05(self): """Testing reductions on blaze arrays""" if self.vm == "python": # The reductions does not work well using Blaze expressions yet return a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) b = blaze.array(b, ddesc=self.ddesc1) cr = blaze._elwise_eval("sum(b + 2)", vm=self.vm, ddesc=self.ddesc3) nr = np.sum(b + 2) self.assert_(cr == nr, "eval does not work correctly") def test06(self): """Testing reductions on blaze arrays and axis=0""" if self.vm == "python": # The reductions does not work well using Blaze expressions yet return a = np.arange(self.N*self.M).reshape(self.N, self.M) b = np.arange(1, self.N*self.M+1).reshape(self.N, self.M) b = blaze.array(b, ddesc=self.ddesc1) cr = blaze._elwise_eval("sum(b, axis=0)", vm=self.vm, ddesc=self.ddesc3) nr = np.sum(b, axis=0) assert_array_equal(cr, nr, "eval does not work correctly") # Check for arrays stored on-disk, but fit in a chunk # Using the Python VM (i.e. Blaze machinery) here class storagePythonMDTest(storageMDTest): vm = "python" # Check for arrays stored on-disk, but are larger than a chunk class storageLargeMDTest(storageMDTest): N = 500 # Check for arrays stored on-disk, but are larger than a chunk # Using the Python VM (i.e. Blaze machinery) here class storagePythonLargeMDTest(storageMDTest): N = 500 vm = "python" # Check for arrays stored on-disk, but fit in a chunk class storageMDHDF5Test(storageMDTest): disk = "HDF5" # Check for arrays stored on-disk, but are larger than a chunk class storageLargeMDHDF5Test(storageMDTest): N = 500 disk = "HDF5" if __name__ == '__main__': unittest.main()
{ "repo_name": "talumbau/blaze", "path": "blaze/compute/tests/test_elwise_eval.py", "copies": "1", "size": "15565", "license": "bsd-3-clause", "hash": 3863244668738426000, "line_mean": 35.0300925926, "line_max": 76, "alpha_frac": 0.5866366849, "autogenerated": false, "ratio": 3.1030701754385963, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4189706860338596, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import numpy as np import blaze from blaze.datadescriptor import dd_as_py from datashape import to_numpy_dtype class TestBasicTypes(unittest.TestCase): def test_ints(self): types = ['int8', 'int16', 'int32', 'int64'] for type_ in types: a = blaze.array(np.arange(3), dshape=type_) dtype = to_numpy_dtype(a.dshape) self.assertEqual(dtype, np.dtype(type_)) self.assertEqual(dd_as_py(a._data), [0, 1, 2]) def test_uints(self): types = ['uint8', 'uint16', 'uint32', 'uint64'] for type_ in types: a = blaze.array(np.arange(3), dshape=type_) dtype = to_numpy_dtype(a.dshape) self.assertEqual(dtype, np.dtype(type_)) self.assertEqual(dd_as_py(a._data), [0, 1, 2]) def test_floats(self): #types = ['float16', 'float32', 'float64'] types = ['float32', 'float64'] for type_ in types: a = blaze.array(np.arange(3), dshape=type_) dtype = to_numpy_dtype(a.dshape) self.assertEqual(dtype, np.dtype(type_)) if type_ != 'float16': # dd_as_py does not support this yet self.assertEqual(dd_as_py(a._data), [0, 1, 2]) def test_complex(self): types = ['complex64', 'complex128'] for type_ in types: a = blaze.array(np.arange(3), dshape=type_) dtype = to_numpy_dtype(a.dshape) self.assertEqual(dtype, np.dtype(type_)) # dd_as_py does not support complexes yet.. self.assertEqual(dd_as_py(a._data), [0, 1, 2])
{ "repo_name": "xsixing/blaze", "path": "blaze/tests/test_types.py", "copies": "2", "size": "1701", "license": "bsd-3-clause", "hash": -7271557337315856000, "line_mean": 35.1914893617, "line_max": 64, "alpha_frac": 0.5661375661, "autogenerated": false, "ratio": 3.3029126213592233, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4869050187459223, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import numpy as np import datashape import blaze from blaze.datadescriptor import dd_as_py from blaze.tests.common import MayBeUriTest from blaze import append from blaze.py2help import skip class TestEphemeral(unittest.TestCase): def test_create_scalar(self): a = blaze.array(True) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(a.dshape, datashape.dshape('bool')) self.assertEqual(bool(a), True) a = blaze.array(-123456) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(a.dshape, datashape.dshape('int32')) self.assertEqual(int(a), -123456) a = blaze.array(-1.25e-10) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(a.dshape, datashape.dshape('float64')) self.assertEqual(float(a), -1.25e-10) a = blaze.array(-1.25e-10+2.5j) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(a.dshape, datashape.dshape('complex[float64]')) self.assertEqual(complex(a), -1.25e-10+2.5j) def test_create_from_numpy(self): a = blaze.array(np.arange(3)) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [0, 1, 2]) def test_create(self): # A default array (backed by NumPy) a = blaze.array([1,2,3]) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [1, 2, 3]) def test_create_append(self): # A default array (backed by NumPy, append not supported yet) a = blaze.array([]) self.assertTrue(isinstance(a, blaze.Array)) self.assertRaises(ValueError, append, a, [1,2,3]) # XXX The tests below still do not work # self.assertEqual(a[0], 1) # self.assertEqual(a[1], 2) # self.assertEqual(a[2], 3) def test_create_compress(self): # A compressed array (backed by BLZ) a = blaze.array(np.arange(1,4), caps={'compress': True}) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [1, 2, 3]) # XXX The tests below still do not work # self.assertEqual(a[0], 1) # self.assertEqual(a[1], 2) # self.assertEqual(a[2], 3) def test_create_iter(self): # A simple 1D array a = blaze.array(i for i in range(10)) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(a.dshape, datashape.dshape('10, int32')) self.assertEqual(dd_as_py(a._data), list(range(10))) # A nested iter a = blaze.array((i for i in range(x)) for x in range(5)) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(a.dshape, datashape.dshape('5, var, int32')) self.assertEqual(dd_as_py(a._data), [[i for i in range(x)] for x in range(5)]) # A list of iter a = blaze.array([range(3), (1.5*x for x in range(4)), iter([-1, 1])]) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(a.dshape, datashape.dshape('3, var, float64')) self.assertEqual(dd_as_py(a._data), [list(range(3)), [1.5*x for x in range(4)], [-1, 1]]) def test_create_compress_iter(self): # A compressed array (backed by BLZ) a = blaze.array((i for i in range(10)), caps={'compress': True}) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), list(range(10))) def test_create_zeros(self): # A default array a = blaze.zeros('10, int64') self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [0]*10) def test_create_compress_zeros(self): # A compressed array (backed by BLZ) a = blaze.zeros('10, int64', caps={'compress': True}) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [0]*10) def test_create_ones(self): # A default array a = blaze.ones('10, int64') self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [1]*10) def test_create_compress_ones(self): # A compressed array (backed by BLZ) a = blaze.ones('10, int64', caps={'compress': True}) self.assertTrue(isinstance(a, blaze.Array)) self.assertEqual(dd_as_py(a._data), [1]*10) def test_create_record(self): # A simple record array a = blaze.array([(10, 3.5), (15, 2.25)], dshape="var, {val: int32; flt: float32}") self.assertEqual(dd_as_py(a._data), [{'val': 10, 'flt': 3.5}, {'val': 15, 'flt': 2.25}]) # Test field access via attributes aval = a.val self.assertEqual(dd_as_py(aval._data), [10, 15]) aflt = a.flt self.assertEqual(dd_as_py(aflt._data), [3.5, 2.25]) class TestPersistent(MayBeUriTest, unittest.TestCase): uri = True def test_create(self): persist = blaze.Storage(self.rooturi, format="blz") a = blaze.array([], 'float64', storage=persist) self.assertTrue(isinstance(a, blaze.Array)) print("->", a.dshape.shape) self.assertTrue(a.dshape.shape == (0,)) self.assertEqual(dd_as_py(a._data), []) def test_append(self): persist = blaze.Storage(self.rooturi, format="blz") a = blaze.zeros('0, float64', storage=persist) self.assertTrue(isinstance(a, blaze.Array)) append(a,list(range(10))) self.assertEqual(dd_as_py(a._data), list(range(10))) # Using a 1-dim as the internal dimension def test_append2(self): persist = blaze.Storage(self.rooturi, format="blz") a = blaze.empty('0, 2, float64', storage=persist) self.assertTrue(isinstance(a, blaze.Array)) lvals = [[i,i*2] for i in range(10)] append(a,lvals) self.assertEqual(dd_as_py(a._data), lvals) def test_open(self): persist = blaze.Storage(self.rooturi, format="blz") a = blaze.ones('0, float64', storage=persist) append(a,range(10)) # Re-open the dataset in URI a2 = blaze.open(persist) self.assertTrue(isinstance(a2, blaze.Array)) self.assertEqual(dd_as_py(a2._data), list(range(10))) if __name__ == '__main__': unittest.main(verbosity=2)
{ "repo_name": "aaronmartin0303/blaze", "path": "blaze/tests/test_array_creation.py", "copies": "1", "size": "6505", "license": "bsd-3-clause", "hash": 276563344221429470, "line_mean": 38.186746988, "line_max": 77, "alpha_frac": 0.5949269792, "autogenerated": false, "ratio": 3.17626953125, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9261729188995887, "avg_score": 0.0018934642908224862, "num_lines": 166 }
from __future__ import absolute_import, division, print_function import unittest import numpy as np from datashape import dshape import blaze from blaze.compute.function import BlazeFunc from dynd import nd, _lowlevel def create_overloaded_add(): # Create an overloaded blaze func, populate it with # some ckernel implementations extracted from numpy, # and test some calls on it. myfunc = BlazeFunc('test', 'myfunc') # overload int32 -> np.add ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add, (np.int32, np.int32, np.int32), False) myfunc.add_overload("(A... * int32, A... * int32) -> A... * int32", ckd) # overload int16 -> np.subtract (so we can see the difference) ckd = _lowlevel.ckernel_deferred_from_ufunc(np.subtract, (np.int16, np.int16, np.int16), False) myfunc.add_overload("(A... * int16, A... * int16) -> A... * int16", ckd) return myfunc class TestBlazeFunctionFromUFunc(unittest.TestCase): def test_overload(self): myfunc = create_overloaded_add() # Test int32 overload -> add a = blaze.eval(myfunc(blaze.array([3, 4]), blaze.array([1, 2]))) self.assertEqual(a.dshape, dshape('2 * int32')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [4, 6]) # Test int16 overload -> subtract a = blaze.eval(myfunc(blaze.array([3, 4], dshape='int16'), blaze.array([1, 2], dshape='int16'))) self.assertEqual(a.dshape, dshape('2 * int16')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [2, 2]) def test_overload_coercion(self): myfunc = create_overloaded_add() # Test type promotion to int32 a = blaze.eval(myfunc(blaze.array([3, 4], dshape='int16'), blaze.array([1, 2]))) self.assertEqual(a.dshape, dshape('2 * int32')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [4, 6]) a = blaze.eval(myfunc(blaze.array([3, 4]), blaze.array([1, 2], dshape='int16'))) self.assertEqual(a.dshape, dshape('2 * int32')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [4, 6]) # Test type promotion to int16 a = blaze.eval(myfunc(blaze.array([3, 4], dshape='int8'), blaze.array([1, 2], dshape='int8'))) self.assertEqual(a.dshape, dshape('2 * int16')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [2, 2]) def test_nesting(self): myfunc = create_overloaded_add() # A little bit of nesting a = blaze.eval(myfunc(myfunc(blaze.array([3, 4]), blaze.array([1, 2])), blaze.array([2, 10]))) self.assertEqual(a.dshape, dshape('2 * int32')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [6, 16]) def test_nesting_and_coercion(self): myfunc = create_overloaded_add() # More nesting, with conversions a = blaze.eval(myfunc(myfunc(blaze.array([1, 2]), blaze.array([-2, 10])), myfunc(blaze.array([1, 5], dshape='int16'), blaze.array(3, dshape='int16')))) self.assertEqual(a.dshape, dshape('2 * int32')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [-3, 14]) def test_overload_different_argcount(self): myfunc = BlazeFunc('test', 'ovld') # Two parameter overload ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add, (np.int32,) * 3, False) myfunc.add_overload("(A... * int32, A... * int32) -> A... * int32", ckd) # One parameter overload ckd = _lowlevel.ckernel_deferred_from_ufunc(np.negative, (np.int32,) * 2, False) myfunc.add_overload("(A... * int16, A... * int16) -> A... * int16", ckd) return myfunc if __name__ == '__main__': # TestBlazeKernel('test_kernel').debug() unittest.main()
{ "repo_name": "mwiebe/blaze", "path": "blaze/tests/test_blaze_functions.py", "copies": "1", "size": "4231", "license": "bsd-3-clause", "hash": 6340688238991609000, "line_mean": 39.2952380952, "line_max": 80, "alpha_frac": 0.5327345781, "autogenerated": false, "ratio": 3.344664031620553, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4377398609720553, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import numpy as np from datashape import dshape import blaze from blaze.compute.function import ElementwiseBlazeFunc from dynd import nd, _lowlevel def create_overloaded_add(): # Create an overloaded blaze func, populate it with # some ckernel implementations extracted from numpy, # and test some calls on it. myfunc = ElementwiseBlazeFunc('test', 'myfunc') # overload int32 -> np.add ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add, (np.int32, np.int32, np.int32), False) myfunc.add_overload("(int32, int32) -> int32", ckd) # overload int16 -> np.subtract (so we can see the difference) ckd = _lowlevel.ckernel_deferred_from_ufunc(np.subtract, (np.int16, np.int16, np.int16), False) myfunc.add_overload("(int16, int16) -> int16", ckd) return myfunc class TestBlazeFunctionFromUFunc(unittest.TestCase): def test_overload(self): myfunc = create_overloaded_add() # Test int32 overload -> add a = blaze.eval(myfunc(blaze.array([3, 4]), blaze.array([1, 2]))) self.assertEqual(a.dshape, dshape('2 * int32')) self.assertEqual(nd.as_py(a.ddesc.dynd_arr()), [4, 6]) # Test int16 overload -> subtract a = blaze.eval(myfunc(blaze.array([3, 4], dshape='int16'), blaze.array([1, 2], dshape='int16'))) self.assertEqual(a.dshape, dshape('2 * int16')) self.assertEqual(nd.as_py(a.ddesc.dynd_arr()), [2, 2]) def test_overload_coercion(self): myfunc = create_overloaded_add() # Test type promotion to int32 a = blaze.eval(myfunc(blaze.array([3, 4], dshape='int16'), blaze.array([1, 2]))) self.assertEqual(a.dshape, dshape('2 * int32')) self.assertEqual(nd.as_py(a.ddesc.dynd_arr()), [4, 6]) a = blaze.eval(myfunc(blaze.array([3, 4]), blaze.array([1, 2], dshape='int16'))) self.assertEqual(a.dshape, dshape('2 * int32')) self.assertEqual(nd.as_py(a.ddesc.dynd_arr()), [4, 6]) # Test type promotion to int16 a = blaze.eval(myfunc(blaze.array([3, 4], dshape='int8'), blaze.array([1, 2], dshape='int8'))) self.assertEqual(a.dshape, dshape('2 * int16')) self.assertEqual(nd.as_py(a.ddesc.dynd_arr()), [2, 2]) def test_nesting(self): myfunc = create_overloaded_add() # A little bit of nesting a = blaze.eval(myfunc(myfunc(blaze.array([3, 4]), blaze.array([1, 2])), blaze.array([2, 10]))) self.assertEqual(a.dshape, dshape('2 * int32')) self.assertEqual(nd.as_py(a.ddesc.dynd_arr()), [6, 16]) def test_nesting_and_coercion(self): myfunc = create_overloaded_add() # More nesting, with conversions a = blaze.eval(myfunc(myfunc(blaze.array([1, 2]), blaze.array([-2, 10])), myfunc(blaze.array([1, 5], dshape='int16'), blaze.array(3, dshape='int16')))) self.assertEqual(a.dshape, dshape('2 * int32')) self.assertEqual(nd.as_py(a.ddesc.dynd_arr()), [-3, 14]) def test_overload_different_argcount(self): myfunc = ElementwiseBlazeFunc('test', 'ovld') # Two parameter overload ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add, (np.int32,) * 3, False) myfunc.add_overload("(int32, int32) -> int32", ckd) # One parameter overload ckd = _lowlevel.ckernel_deferred_from_ufunc(np.negative, (np.int32,) * 2, False) myfunc.add_overload("(int16, int16) -> int16", ckd) return myfunc if __name__ == '__main__': # TestBlazeKernel('test_kernel').debug() unittest.main()
{ "repo_name": "sethkontny/blaze", "path": "blaze/tests/test_blaze_functions.py", "copies": "1", "size": "4180", "license": "bsd-3-clause", "hash": 5558677850027961000, "line_mean": 38.8095238095, "line_max": 79, "alpha_frac": 0.5459330144, "autogenerated": false, "ratio": 3.365539452495974, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4411472466895974, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest import numpy as np from datashape import dshape import blaze from blaze.compute.function import function, kernel from blaze import array, py2help from dynd import nd, _lowlevel # f @function('X, Y, float32 -> X, Y, float32 -> X, Y, float32') def f(a, b): return a @function('X, Y, complex64 -> X, Y, complex64 -> X, Y, complex64') def f(a, b): return a @function('X, Y, complex128 -> X, Y, complex128 -> X, Y, complex128') def f(a, b): return a # g @function('X, Y, float32 -> X, Y, float32 -> X, int32') def g(a, b): return a @function('X, Y, float32 -> ..., float32 -> X, int32') def g(a, b): return a def create_overloaded_add(): # Create an overloaded blaze func, populate it with # some ckernel implementations extracted from numpy, # and test some calls on it. #d = blaze.overloading.Dispatcher() @function('A -> A -> A') def myfunc(x, y): raise NotImplementedError # overload int32 -> np.add ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add, (np.int32, np.int32, np.int32), False) kernel(myfunc, "ckernel", ckd, "A..., int32 -> A..., int32 -> A..., int32") # overload int16 -> np.subtract (so we can see the difference) ckd = _lowlevel.ckernel_deferred_from_ufunc(np.subtract, (np.int16, np.int16, np.int16), False) kernel(myfunc, "ckernel", ckd, "A..., int16 -> A..., int16 -> A..., int16") return myfunc #------------------------------------------------------------------------ # Tests #------------------------------------------------------------------------ class TestBlazeKernel(unittest.TestCase): def test_kernel(self): A = array([8, 9], dshape('2, int32')) res = f(A, A) self.assertEqual(str(res.dshape), '1, 2, float32') self.assertEqual(len(res.expr), 2) graph, ctx = res.expr self.assertEqual(len(graph.args), 2) self.assertEqual(len(ctx.constraints), 0) self.assertEqual(len(ctx.params), 1) # res.view() class TestBlazeFunctionFromUFunc(unittest.TestCase): @py2help.skip def test_overload(self): myfunc = create_overloaded_add() # Test int32 overload -> add a = blaze.eval(myfunc(blaze.array([3,4]), blaze.array([1,2]))) self.assertEqual(a.dshape, blaze.dshape('2, int32')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [4, 6]) # Test int16 overload -> subtract a = blaze.eval(myfunc(blaze.array([3,4], dshape='int16'), blaze.array([1,2], dshape='int16'))) self.assertEqual(a.dshape, blaze.dshape('2, int16')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [2, 2]) @py2help.skip def test_overload_coercion(self): myfunc = create_overloaded_add() # Test type promotion to int32 a = blaze.eval(myfunc(blaze.array([3,4], dshape='int16'), blaze.array([1,2]))) self.assertEqual(a.dshape, blaze.dshape('2, int32')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [4, 6]) a = blaze.eval(myfunc(blaze.array([3,4]), blaze.array([1,2], dshape='int16'))) self.assertEqual(a.dshape, blaze.dshape('2, int32')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [4, 6]) # Test type promotion to int16 a = blaze.eval(myfunc(blaze.array([3,4], dshape='int8'), blaze.array([1,2], dshape='int8'))) self.assertEqual(a.dshape, blaze.dshape('2, int16')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [2, 2]) @py2help.skip def test_nesting(self): myfunc = create_overloaded_add() # A little bit of nesting a = blaze.eval(myfunc(myfunc(blaze.array([3,4]), blaze.array([1,2])), blaze.array([2,10]))) self.assertEqual(a.dshape, blaze.dshape('2, int32')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [6, 16]) @py2help.skip def test_nesting_and_coercion(self): myfunc = create_overloaded_add() # More nesting, with conversions a = blaze.eval(myfunc(myfunc(blaze.array([1,2]), blaze.array([-2, 10])), myfunc(blaze.array([1, 5], dshape='int16'), blaze.array(3, dshape='int16')))) self.assertEqual(a.dshape, blaze.dshape('2, int32')) self.assertEqual(nd.as_py(a._data.dynd_arr()), [-3, 14]) if __name__ == '__main__': # TestBlazeKernel('test_kernel').debug() unittest.main()
{ "repo_name": "aaronmartin0303/blaze", "path": "blaze/tests/test_blaze_functions.py", "copies": "1", "size": "4654", "license": "bsd-3-clause", "hash": 3194633730198116000, "line_mean": 32.4820143885, "line_max": 80, "alpha_frac": 0.5640309411, "autogenerated": false, "ratio": 3.0985352862849536, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.41625662273849534, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import unittest try: # Python 3 from unittest import mock except ImportError: # Python 2 import mock try: # Python 2 from StringIO import StringIO except ImportError: # Python 3 from io import StringIO import time from .context import print_utilities as p_utils DEFAULT_MSG = 'TEST' MOCK_TIMESTAMP = '20000101-000000' MOCK_TIMESTAMP_2 = '20000101-000003' DEFAULT_PRE = '[' DEFAULT_POST = ']' DEFAULT_SEP = ':' TEST_SLEEP = 3 def dummy(*args, **kwargs): time.sleep(TEST_SLEEP) class PrintUtilitiesTests(unittest.TestCase): def setUp(self): self.out = StringIO() def tearDown(self): del self.out # @mock.patch( # 'gkit_utils.time_utilities.get_timestamp', return_value=MOCK_TIMESTAMP) # def test_timeit(self, mfunc): # tag = ( # '[{ts}][STARTUP]: PROGRAM STARTED...\n\n**************************' # '**********************************************\n\n***************' # '*********************************************************\n\n' # '[{ts}] PROGRAM ENDED.\nElapsed:\n\t00:00:{secs}').format( # ts=MOCK_TIMESTAMP, secs=str(TEST_SLEEP).zfill(2)) # p_utils.timeit(func=dummy, out=self.out, stamped=True) # print('\n' + '#' * 72 + '\n') # print(self.out.getvalue().strip()) # print('\n' + '#' * 72 + '\n') # print(tag) # print('\n' + '#' * 72 + '\n') # self.assertEqual(tag, self.out.getvalue().strip()) def test_print_divider(self): token = '*' count = 72 tag = token * count p_utils.print_divider( token=token, count=count, pre='', post='', out=self.out) self.assertEqual(tag, self.out.getvalue().strip()) @mock.patch( 'gkit_utils.time_utilities.get_timestamp', return_value=MOCK_TIMESTAMP) def test_print_message(self, mfunc): tag = ( DEFAULT_PRE + MOCK_TIMESTAMP + DEFAULT_POST + DEFAULT_PRE + DEFAULT_MSG + DEFAULT_POST + DEFAULT_SEP + ' ') p_utils.print_message( DEFAULT_MSG, tags=[DEFAULT_MSG], out=self.out, stamped=True) self.assertEqual(tag + DEFAULT_MSG, self.out.getvalue().strip()) @mock.patch( 'gkit_utils.time_utilities.get_timestamp', return_value=MOCK_TIMESTAMP) def test_print_event(self, mfunc): tag = ( DEFAULT_PRE + MOCK_TIMESTAMP + DEFAULT_POST + DEFAULT_PRE + 'EVENT' + DEFAULT_POST + DEFAULT_SEP + ' ') p_utils.print_event(DEFAULT_MSG, out=self.out, stamped=True) self.assertEqual(tag + DEFAULT_MSG, self.out.getvalue().strip()) @mock.patch( 'gkit_utils.time_utilities.get_timestamp', return_value=MOCK_TIMESTAMP) def test_print_error(self, mfunc): tag = ( DEFAULT_PRE + MOCK_TIMESTAMP + DEFAULT_POST + DEFAULT_PRE + 'ERROR' + DEFAULT_POST + DEFAULT_SEP + ' ') p_utils.print_error(DEFAULT_MSG, out=self.out, stamped=True) self.assertEqual(tag + DEFAULT_MSG, self.out.getvalue().strip()) @mock.patch( 'gkit_utils.time_utilities.get_timestamp', return_value=MOCK_TIMESTAMP) def test_print_success(self, mfunc): tag = ( DEFAULT_PRE + MOCK_TIMESTAMP + DEFAULT_POST + DEFAULT_PRE + 'SUCCESS' + DEFAULT_POST + DEFAULT_SEP + ' ') p_utils.print_success(DEFAULT_MSG, post='', out=self.out, stamped=True) self.assertEqual(tag + DEFAULT_MSG, self.out.getvalue().strip()) @mock.patch( 'gkit_utils.time_utilities.get_timestamp', return_value=MOCK_TIMESTAMP) def test_print_startup(self, mfunc): tag = ( DEFAULT_PRE + MOCK_TIMESTAMP + DEFAULT_POST + DEFAULT_PRE + 'STARTUP' + DEFAULT_POST + DEFAULT_SEP + ' ') p_utils.print_startup(DEFAULT_MSG, out=self.out, stamped=True) self.assertEqual(tag + DEFAULT_MSG, self.out.getvalue().strip())
{ "repo_name": "gannon93/gkit_utils", "path": "tests/test_print_utilities.py", "copies": "1", "size": "4028", "license": "mit", "hash": 4336444804499228000, "line_mean": 32.2892561983, "line_max": 81, "alpha_frac": 0.5757199603, "autogenerated": false, "ratio": 3.502608695652174, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4578328655952174, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import urllib, json from ... import py2help if py2help.PY2: from urllib2 import urlopen else: from urllib.request import urlopen def get_remote_datashape(url): """Gets the datashape of a remote array URL.""" response = urlopen(url + '?r=datashape') return response.read().decode('utf8') def get_remote_json(url): """Gets the JSON data of a remote array URL.""" response = urlopen(url + '?r=data.json') return response.read() def create_remote_session(base_url): """Creates a compute session rooted on the remote array URL.""" params = [('r', 'create_session')] response = urlopen(base_url, urllib.urlencode(params)) return json.loads(response.read()) def close_remote_session(session_url): """Closes the remote compute session.""" params = [('r', 'close_session')] response = urlopen(session_url, urllib.urlencode(params)) return json.loads(response.read()) def add_computed_fields(session_url, url, fields, rm_fields, fnname): """Creates a new remote array with the added computed fields.""" reqdata = { "input": str(url), "fields": [[str(name), str(dt), str(expr)] for name, dt, expr in fields] } if len(rm_fields) > 0: reqdata['rm_fields'] = [str(name) for name in rm_fields] if fnname is not None: reqdata['fnname'] = str(fnname) params = [('r', 'add_computed_fields'), ('json', json.dumps(reqdata))] response = urlopen(session_url, urllib.urlencode(params)) return json.loads(response.read()) def make_computed_fields(session_url, url, replace_undim, fields, fnname): """Creates a new remote array with the computed fields.""" reqdata = { "input": str(url), "replace_undim": int(replace_undim), "fields": [[str(name), str(dt), str(expr)] for name, dt, expr in fields] } if fnname is not None: reqdata['fnname'] = str(fnname) params = [('r', 'make_computed_fields'), ('json', json.dumps(reqdata))] response = urlopen(session_url, urllib.urlencode(params)) return json.loads(response.read()) def sort(session_url, url, field): """Creates a new remote array which is sorted by field.""" reqdata = { "input": str(url), "field": field } params = [('r', 'sort'), ('json', json.dumps(reqdata))] response = urlopen(session_url, urllib.urlencode(params)) return json.loads(response.read()) def groupby(session_url, url, fields): reqdata = { "input": str(url), "fields": fields } params = [('r', 'groupby'), ('json', json.dumps(reqdata))] response = urlopen(session_url, urllib.urlencode(params)) return json.loads(response.read())
{ "repo_name": "cezary12/blaze", "path": "blaze/io/client/requests.py", "copies": "7", "size": "2898", "license": "bsd-3-clause", "hash": -5464330104047525000, "line_mean": 33.9156626506, "line_max": 74, "alpha_frac": 0.61042098, "autogenerated": false, "ratio": 3.7058823529411766, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7816303332941177, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import urllib import json from ... import py2help if py2help.PY2: from urllib2 import urlopen else: from urllib.request import urlopen def get_remote_datashape(url): """Gets the datashape of a remote array URL.""" response = urlopen(url + '?r=datashape') return response.read().decode('utf8') def get_remote_json(url): """Gets the JSON data of a remote array URL.""" response = urlopen(url + '?r=data.json') return response.read() def create_remote_session(base_url): """Creates a compute session rooted on the remote array URL.""" params = [('r', 'create_session')] response = urlopen(base_url, urllib.urlencode(params)) return json.loads(response.read()) def close_remote_session(session_url): """Closes the remote compute session.""" params = [('r', 'close_session')] response = urlopen(session_url, urllib.urlencode(params)) return json.loads(response.read()) def add_computed_fields(session_url, url, fields, rm_fields, fnname): """Creates a new remote array with the added computed fields.""" reqdata = { "input": str(url), "fields": [[str(name), str(dt), str(expr)] for name, dt, expr in fields] } if len(rm_fields) > 0: reqdata['rm_fields'] = [str(name) for name in rm_fields] if fnname is not None: reqdata['fnname'] = str(fnname) params = [('r', 'add_computed_fields'), ('json', json.dumps(reqdata))] response = urlopen(session_url, urllib.urlencode(params)) return json.loads(response.read()) def make_computed_fields(session_url, url, replace_undim, fields, fnname): """Creates a new remote array with the computed fields.""" reqdata = { "input": str(url), "replace_undim": int(replace_undim), "fields": [[str(name), str(dt), str(expr)] for name, dt, expr in fields] } if fnname is not None: reqdata['fnname'] = str(fnname) params = [('r', 'make_computed_fields'), ('json', json.dumps(reqdata))] response = urlopen(session_url, urllib.urlencode(params)) return json.loads(response.read()) def sort(session_url, url, field): """Creates a new remote array which is sorted by field.""" reqdata = { "input": str(url), "field": field } params = [('r', 'sort'), ('json', json.dumps(reqdata))] response = urlopen(session_url, urllib.urlencode(params)) return json.loads(response.read()) def groupby(session_url, url, fields): reqdata = { "input": str(url), "fields": fields } params = [('r', 'groupby'), ('json', json.dumps(reqdata))] response = urlopen(session_url, urllib.urlencode(params)) return json.loads(response.read())
{ "repo_name": "mwiebe/blaze", "path": "blaze/io/client/requests.py", "copies": "6", "size": "2905", "license": "bsd-3-clause", "hash": -7200900151490190000, "line_mean": 33.1764705882, "line_max": 74, "alpha_frac": 0.6110154905, "autogenerated": false, "ratio": 3.705357142857143, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7316372633357142, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import urwid TABSTOP = 8 class SourceLine(urwid.FlowWidget): def __init__(self, dbg_ui, text, line_nr='', attr=None, has_breakpoint=False): self.dbg_ui = dbg_ui self.text = text self.attr = attr self.line_nr = line_nr self.has_breakpoint = has_breakpoint self.is_current = False self.highlight = False def selectable(self): return True def set_current(self, is_current): self.is_current = is_current self._invalidate() def set_highlight(self, highlight): self.highlight = highlight self._invalidate() def set_breakpoint(self, has_breakpoint): self.has_breakpoint = has_breakpoint self._invalidate() def rows(self, size, focus=False): return 1 def render(self, size, focus=False): from pudb.debugger import CONFIG render_line_nr = CONFIG["line_numbers"] maxcol = size[0] hscroll = self.dbg_ui.source_hscroll_start # attrs is a list of words like 'focused' and 'breakpoint' attrs = [] if self.is_current: crnt = ">" attrs.append("current") else: crnt = " " if self.has_breakpoint: bp = "*" attrs.append("breakpoint") else: bp = " " if focus: attrs.append("focused") elif self.highlight: if not self.has_breakpoint: attrs.append("highlighted") text = self.text if not attrs and self.attr is not None: attr = self.attr + [("source", None)] else: attr = [(" ".join(attrs+["source"]), None)] from urwid.util import apply_target_encoding, trim_text_attr_cs # build line prefix --------------------------------------------------- line_prefix = "" line_prefix_attr = [] if render_line_nr: line_prefix_attr = [("line number", len(self.line_nr))] line_prefix = self.line_nr line_prefix = crnt+bp+line_prefix line_prefix_attr = [("source", 1), ("breakpoint marker", 1)] \ + line_prefix_attr # assume rendered width is same as len line_prefix_len = len(line_prefix) encoded_line_prefix, line_prefix_cs = apply_target_encoding(line_prefix) assert len(encoded_line_prefix) == len(line_prefix) # otherwise we'd have to adjust line_prefix_attr... :/ # shipout, encoding --------------------------------------------------- cs = [] encoded_text_segs = [] encoded_attr = [] i = 0 for seg_attr, seg_len in attr: if seg_len is None: # means: gobble up remainder of text and rest of line # and fill with attribute l = hscroll+maxcol remaining_text = text[i:] encoded_seg_text, seg_cs = apply_target_encoding( remaining_text + l*" ") encoded_attr.append((seg_attr, len(remaining_text)+l)) else: unencoded_seg_text = text[i:i+seg_len] encoded_seg_text, seg_cs = apply_target_encoding(unencoded_seg_text) adjustment = len(encoded_seg_text) - len(unencoded_seg_text) encoded_attr.append((seg_attr, seg_len + adjustment)) i += seg_len encoded_text_segs.append(encoded_seg_text) cs.extend(seg_cs) encoded_text = b"".join(encoded_text_segs) encoded_text, encoded_attr, cs = trim_text_attr_cs( encoded_text, encoded_attr, cs, hscroll, hscroll+maxcol-line_prefix_len) encoded_text = encoded_line_prefix + encoded_text encoded_attr = line_prefix_attr + encoded_attr cs = line_prefix_cs + cs return urwid.TextCanvas([encoded_text], [encoded_attr], [cs], maxcol=maxcol) def keypress(self, size, key): return key def format_source(debugger_ui, lines, breakpoints): lineno_format = "%%%dd " % (len(str(len(lines)))) try: import pygments # noqa except ImportError: return [SourceLine(debugger_ui, line.rstrip("\n\r").expandtabs(TABSTOP), lineno_format % (i+1), None, has_breakpoint=i+1 in breakpoints) for i, line in enumerate(lines)] else: from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatter import Formatter import pygments.token as t result = [] argument_parser = ArgumentParser(t) # NOTE: Tokens of the form t.Token.<name> are not native # Pygments token types; they are user defined token # types. # # t.Token is a Pygments token creator object # (see http://pygments.org/docs/tokens/) # # The user defined token types get assigned by # one of several translation operations at the # beginning of add_snippet(). # ATTR_MAP = { t.Token: "source", t.Keyword.Namespace: "namespace", t.Token.Argument: "argument", t.Token.Dunder: "dunder", t.Token.Keyword2: 'keyword2', t.Keyword: "keyword", t.Literal: "literal", t.Name.Exception: "exception", t.Name.Function: "name", t.Name.Class: "name", t.Name.Builtin: "builtin", t.Name.Builtin.Pseudo: "pseudo", t.Punctuation: "punctuation", t.Operator: "operator", t.String: "string", # XXX: Single and Double don't actually work yet. # See https://bitbucket.org/birkenfeld/pygments-main/issue/685 t.String.Double: "doublestring", t.String.Single: "singlestring", t.String.Backtick: "backtick", t.String.Doc: "docstring", t.Comment: "comment", } # Token translation table. Maps token types and their # associated strings to new token types. ATTR_TRANSLATE = { t.Keyword: { 'class': t.Token.Keyword2, 'def': t.Token.Keyword2, 'exec': t.Token.Keyword2, 'lambda': t.Token.Keyword2, 'print': t.Token.Keyword2, }, t.Operator:{ '.': t.Token, }, t.Name.Builtin.Pseudo:{ 'self': t.Token, }, t.Name.Builtin:{ 'object': t.Name.Class, }, } class UrwidFormatter(Formatter): def __init__(subself, **options): Formatter.__init__(subself, **options) subself.current_line = "" subself.current_attr = [] subself.lineno = 1 def format(subself, tokensource, outfile): def add_snippet(ttype, s): if not s: return # Find function arguments. When found, change their # ttype to t.Token.Argument new_ttype = argument_parser.parse_token(ttype, s) if new_ttype: ttype = new_ttype # Translate tokens if ttype in ATTR_TRANSLATE: if s in ATTR_TRANSLATE[ttype]: ttype = ATTR_TRANSLATE[ttype][s] # Translate dunder method tokens if ttype == t.Name.Function and s.startswith('__') and s.endswith('__'): ttype = t.Token.Dunder while not ttype in ATTR_MAP: if ttype.parent is not None: ttype = ttype.parent else: raise RuntimeError( "untreated token type: %s" % str(ttype)) attr = ATTR_MAP[ttype] subself.current_line += s subself.current_attr.append((attr, len(s))) def shipout_line(): result.append( SourceLine(debugger_ui, subself.current_line, lineno_format % subself.lineno, subself.current_attr, has_breakpoint=subself.lineno in breakpoints)) subself.current_line = "" subself.current_attr = [] subself.lineno += 1 for ttype, value in tokensource: while True: newline_pos = value.find("\n") if newline_pos == -1: add_snippet(ttype, value) break else: add_snippet(ttype, value[:newline_pos]) shipout_line() value = value[newline_pos+1:] if subself.current_line: shipout_line() highlight("".join(l.expandtabs(TABSTOP) for l in lines), PythonLexer(stripnl=False), UrwidFormatter()) return result class ParseState(object): '''States for the ArgumentParser class''' idle = 1 found_function = 2 found_open_paren = 3 class ArgumentParser(object): '''Parse source code tokens and identify function arguments. This parser implements a state machine which accepts Pygments tokens, delivered sequentially from the beginning of a source file to its end. parse_token() processes each token (and its associated string) and returns None if that token does not require modification. When it finds a token which represents a function argument, it returns the correct token type for that item (the caller should then replace the associated item's token type with the returned type) ''' def __init__(self, pygments_token): self.t = pygments_token self.state = ParseState.idle self.paren_level = 0 def parse_token(self, token, s): '''Parse token. Return None or replacement token type''' if self.state == ParseState.idle: if token is self.t.Name.Function: self.state = ParseState.found_function self.paren_level = 0 elif self.state == ParseState.found_function: if token is self.t.Punctuation and s == '(': self.state = ParseState.found_open_paren self.paren_level = 1 else: if ((token is self.t.Name) or (token is self.t.Name.Builtin.Pseudo and s == 'self')): return self.t.Token.Argument elif token is self.t.Punctuation and s == ')': self.paren_level -= 1 elif token is self.t.Punctuation and s == '(': self.paren_level += 1 if self.paren_level == 0: self.state = ParseState.idle return None
{ "repo_name": "albfan/pudb", "path": "pudb/source_view.py", "copies": "1", "size": "11598", "license": "mit", "hash": -7398406091849711000, "line_mean": 34.4678899083, "line_max": 92, "alpha_frac": 0.5043973099, "autogenerated": false, "ratio": 4.551805337519623, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5556202647419622, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import uuid import operator import numbers from glue.external import six from glue.core.component_link import BinaryComponentLink from glue.core.subset import InequalitySubsetState from glue.core.message import DataRenameComponentMessage __all__ = ['ComponentID', 'PixelComponentID', 'ComponentIDDict', 'ComponentIDList'] # access to ComponentIDs via .item[name] class ComponentIDList(list): def __contains__(self, cid): if isinstance(cid, six.string_types): for c in self: if cid == c.label: return True else: return False else: return list.__contains__(self, cid) class ComponentIDDict(object): def __init__(self, data, **kwargs): self.data = data def __getitem__(self, key): result = self.data.find_component_id(key) if result is None: raise KeyError("ComponentID not found or not unique: %s" % key) return result class ComponentID(object): """ References a :class:`glue.core.component.Component` object within a :class:`~glue.core.data.Data` object. ComponentIDs behave as keys:: component_id = data.id[name] data[component_id] -> numpy array """ def __init__(self, label, hidden=False, parent=None): """:param label: Name for the ID :type label: str""" self._label = str(label) self._hidden = hidden self.parent = parent # We assign a UUID which can then be used for example in equations # for derived components - the idea is that this doesn't change over # the life cycle of glue, so it is a more reliable way to refer to # components in strings than using labels self._uuid = str(uuid.uuid4()) @property def uuid(self): return self._uuid @property def label(self): return self._label @label.setter def label(self, value): """Change label. .. warning:: Label changes are not currently tracked by client classes. Label's should only be changd before creating other client objects """ self._label = str(value) if self.parent is not None and self.parent.hub: msg = DataRenameComponentMessage(self.parent, self) self.parent.hub.broadcast(msg) @property def hidden(self): """Whether to hide the component by default""" return self._hidden @hidden.setter def hidden(self, value): self._hidden = value def __str__(self): return str(self._label) def __repr__(self): return str(self._label) def to_html(self): if self.parent is None: return str(self._label) else: return "<font color='#777777'>[{1}]</font>.{0}".format(self._label, self.parent._label) def __eq__(self, other): if isinstance(other, (numbers.Number, six.string_types)): return InequalitySubsetState(self, other, operator.eq) return other is self # In Python 3, if __eq__ is defined, then __hash__ has to be re-defined if six.PY3: __hash__ = object.__hash__ def __ne__(self, other): if isinstance(other, (numbers.Number, six.string_types)): return InequalitySubsetState(self, other, operator.ne) return other is not self def __gt__(self, other): return InequalitySubsetState(self, other, operator.gt) def __ge__(self, other): return InequalitySubsetState(self, other, operator.ge) def __lt__(self, other): return InequalitySubsetState(self, other, operator.lt) def __le__(self, other): return InequalitySubsetState(self, other, operator.le) def __add__(self, other): return BinaryComponentLink(self, other, operator.add) def __radd__(self, other): return BinaryComponentLink(other, self, operator.add) def __sub__(self, other): return BinaryComponentLink(self, other, operator.sub) def __rsub__(self, other): return BinaryComponentLink(other, self, operator.sub) def __mul__(self, other): return BinaryComponentLink(self, other, operator.mul) def __rmul__(self, other): return BinaryComponentLink(other, self, operator.mul) def __div__(self, other): return BinaryComponentLink(self, other, operator.div) def __rdiv__(self, other): return BinaryComponentLink(other, self, operator.div) def __truediv__(self, other): return BinaryComponentLink(self, other, operator.truediv) def __rtruediv__(self, other): return BinaryComponentLink(other, self, operator.truediv) def __pow__(self, other): return BinaryComponentLink(self, other, operator.pow) def __rpow__(self, other): return BinaryComponentLink(other, self, operator.pow) class PixelComponentID(ComponentID): """ The ID of a component which is a pixel position in the data - this allows us to make assumptions in certain places. For example when a polygon selection is done in pixel space, it can easily be broadcast along dimensions. """ def __init__(self, axis, label, hidden=False, parent=None): self.axis = axis super(PixelComponentID, self).__init__(label, hidden=hidden, parent=parent)
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/component_id.py", "copies": "1", "size": "5485", "license": "bsd-3-clause", "hash": -440545150288055040, "line_mean": 29.3038674033, "line_max": 109, "alpha_frac": 0.6231540565, "autogenerated": false, "ratio": 4.108614232209738, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5231768288709738, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import uuid import weakref from matplotlib.colors import ColorConverter from glue.core.data import Subset, Data from glue.core.exceptions import IncompatibleAttribute from glue.utils import broadcast_to from glue.core.fixed_resolution_buffer import ARRAY_CACHE, PIXEL_CACHE from .colors import get_translucent_cmap from .layer_state import VolumeLayerState from ..common.layer_artist import VispyLayerArtist class DataProxy(object): def __init__(self, viewer_state, layer_artist): self._viewer_state = weakref.ref(viewer_state) self._layer_artist = weakref.ref(layer_artist) @property def layer_artist(self): return self._layer_artist() @property def viewer_state(self): return self._viewer_state() @property def shape(self): x_axis = self.viewer_state.x_att.axis y_axis = self.viewer_state.y_att.axis z_axis = self.viewer_state.z_att.axis if isinstance(self.layer_artist.layer, Subset): full_shape = self.layer_artist.layer.data.shape else: full_shape = self.layer_artist.layer.shape return full_shape[z_axis], full_shape[y_axis], full_shape[x_axis] def compute_fixed_resolution_buffer(self, bounds=None): shape = [bound[2] for bound in bounds] if self.layer_artist is None or self.viewer_state is None: return broadcast_to(0, shape) if isinstance(self.layer_artist.layer, Subset): try: subset_state = self.layer_artist.layer.subset_state result = self.layer_artist.layer.data.compute_fixed_resolution_buffer( target_data=self.layer_artist._viewer_state.reference_data, bounds=bounds, subset_state=subset_state, cache_id=self.layer_artist.id) except IncompatibleAttribute: self.layer_artist.disable_incompatible_subset() return broadcast_to(0, shape) else: self.layer_artist.enable() else: try: result = self.layer_artist.layer.compute_fixed_resolution_buffer( target_data=self.layer_artist._viewer_state.reference_data, bounds=bounds, target_cid=self.layer_artist.state.attribute, cache_id=self.layer_artist.id) except IncompatibleAttribute: self.layer_artist.disable('Layer data is not fully linked to reference data') return broadcast_to(0, shape) else: self.layer_artist.enable() return result class VolumeLayerArtist(VispyLayerArtist): """ A layer artist to render volumes. This is more complex than for other visual types, because for volumes, we need to manage all the volumes via a single MultiVolume visual class for each data viewer. """ def __init__(self, vispy_viewer=None, layer=None, layer_state=None): super(VolumeLayerArtist, self).__init__(layer) self._clip_limits = None self.layer = layer or layer_state.layer self.vispy_widget = vispy_viewer._vispy_widget # TODO: need to remove layers when layer artist is removed self._viewer_state = vispy_viewer.state self.state = layer_state or VolumeLayerState(layer=self.layer) if self.state not in self._viewer_state.layers: self._viewer_state.layers.append(self.state) # We create a unique ID for this layer artist, that will be used to # refer to the layer artist in the MultiVolume. We have to do this # rather than use self.id because we can't guarantee the latter is # unique. self.id = str(uuid.uuid4()) self._multivol = self.vispy_widget._multivol self._multivol.allocate(self.id) self._viewer_state.add_global_callback(self._update_volume) self.state.add_global_callback(self._update_volume) self.reset_cache() self._data_proxy = None def reset_cache(self): self._last_viewer_state = {} self._last_layer_state = {} @property def visual(self): return self._multivol @property def bbox(self): return (-0.5, self.layer.shape[2] - 0.5, -0.5, self.layer.shape[1] - 0.5, -0.5, self.layer.shape[0] - 0.5) @property def shape(self): return self.layer.shape def redraw(self): """ Redraw the Vispy canvas """ self.vispy_widget.canvas.update() def clear(self): """ Remove the layer artist from the visualization """ # We don't want to deallocate here because this can be called if we # disable the layer due to incompatible attributes self._multivol.disable(self.id) def remove(self): """ Remove the layer artist for good """ self._multivol.deallocate(self.id) ARRAY_CACHE.pop(self.id, None) PIXEL_CACHE.pop(self.id, None) def _update_cmap_from_color(self): cmap = get_translucent_cmap(*ColorConverter().to_rgb(self.state.color)) self._multivol.set_cmap(self.id, cmap) self.redraw() def _update_limits(self): if isinstance(self.layer, Subset): self._multivol.set_clim(self.id, None) else: self._multivol.set_clim(self.id, (self.state.vmin, self.state.vmax)) self.redraw() def _update_alpha(self): self._multivol.set_weight(self.id, self.state.alpha) self.redraw() def _update_subset_mode(self): if isinstance(self.state.layer, Data) or self.state.subset_mode == 'outline': self._multivol.set_multiply(self.id, None) else: label = self._multivol.label_for_layer(self.state.layer.data) self._multivol.set_multiply(self.id, label) self.redraw() def _update_data(self): if self._data_proxy is None: self._data_proxy = DataProxy(self._viewer_state, self) self._multivol.set_data(self.id, self._data_proxy, layer=self.layer) else: self._multivol._update_scaled_data(self.id) self._update_subset_mode() def _update_visibility(self): if self.state.visible: self._multivol.enable(self.id) else: self._multivol.disable(self.id) self.redraw() def set_clip(self, limits): pass def _update_volume(self, force=False, **kwargs): if self.state.attribute is None or self.state.layer is None: return # Figure out which attributes are different from before. Ideally we shouldn't # need this but currently this method is called multiple times if an # attribute is changed due to x_att changing then hist_x_min, hist_x_max, etc. # If we can solve this so that _update_histogram is really only called once # then we could consider simplifying this. Until then, we manually keep track # of which properties have changed. changed = set() if not force: for key, value in self._viewer_state.as_dict().items(): if value != self._last_viewer_state.get(key, None): changed.add(key) for key, value in self.state.as_dict().items(): if value != self._last_layer_state.get(key, None): changed.add(key) self._last_viewer_state.update(self._viewer_state.as_dict()) self._last_layer_state.update(self.state.as_dict()) if force or 'color' in changed: self._update_cmap_from_color() if force or 'vmin' in changed or 'vmax' in changed: self._update_limits() if force or 'alpha' in changed: self._update_alpha() if force or 'layer' in changed or 'attribute' in changed: self._update_data() if force or 'subset_mode' in changed: self._update_subset_mode() if force or 'visible' in changed: self._update_visibility() def update(self): self._update_volume(force=True) self.redraw()
{ "repo_name": "astrofrog/glue-vispy-viewers", "path": "glue_vispy_viewers/volume/layer_artist.py", "copies": "2", "size": "8312", "license": "bsd-2-clause", "hash": 3228586871450114000, "line_mean": 32.248, "line_max": 93, "alpha_frac": 0.6120067372, "autogenerated": false, "ratio": 3.891385767790262, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5503392504990262, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import uuid import weakref import numpy as np from glue.utils import defer_draw from glue.viewers.image.state import ImageLayerState, ImageSubsetLayerState from glue.viewers.matplotlib.layer_artist import MatplotlibLayerArtist from glue.core.exceptions import IncompatibleAttribute from glue.utils import color2rgb from glue.core.link_manager import is_equivalent_cid from glue.core import Data, HubListener from glue.core.message import ComponentsChangedMessage from glue.external.modest_image import imshow class BaseImageLayerArtist(MatplotlibLayerArtist, HubListener): def __init__(self, axes, viewer_state, layer_state=None, layer=None): super(BaseImageLayerArtist, self).__init__(axes, viewer_state, layer_state=layer_state, layer=layer) self.reset_cache() # Watch for changes in the viewer state which would require the # layers to be redrawn self._viewer_state.add_global_callback(self._update_image) self.state.add_global_callback(self._update_image) self.layer.hub.subscribe(self, ComponentsChangedMessage, handler=self._update_compatibility, filter=self._is_data_object) self._update_compatibility() def _is_data_object(self, message): if isinstance(self.layer, Data): return message.sender is self.layer else: return message.sender is self.layer.data def reset_cache(self): self._last_viewer_state = {} self._last_layer_state = {} def _update_image(self, force=False, **kwargs): raise NotImplementedError() @defer_draw def _update_compatibility(self, *args, **kwargs): """ Determine compatibility of data with reference data. For the data to be compatible with the reference data, the number of dimensions has to match and the pixel component IDs have to be equivalent. """ if self._viewer_state.reference_data is None: self._compatible_with_reference_data = False self.disable('No reference data defined') return if self.layer is self._viewer_state.reference_data: self._compatible_with_reference_data = True self.enable() return # Check whether the pixel component IDs of the dataset are equivalent # to that of the reference dataset. In future this is where we could # allow for these to be different and implement reprojection. if self.layer.ndim != self._viewer_state.reference_data.ndim: self._compatible_with_reference_data = False self.disable('Data dimensions do not match reference data') return # Determine whether pixel component IDs are equivalent pids = self.layer.pixel_component_ids pids_ref = self._viewer_state.reference_data.pixel_component_ids if isinstance(self.layer, Data): data = self.layer else: data = self.layer.data for i in range(data.ndim): if not is_equivalent_cid(data, pids[i], pids_ref[i]): self._compatible_with_reference_data = False self.disable('Pixel component IDs do not match. You can try ' 'fixing this by linking the pixel component IDs ' 'of this dataset with those of the reference ' 'dataset.') return self._compatible_with_reference_data = True self.enable() class ImageLayerArtist(BaseImageLayerArtist): _layer_state_cls = ImageLayerState def __init__(self, axes, viewer_state, layer_state=None, layer=None): super(ImageLayerArtist, self).__init__(axes, viewer_state, layer_state=layer_state, layer=layer) # We use a custom object to deal with the compositing of images, and we # store it as a private attribute of the axes to make sure it is # accessible for all layer artists. self.uuid = str(uuid.uuid4()) self.composite = self.axes._composite self.composite.allocate(self.uuid) self.composite.set(self.uuid, array=self.get_image_data, shape=self.get_image_shape) self.composite_image = self.axes._composite_image def get_layer_color(self): if self._viewer_state.color_mode == 'One color per layer': return self.state.color else: return self.state.cmap def enable(self): if hasattr(self, 'composite_image'): self.composite_image.invalidate_cache() super(ImageLayerArtist, self).enable() def remove(self): super(ImageLayerArtist, self).remove() self.composite.deallocate(self.uuid) def get_image_shape(self): if not self._compatible_with_reference_data: return None if self._viewer_state.x_att is None or self._viewer_state.y_att is None: return None x_axis = self._viewer_state.x_att.axis y_axis = self._viewer_state.y_att.axis full_shape = self.layer.shape return full_shape[y_axis], full_shape[x_axis] def get_image_data(self, view=None): if not self._compatible_with_reference_data: return None try: image = self.state.get_sliced_data(view=view) except (IncompatibleAttribute, IndexError): # The following includes a call to self.clear() self.disable_invalid_attributes(self.state.attribute) return None else: self.enable() return image def _update_image_data(self): self.composite_image.invalidate_cache() self.redraw() @defer_draw def _update_visual_attributes(self): if not self.enabled: return if self._viewer_state.color_mode == 'Colormaps': color = self.state.cmap else: color = self.state.color self.composite.set(self.uuid, clim=(self.state.v_min, self.state.v_max), visible=self.state.visible, zorder=self.state.zorder, color=color, contrast=self.state.contrast, bias=self.state.bias, alpha=self.state.alpha, stretch=self.state.stretch) self.composite_image.invalidate_cache() self.redraw() @defer_draw def _update_image(self, force=False, **kwargs): if self.state.attribute is None or self.state.layer is None: return # Figure out which attributes are different from before. Ideally we shouldn't # need this but currently this method is called multiple times if an # attribute is changed due to x_att changing then hist_x_min, hist_x_max, etc. # If we can solve this so that _update_histogram is really only called once # then we could consider simplifying this. Until then, we manually keep track # of which properties have changed. changed = set() if not force: for key, value in self._viewer_state.as_dict().items(): if value != self._last_viewer_state.get(key, None): changed.add(key) for key, value in self.state.as_dict().items(): if value != self._last_layer_state.get(key, None): changed.add(key) self._last_viewer_state.update(self._viewer_state.as_dict()) self._last_layer_state.update(self.state.as_dict()) if 'reference_data' in changed or 'layer' in changed: self._update_compatibility() if force or any(prop in changed for prop in ('layer', 'attribute', 'slices', 'x_att', 'y_att')): self._update_image_data() force = True # make sure scaling and visual attributes are updated if force or any(prop in changed for prop in ('v_min', 'v_max', 'contrast', 'bias', 'alpha', 'color_mode', 'cmap', 'color', 'zorder', 'visible', 'stretch')): self._update_visual_attributes() @defer_draw def update(self): self._update_image(force=True) # Reset the axes stack so that pressing the home button doesn't go back # to a previous irrelevant view. self.axes.figure.canvas.toolbar.update() self.redraw() class ImageSubsetArray(object): def __init__(self, viewer_state, layer_artist): self._viewer_state = weakref.ref(viewer_state) self._layer_artist = weakref.ref(layer_artist) self._layer_state = weakref.ref(layer_artist.state) @property def layer_artist(self): return self._layer_artist() @property def layer_state(self): return self._layer_state() @property def viewer_state(self): return self._viewer_state() @property def shape(self): x_axis = self.viewer_state.x_att.axis y_axis = self.viewer_state.y_att.axis full_shape = self.layer_state.layer.shape return full_shape[y_axis], full_shape[x_axis] @property def nan_array(self): return np.ones(self.shape) * np.nan def __getitem__(self, view=None): if (self.layer_artist is None or self.layer_state is None or self.viewer_state is None): return self.nan_array if not self.layer_artist._compatible_with_reference_data: return self.nan_array try: mask = self.layer_state.get_sliced_data(view=view) except IncompatibleAttribute: self.layer_artist.disable_incompatible_subset() return self.nan_array else: self.layer_artist.enable() r, g, b = color2rgb(self.layer_state.color) mask = np.dstack((r * mask, g * mask, b * mask, mask * .5)) mask = (255 * mask).astype(np.uint8) return mask @property def dtype(self): return np.uint8 @property def ndim(self): return 2 @property def size(self): return np.product(self.shape) class ImageSubsetLayerArtist(BaseImageLayerArtist): _layer_state_cls = ImageSubsetLayerState def __init__(self, axes, viewer_state, layer_state=None, layer=None): super(ImageSubsetLayerArtist, self).__init__(axes, viewer_state, layer_state=layer_state, layer=layer) self.subset_array = ImageSubsetArray(self._viewer_state, self) self.image_artist = imshow(self.axes, self.subset_array, origin='lower', interpolation='nearest', vmin=0, vmax=1, aspect=self._viewer_state.aspect) self.mpl_artists = [self.image_artist] @defer_draw def _update_visual_attributes(self): if not self.enabled: return # TODO: deal with color using a colormap instead of having to change data self.image_artist.set_visible(self.state.visible) self.image_artist.set_zorder(self.state.zorder) self.image_artist.set_alpha(self.state.alpha) self.redraw() def _update_image(self, force=False, **kwargs): if self.state.layer is None: return # Figure out which attributes are different from before. Ideally we shouldn't # need this but currently this method is called multiple times if an # attribute is changed due to x_att changing then hist_x_min, hist_x_max, etc. # If we can solve this so that _update_histogram is really only called once # then we could consider simplifying this. Until then, we manually keep track # of which properties have changed. changed = set() if not force: for key, value in self._viewer_state.as_dict().items(): if value != self._last_viewer_state.get(key, None): changed.add(key) for key, value in self.state.as_dict().items(): if value != self._last_layer_state.get(key, None): changed.add(key) self._last_viewer_state.update(self._viewer_state.as_dict()) self._last_layer_state.update(self.state.as_dict()) if 'reference_data' in changed or 'layer' in changed: self._update_compatibility() if force or any(prop in changed for prop in ('layer', 'attribute', 'color', 'x_att', 'y_att', 'slices')): self.image_artist.invalidate_cache() self.redraw() # forces subset to be recomputed force = True # make sure scaling and visual attributes are updated if force or any(prop in changed for prop in ('zorder', 'visible', 'alpha')): self._update_visual_attributes() def enable(self): super(ImageSubsetLayerArtist, self).enable() # We need to now ensure that image_artist, which may have been marked # as not being visible when the layer was cleared is made visible # again. if hasattr(self, 'image_artist'): self.image_artist.invalidate_cache() self._update_visual_attributes() @defer_draw def update(self): # TODO: determine why this gets called when changing the transparency slider self._update_image(force=True) self.redraw()
{ "repo_name": "stscieisenhamer/glue", "path": "glue/viewers/image/layer_artist.py", "copies": "1", "size": "13979", "license": "bsd-3-clause", "hash": -5157392344947443000, "line_mean": 34.0350877193, "line_max": 90, "alpha_frac": 0.5943200515, "autogenerated": false, "ratio": 4.2592931139549055, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0006192690479312569, "num_lines": 399 }
from __future__ import (absolute_import, division, print_function) import uuid from odm2api import serviceBase from odm2api.models import TimeSeriesResultValues __author__ = 'sreeder' class CreateODM2(serviceBase): # Annotations def create(self, value): self._session.add(value) self._session.commit() return value def createAll(self, values): self._session.add_all(values) self._session.commit() return values def createVariable(self, var): self._session.add(var) self._session.commit() return var def createMethod(self, method): self._session.add(method) self._session.commit() return method def createProcessingLevel(self, proclevel): self._session.add(proclevel) self._session.commit() return proclevel def createSamplingFeature(self, samplingfeature): if samplingfeature.SamplingFeatureUUID is None: samplingfeature.SamplingFeatureUUID = str(uuid.uuid1()) self._session.add(samplingfeature) self._session.commit() return samplingfeature def createUnit(self, unit): self._session.add(unit) self._session.commit() return unit def createOrganization(self, org): self._session.add(org) self._session.commit() return org def createPerson(self, person): self._session.add(person) self._session.commit() return person def createAffiliation(self, affiliation): self._session.add(affiliation) self._session.commit() return affiliation def createDataset(self, dataset): self._session.add(dataset) self._session.commit() return dataset def createDatasetResults(self, datasetresult): self._session.add(datasetresult) self._session.commit() return datasetresult def createAction(self, action): self._session.add(action) self._session.commit() return action def createActionby(self, actionby): self._session.add(actionby) self._session.commit() return actionby def createFeatureAction(self, action): self._session.add(action) self._session.commit() return action def createAnnotations(self, anno): self._session.add(anno) self._session.commit() return anno def createRelatedAction(self, relatedaction): self._session.add(relatedaction) self._session.commit() return relatedaction def createResult(self, result): if result.ResultUUID is None: result.ResultUUID = str(uuid.uuid1()) self._session.add(result) self._session.commit() return result def createResultValue(self, value): self._session.add(value) self._session.commit() self._session.flush() return value def createSpatialReference(self, spatialref): self._session.add(spatialref) self._session.commit() return spatialref def createModel(self, model): self._session.add(model) self._session.commit() return model def createRelatedModel(self, relatedmodel): self._session.add(relatedmodel) self._session.commit() return relatedmodel def createSimulation(self, simulation): self._session.add(simulation) self._session.commit() return simulation def createTimeSeriesResultValues(self, datavalues): try: # FXIME: F841 local variable 'tablename' is assigned to but never used. # tablename = TimeSeriesResultValues.__tablename__ datavalues.to_sql( name='TimeSeriesResultValues', schema=TimeSeriesResultValues.__table_args__['schema'], if_exists='append', chunksize=1000, con=self._session_factory.engine, index=False ) self._session.commit() return datavalues except Exception as e: print(e) return None
{ "repo_name": "ODM2/ODM2PythonAPI", "path": "odm2api/services/createService.py", "copies": "2", "size": "4187", "license": "bsd-3-clause", "hash": 2374704380582786600, "line_mean": 26.1883116883, "line_max": 83, "alpha_frac": 0.6166706472, "autogenerated": false, "ratio": 4.440084835630965, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6056755482830964, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import uuid import numpy as np from glue.core.exceptions import IncompatibleAttribute from glue.utils import categorical_ndarray from .multi_scatter import MultiColorScatter from .layer_state import ScatterLayerState from ..common.layer_artist import VispyLayerArtist COLOR_PROPERTIES = set(['color_mode', 'cmap_attribute', 'cmap_vmin', 'cmap_vmax', 'cmap', 'color']) SIZE_PROPERTIES = set(['size_mode', 'size_attribute', 'size_vmin', 'size_vmax', 'size_scaling', 'size']) ALPHA_PROPERTIES = set(['alpha']) DATA_PROPERTIES = set(['layer', 'x_att', 'y_att', 'z_att']) VISIBLE_PROPERTIES = set(['visible']) class ScatterLayerArtist(VispyLayerArtist): """ A layer artist to render 3d scatter plots. """ def __init__(self, vispy_viewer, layer=None, layer_state=None): super(ScatterLayerArtist, self).__init__(layer) self._clip_limits = None # Set data caches self._marker_data = None self._color_data = None self._size_data = None self.layer = layer or layer_state.layer self.vispy_widget = vispy_viewer._vispy_widget # TODO: need to remove layers when layer artist is removed self._viewer_state = vispy_viewer.state self.state = layer_state or ScatterLayerState(layer=self.layer) if self.state not in self._viewer_state.layers: self._viewer_state.layers.append(self.state) # We create a unique ID for this layer artist, that will be used to # refer to the layer artist in the MultiColorScatter. We have to do this # rather than use self.id because we can't guarantee the latter is # unique. self.id = str(uuid.uuid4()) # We need to use MultiColorScatter instance to store scatter plots, but # we should only have one per canvas. Therefore, we store the # MultiColorScatter instance in the vispy viewer instance. if not hasattr(self.vispy_widget, '_multiscat'): multiscat = MultiColorScatter() multiscat.set_gl_state(depth_test=False, blend=True, blend_func=('src_alpha', 'one_minus_src_alpha')) self.vispy_widget.add_data_visual(multiscat) self.vispy_widget._multiscat = multiscat self._multiscat = self.vispy_widget._multiscat self._multiscat.allocate(self.id) self._multiscat.set_zorder(self.id, self.get_zorder) # Watch for changes in the viewer state which would require the # layers to be redrawn self._viewer_state.add_global_callback(self._update_scatter) self.state.add_global_callback(self._update_scatter) self.reset_cache() def reset_cache(self): self._last_viewer_state = {} self._last_layer_state = {} @property def visual(self): return self._multiscat def get_zorder(self): return self.zorder def get_layer_color(self): if self.state.color_mode == 'Fixed': return self.state.color else: return self.state.cmap def redraw(self): """ Redraw the Vispy canvas """ if self._multiscat is not None: self._multiscat._update() self.vispy_widget.canvas.update() def clear(self): """ Clear the visualization for this layer """ self._multiscat.set_data_values(self.id, [], [], []) def remove(self): """ Remove the layer artist from the visualization """ if self._multiscat is None: return self._multiscat.deallocate(self.id) self._multiscat = None self._viewer_state.remove_global_callback(self._update_scatter) self.state.remove_global_callback(self._update_scatter) def _update_sizes(self): if self.state.size_mode is None: pass elif self.state.size_mode == 'Fixed': self._multiscat.set_size(self.id, self.state.size * self.state.size_scaling) else: data = self.layer[self.state.size_attribute].ravel() if isinstance(data, categorical_ndarray): data = data.codes if self.state.size_vmax == self.state.size_vmin: size = np.ones(data.shape) * 10 else: size = (20 * (data - self.state.size_vmin) / (self.state.size_vmax - self.state.size_vmin)) size_data = size * self.state.size_scaling size_data[np.isnan(data)] = 0. self._multiscat.set_size(self.id, size_data) def _update_colors(self): if self.state.color_mode is None: pass elif self.state.color_mode == 'Fixed': self._multiscat.set_color(self.id, self.state.color) else: data = self.layer[self.state.cmap_attribute].ravel() if isinstance(data, categorical_ndarray): data = data.codes if self.state.cmap_vmax == self.state.cmap_vmin: cmap_data = np.ones(data.shape) * 0.5 else: cmap_data = ((data - self.state.cmap_vmin) / (self.state.cmap_vmax - self.state.cmap_vmin)) cmap_data = self.state.cmap(cmap_data) cmap_data[:, 3][np.isnan(data)] = 0. self._multiscat.set_color(self.id, cmap_data) def _update_alpha(self): self._multiscat.set_alpha(self.id, self.state.alpha) def _update_data(self, event=None): try: x = self.layer[self._viewer_state.x_att].ravel() y = self.layer[self._viewer_state.y_att].ravel() z = self.layer[self._viewer_state.z_att].ravel() except AttributeError: return except (IncompatibleAttribute, IndexError): # The following includes a call to self.clear() self.disable_invalid_attributes(self._viewer_state.x_att, self._viewer_state.y_att, self._viewer_state.z_att) return else: self._enabled = True self._marker_data = np.array([x, y, z]).transpose() # We need to make sure we update the sizes and colors in case # these were set as arrays, since the size of the data might have # changed (in the case of subsets) self._multiscat.set_data_values(self.id, x, y, z) # Mask points outside the clip limits if self._clip_limits is None: self._multiscat.set_mask(self.id, None) else: xmin, xmax, ymin, ymax, zmin, zmax = self._clip_limits keep = (x >= xmin) & (x <= xmax) & (y >= ymin) & (y <= ymax) & (z >= zmin) & (z <= zmax) self._multiscat.set_mask(self.id, keep) self.redraw() def _update_visibility(self): self._multiscat.set_visible(self.id, self.visible) self.redraw() @property def default_limits(self): if self._marker_data is None: raise ValueError("Data not yet set") dmin = np.nanmin(self._marker_data, axis=0) dmax = np.nanmax(self._marker_data, axis=0) # TODO: the following can be optimized return tuple(np.array([dmin, dmax]).transpose().ravel()) def set_clip(self, limits): self._clip_limits = limits self._update_data() def _update_scatter(self, force=False, **kwargs): if (self._viewer_state.x_att is None or self._viewer_state.y_att is None or self._viewer_state.z_att is None or self.state.layer is None): return # Figure out which attributes are different from before. Ideally we shouldn't # need this but currently this method is called multiple times if an # attribute is changed due to x_att changing then hist_x_min, hist_x_max, etc. # If we can solve this so that _update_histogram is really only called once # then we could consider simplifying this. Until then, we manually keep track # of which properties have changed. changed = set() if not force: for key, value in self._viewer_state.as_dict().items(): if value != self._last_viewer_state.get(key, None): changed.add(key) for key, value in self.state.as_dict().items(): if value != self._last_layer_state.get(key, None): changed.add(key) self._last_viewer_state.update(self._viewer_state.as_dict()) self._last_layer_state.update(self.state.as_dict()) if force or len(changed & DATA_PROPERTIES) > 0: self._update_data() force = True if force or len(changed & SIZE_PROPERTIES) > 0: self._update_sizes() if force or len(changed & COLOR_PROPERTIES) > 0: self._update_colors() if force or len(changed & ALPHA_PROPERTIES) > 0: self._update_alpha() if force or len(changed & VISIBLE_PROPERTIES) > 0: self._update_visibility() def update(self): with self._multiscat.delay_update(): self._update_scatter(force=True) self.redraw()
{ "repo_name": "astrofrog/glue-vispy-viewers", "path": "glue_vispy_viewers/scatter/layer_artist.py", "copies": "2", "size": "9420", "license": "bsd-2-clause", "hash": 4064415048604583000, "line_mean": 35.091954023, "line_max": 100, "alpha_frac": 0.5847133758, "autogenerated": false, "ratio": 3.843329253365973, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5428042629165973, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import uuid import numpy as np from glue.utils import nonpartial from glue.core.exceptions import IncompatibleAttribute from .multi_scatter import MultiColorScatter from .layer_state import ScatterLayerState from ..common.layer_artist import VispyLayerArtist class ScatterLayerArtist(VispyLayerArtist): """ A layer artist to render 3d scatter plots. """ def __init__(self, vispy_viewer, layer=None, layer_state=None): super(ScatterLayerArtist, self).__init__(layer) self._clip_limits = None self._marker_keep = Ellipsis # Set data caches self._marker_data = None self._color_data = None self._size_data = None self.layer = layer or layer_state.layer self.vispy_viewer = vispy_viewer self.vispy_widget = vispy_viewer._vispy_widget # TODO: need to remove layers when layer artist is removed self._viewer_state = vispy_viewer.state self.state = layer_state or ScatterLayerState(layer=self.layer) if self.state not in self._viewer_state.layers: self._viewer_state.layers.append(self.state) # We create a unique ID for this layer artist, that will be used to # refer to the layer artist in the MultiColorScatter. We have to do this # rather than use self.id because we can't guarantee the latter is # unique. self.id = str(uuid.uuid4()) # We need to use MultiColorScatter instance to store scatter plots, but # we should only have one per canvas. Therefore, we store the # MultiColorScatter instance in the vispy viewer instance. if not hasattr(self.vispy_widget, '_multiscat'): multiscat = MultiColorScatter() multiscat.set_gl_state(depth_test=False, blend=True, blend_func=('src_alpha', 'one_minus_src_alpha')) self.vispy_widget.add_data_visual(multiscat) self.vispy_widget._multiscat = multiscat self._multiscat = self.vispy_widget._multiscat self._multiscat.allocate(self.id) self._multiscat.set_zorder(self.id, self.get_zorder) try: self.state.add_callback('*', self._update_from_state, as_kwargs=True) except TypeError: # glue-core >= 0.11 self.state.add_global_callback(self._update_from_state) self._update_from_state(**self.state.as_dict()) self._viewer_state.add_callback('x_att', nonpartial(self._update_data)) self._viewer_state.add_callback('y_att', nonpartial(self._update_data)) self._viewer_state.add_callback('z_att', nonpartial(self._update_data)) self._update_data() self.visible = True @property def visual(self): return self._multiscat def _update_visibility(self): self._multiscat.set_visible(self.id, self.visible) self.redraw() def get_zorder(self): return self.zorder def redraw(self): """ Redraw the Vispy canvas """ self._multiscat._update() self.vispy_widget.canvas.update() def clear(self): """ Remove the layer artist from the visualization """ self._multiscat.set_data_values(self.id, [], [], []) def update(self): """ Update the visualization to reflect the underlying data """ self.redraw() self._changed = False def _update_from_state(self, **props): if any('size' in prop for prop in props): self._update_sizes() if any('color' in prop or 'cmap' in prop for prop in props): self._update_colors() if 'alpha' in props: self._update_alpha() self.redraw() def _update_sizes(self): if self.state.size_mode is None: pass elif self.state.size_mode == 'Fixed': self._multiscat.set_size(self.id, self.state.size * self.state.size_scaling) else: data = self.layer[self.state.size_attribute].ravel() data = data[self._marker_keep] if self.state.size_vmax == self.state.size_vmin: size = np.ones(data.shape) * 10 else: size = (20 * (data - self.state.size_vmin) / (self.state.size_vmax - self.state.size_vmin)) size_data = size * self.state.size_scaling size_data[np.isnan(data)] = 0. self._multiscat.set_size(self.id, size_data) def _update_colors(self): if self.state.color_mode is None: pass elif self.state.color_mode == 'Fixed': self._multiscat.set_color(self.id, self.state.color) else: data = self.layer[self.state.cmap_attribute].ravel() data = data[self._marker_keep] if self.state.cmap_vmax == self.state.cmap_vmin: cmap_data = np.ones(data.shape) * 0.5 else: cmap_data = ((data - self.state.cmap_vmin) / (self.state.cmap_vmax - self.state.cmap_vmin)) cmap_data = self.state.cmap(cmap_data) cmap_data[:, 3][np.isnan(data)] = 0. self._multiscat.set_color(self.id, cmap_data) def _update_alpha(self): self._multiscat.set_alpha(self.id, self.state.alpha) def _update_data(self): try: x = self.layer[self._viewer_state.x_att].ravel() y = self.layer[self._viewer_state.y_att].ravel() z = self.layer[self._viewer_state.z_att].ravel() except AttributeError: return except (IncompatibleAttribute, IndexError): # The following includes a call to self.clear() self.disable_invalid_attributes(self._viewer_state.x_att, self._viewer_state.y_att, self._viewer_state.z_att) return else: self._enabled = True if self._clip_limits is None: keep = Ellipsis else: xmin, xmax, ymin, ymax, zmin, zmax = self._clip_limits keep = (x >= xmin) & (x <= xmax) & (y >= ymin) & (y <= ymax) & (z >= zmin) & (z <= zmax) x, y, z = x[keep], y[keep], z[keep] self._marker_data = np.array([x, y, z]).transpose() self._marker_keep = keep # We need to make sure we update the sizes and colors in case # these were set as arrays, since the size of the data might have # changed (in the case of subsets) with self._multiscat.delay_update(): self._multiscat.set_data_values(self.id, x, y, z) self._update_sizes() self._update_colors() self.redraw() @property def default_limits(self): if self._marker_data is None: raise ValueError("Data not yet set") dmin = np.nanmin(self._marker_data, axis=0) dmax = np.nanmax(self._marker_data, axis=0) # TODO: the following can be optimized return tuple(np.array([dmin, dmax]).transpose().ravel()) def set_clip(self, limits): self._clip_limits = limits self._update_data()
{ "repo_name": "PennyQ/glue-3d-viewer", "path": "glue_vispy_viewers/scatter/layer_artist.py", "copies": "1", "size": "7350", "license": "bsd-2-clause", "hash": 2502536197070844000, "line_mean": 34.6796116505, "line_max": 100, "alpha_frac": 0.5783673469, "autogenerated": false, "ratio": 3.7867078825347757, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9863677595744884, "avg_score": 0.00027952673797823673, "num_lines": 206 }
from __future__ import absolute_import, division, print_function import warnings from collections import defaultdict import numpy as np import pandas as pd from .coding import times, strings, variables from .coding.variables import SerializationWarning from .core import duck_array_ops, indexing from .core.pycompat import ( OrderedDict, basestring, bytes_type, iteritems, dask_array_type, unicode_type) from .core.variable import IndexVariable, Variable, as_variable class NativeEndiannessArray(indexing.ExplicitlyIndexedNDArrayMixin): """Decode arrays on the fly from non-native to native endianness This is useful for decoding arrays from netCDF3 files (which are all big endian) into native endianness, so they can be used with Cython functions, such as those found in bottleneck and pandas. >>> x = np.arange(5, dtype='>i2') >>> x.dtype dtype('>i2') >>> NativeEndianArray(x).dtype dtype('int16') >>> NativeEndianArray(x)[:].dtype dtype('int16') """ def __init__(self, array): self.array = indexing.as_indexable(array) @property def dtype(self): return np.dtype(self.array.dtype.kind + str(self.array.dtype.itemsize)) def __getitem__(self, key): return np.asarray(self.array[key], dtype=self.dtype) class BoolTypeArray(indexing.ExplicitlyIndexedNDArrayMixin): """Decode arrays on the fly from integer to boolean datatype This is useful for decoding boolean arrays from integer typed netCDF variables. >>> x = np.array([1, 0, 1, 1, 0], dtype='i1') >>> x.dtype dtype('>i2') >>> BoolTypeArray(x).dtype dtype('bool') >>> BoolTypeArray(x)[:].dtype dtype('bool') """ def __init__(self, array): self.array = indexing.as_indexable(array) @property def dtype(self): return np.dtype('bool') def __getitem__(self, key): return np.asarray(self.array[key], dtype=self.dtype) def _var_as_tuple(var): return var.dims, var.data, var.attrs.copy(), var.encoding.copy() def maybe_encode_nonstring_dtype(var, name=None): if 'dtype' in var.encoding and var.encoding['dtype'] != 'S1': dims, data, attrs, encoding = _var_as_tuple(var) dtype = np.dtype(encoding.pop('dtype')) if dtype != var.dtype: if np.issubdtype(dtype, np.integer): if (np.issubdtype(var.dtype, np.floating) and '_FillValue' not in var.attrs): warnings.warn('saving variable %s with floating ' 'point data as an integer dtype without ' 'any _FillValue to use for NaNs' % name, SerializationWarning, stacklevel=3) data = duck_array_ops.around(data)[...] data = data.astype(dtype=dtype) var = Variable(dims, data, attrs, encoding) return var def maybe_default_fill_value(var): # make NaN the fill value for float types: if ('_FillValue' not in var.attrs and '_FillValue' not in var.encoding and np.issubdtype(var.dtype, np.floating)): var.attrs['_FillValue'] = var.dtype.type(np.nan) return var def maybe_encode_bools(var): if ((var.dtype == np.bool) and ('dtype' not in var.encoding) and ('dtype' not in var.attrs)): dims, data, attrs, encoding = _var_as_tuple(var) attrs['dtype'] = 'bool' data = data.astype(dtype='i1', copy=True) var = Variable(dims, data, attrs, encoding) return var def _infer_dtype(array, name=None): """Given an object array with no missing values, infer its dtype from its first element """ if array.dtype.kind != 'O': raise TypeError('infer_type must be called on a dtype=object array') if array.size == 0: return np.dtype(float) element = array[(0,) * array.ndim] if isinstance(element, (bytes_type, unicode_type)): return strings.create_vlen_dtype(type(element)) dtype = np.array(element).dtype if dtype.kind != 'O': return dtype raise ValueError('unable to infer dtype on variable {!r}; xarray ' 'cannot serialize arbitrary Python objects' .format(name)) def ensure_not_multiindex(var, name=None): if (isinstance(var, IndexVariable) and isinstance(var.to_index(), pd.MultiIndex)): raise NotImplementedError( 'variable {!r} is a MultiIndex, which cannot yet be ' 'serialized to netCDF files ' '(https://github.com/pydata/xarray/issues/1077). Use ' 'reset_index() to convert MultiIndex levels into coordinate ' 'variables instead.'.format(name)) def _copy_with_dtype(data, dtype): """Create a copy of an array with the given dtype. We use this instead of np.array() to ensure that custom object dtypes end up on the resulting array. """ result = np.empty(data.shape, dtype) result[...] = data return result def ensure_dtype_not_object(var, name=None): # TODO: move this from conventions to backends? (it's not CF related) if var.dtype.kind == 'O': dims, data, attrs, encoding = _var_as_tuple(var) if isinstance(data, dask_array_type): warnings.warn( 'variable {} has data in the form of a dask array with ' 'dtype=object, which means it is being loaded into memory ' 'to determine a data type that can be safely stored on disk. ' 'To avoid this, coerce this variable to a fixed-size dtype ' 'with astype() before saving it.'.format(name), SerializationWarning) data = data.compute() missing = pd.isnull(data) if missing.any(): # nb. this will fail for dask.array data non_missing_values = data[~missing] inferred_dtype = _infer_dtype(non_missing_values, name) # There is no safe bit-pattern for NA in typical binary string # formats, we so can't set a fill_value. Unfortunately, this means # we can't distinguish between missing values and empty strings. if strings.is_bytes_dtype(inferred_dtype): fill_value = b'' elif strings.is_unicode_dtype(inferred_dtype): fill_value = u'' else: # insist on using float for numeric values if not np.issubdtype(inferred_dtype, np.floating): inferred_dtype = np.dtype(float) fill_value = inferred_dtype.type(np.nan) data = _copy_with_dtype(data, dtype=inferred_dtype) data[missing] = fill_value else: data = _copy_with_dtype(data, dtype=_infer_dtype(data, name)) assert data.dtype.kind != 'O' or data.dtype.metadata var = Variable(dims, data, attrs, encoding) return var def encode_cf_variable(var, needs_copy=True, name=None): """ Converts an Variable into an Variable which follows some of the CF conventions: - Nans are masked using _FillValue (or the deprecated missing_value) - Rescaling via: scale_factor and add_offset - datetimes are converted to the CF 'units since time' format - dtype encodings are enforced. Parameters ---------- var : xarray.Variable A variable holding un-encoded data. Returns ------- out : xarray.Variable A variable which has been encoded as described above. """ ensure_not_multiindex(var, name=name) for coder in [times.CFDatetimeCoder(), times.CFTimedeltaCoder(), variables.CFScaleOffsetCoder(), variables.CFMaskCoder(), variables.UnsignedIntegerCoder()]: var = coder.encode(var, name=name) # TODO(shoyer): convert all of these to use coders, too: var = maybe_encode_nonstring_dtype(var, name=name) var = maybe_default_fill_value(var) var = maybe_encode_bools(var) var = ensure_dtype_not_object(var, name=name) return var def decode_cf_variable(name, var, concat_characters=True, mask_and_scale=True, decode_times=True, decode_endianness=True, stack_char_dim=True): """ Decodes a variable which may hold CF encoded information. This includes variables that have been masked and scaled, which hold CF style time variables (this is almost always the case if the dataset has been serialized) and which have strings encoded as character arrays. Parameters ---------- name: str Name of the variable. Used for better error messages. var : Variable A variable holding potentially CF encoded information. concat_characters : bool Should character arrays be concatenated to strings, for example: ['h', 'e', 'l', 'l', 'o'] -> 'hello' mask_and_scale: bool Lazily scale (using scale_factor and add_offset) and mask (using _FillValue). If the _Unsigned attribute is present treat integer arrays as unsigned. decode_times : bool Decode cf times ('hours since 2000-01-01') to np.datetime64. decode_endianness : bool Decode arrays from non-native to native endianness. stack_char_dim : bool Whether to stack characters into bytes along the last dimension of this array. Passed as an argument because we need to look at the full dataset to figure out if this is appropriate. Returns ------- out : Variable A variable holding the decoded equivalent of var. """ var = as_variable(var) original_dtype = var.dtype if concat_characters: if stack_char_dim: var = strings.CharacterArrayCoder().decode(var, name=name) var = strings.EncodedStringCoder().decode(var) if mask_and_scale: for coder in [variables.UnsignedIntegerCoder(), variables.CFMaskCoder(), variables.CFScaleOffsetCoder()]: var = coder.decode(var, name=name) if decode_times: for coder in [times.CFTimedeltaCoder(), times.CFDatetimeCoder()]: var = coder.decode(var, name=name) dimensions, data, attributes, encoding = ( variables.unpack_for_decoding(var)) # TODO(shoyer): convert everything below to use coders if decode_endianness and not data.dtype.isnative: # do this last, so it's only done if we didn't already unmask/scale data = NativeEndiannessArray(data) original_dtype = data.dtype if 'dtype' in encoding: if original_dtype != encoding['dtype']: warnings.warn("CF decoding is overwriting dtype on variable {!r}" .format(name)) else: encoding['dtype'] = original_dtype if 'dtype' in attributes and attributes['dtype'] == 'bool': del attributes['dtype'] data = BoolTypeArray(data) if not isinstance(data, dask_array_type): data = indexing.LazilyOuterIndexedArray(data) return Variable(dimensions, data, attributes, encoding=encoding) def decode_cf_variables(variables, attributes, concat_characters=True, mask_and_scale=True, decode_times=True, decode_coords=True, drop_variables=None): """ Decode a several CF encoded variables. See: decode_cf_variable """ dimensions_used_by = defaultdict(list) for v in variables.values(): for d in v.dims: dimensions_used_by[d].append(v) def stackable(dim): # figure out if a dimension can be concatenated over if dim in variables: return False for v in dimensions_used_by[dim]: if v.dtype.kind != 'S' or dim != v.dims[-1]: return False return True coord_names = set() if isinstance(drop_variables, basestring): drop_variables = [drop_variables] elif drop_variables is None: drop_variables = [] drop_variables = set(drop_variables) new_vars = OrderedDict() for k, v in iteritems(variables): if k in drop_variables: continue stack_char_dim = (concat_characters and v.dtype == 'S1' and v.ndim > 0 and stackable(v.dims[-1])) new_vars[k] = decode_cf_variable( k, v, concat_characters=concat_characters, mask_and_scale=mask_and_scale, decode_times=decode_times, stack_char_dim=stack_char_dim) if decode_coords: var_attrs = new_vars[k].attrs if 'coordinates' in var_attrs: coord_str = var_attrs['coordinates'] var_coord_names = coord_str.split() if all(k in variables for k in var_coord_names): new_vars[k].encoding['coordinates'] = coord_str del var_attrs['coordinates'] coord_names.update(var_coord_names) if decode_coords and 'coordinates' in attributes: attributes = OrderedDict(attributes) coord_names.update(attributes.pop('coordinates').split()) return new_vars, attributes, coord_names def decode_cf(obj, concat_characters=True, mask_and_scale=True, decode_times=True, decode_coords=True, drop_variables=None): """Decode the given Dataset or Datastore according to CF conventions into a new Dataset. Parameters ---------- obj : Dataset or DataStore Object to decode. concat_characters : bool, optional Should character arrays be concatenated to strings, for example: ['h', 'e', 'l', 'l', 'o'] -> 'hello' mask_and_scale: bool, optional Lazily scale (using scale_factor and add_offset) and mask (using _FillValue). decode_times : bool, optional Decode cf times (e.g., integers since 'hours since 2000-01-01') to np.datetime64. decode_coords : bool, optional Use the 'coordinates' attribute on variable (or the dataset itself) to identify coordinates. drop_variables: string or iterable, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. Returns ------- decoded : Dataset """ from .core.dataset import Dataset from .backends.common import AbstractDataStore if isinstance(obj, Dataset): vars = obj._variables attrs = obj.attrs extra_coords = set(obj.coords) file_obj = obj._file_obj encoding = obj.encoding elif isinstance(obj, AbstractDataStore): vars, attrs = obj.load() extra_coords = set() file_obj = obj encoding = obj.get_encoding() else: raise TypeError('can only decode Dataset or DataStore objects') vars, attrs, coord_names = decode_cf_variables( vars, attrs, concat_characters, mask_and_scale, decode_times, decode_coords, drop_variables=drop_variables) ds = Dataset(vars, attrs=attrs) ds = ds.set_coords(coord_names.union(extra_coords).intersection(vars)) ds._file_obj = file_obj ds.encoding = encoding return ds def cf_decoder(variables, attributes, concat_characters=True, mask_and_scale=True, decode_times=True): """ Decode a set of CF encoded variables and attributes. See Also, decode_cf_variable Parameters ---------- variables : dict A dictionary mapping from variable name to xarray.Variable attributes : dict A dictionary mapping from attribute name to value concat_characters : bool Should character arrays be concatenated to strings, for example: ['h', 'e', 'l', 'l', 'o'] -> 'hello' mask_and_scale: bool Lazily scale (using scale_factor and add_offset) and mask (using _FillValue). decode_times : bool Decode cf times ('hours since 2000-01-01') to np.datetime64. Returns ------- decoded_variables : dict A dictionary mapping from variable name to xarray.Variable objects. decoded_attributes : dict A dictionary mapping from attribute name to values. """ variables, attributes, _ = decode_cf_variables( variables, attributes, concat_characters, mask_and_scale, decode_times) return variables, attributes def _encode_coordinates(variables, attributes, non_dim_coord_names): # calculate global and variable specific coordinates non_dim_coord_names = set(non_dim_coord_names) for name in list(non_dim_coord_names): if isinstance(name, basestring) and ' ' in name: warnings.warn( 'coordinate {!r} has a space in its name, which means it ' 'cannot be marked as a coordinate on disk and will be ' 'saved as a data variable instead'.format(name), SerializationWarning, stacklevel=6) non_dim_coord_names.discard(name) global_coordinates = non_dim_coord_names.copy() variable_coordinates = defaultdict(set) for coord_name in non_dim_coord_names: target_dims = variables[coord_name].dims for k, v in variables.items(): if (k not in non_dim_coord_names and k not in v.dims and set(target_dims) <= set(v.dims)): variable_coordinates[k].add(coord_name) global_coordinates.discard(coord_name) variables = OrderedDict((k, v.copy(deep=False)) for k, v in variables.items()) # These coordinates are saved according to CF conventions for var_name, coord_names in variable_coordinates.items(): attrs = variables[var_name].attrs if 'coordinates' in attrs: raise ValueError('cannot serialize coordinates because variable ' "%s already has an attribute 'coordinates'" % var_name) attrs['coordinates'] = ' '.join(map(str, coord_names)) # These coordinates are not associated with any particular variables, so we # save them under a global 'coordinates' attribute so xarray can roundtrip # the dataset faithfully. Because this serialization goes beyond CF # conventions, only do it if necessary. # Reference discussion: # http://mailman.cgd.ucar.edu/pipermail/cf-metadata/2014/057771.html if global_coordinates: attributes = OrderedDict(attributes) if 'coordinates' in attributes: raise ValueError('cannot serialize coordinates because the global ' "attribute 'coordinates' already exists") attributes['coordinates'] = ' '.join(map(str, global_coordinates)) return variables, attributes def encode_dataset_coordinates(dataset): """Encode coordinates on the given dataset object into variable specific and global attributes. When possible, this is done according to CF conventions. Parameters ---------- dataset : Dataset Object to encode. Returns ------- variables : dict attrs : dict """ non_dim_coord_names = set(dataset.coords) - set(dataset.dims) return _encode_coordinates(dataset._variables, dataset.attrs, non_dim_coord_names=non_dim_coord_names) def cf_encoder(variables, attributes): """ A function which takes a dicts of variables and attributes and encodes them to conform to CF conventions as much as possible. This includes masking, scaling, character array handling, and CF-time encoding. Decode a set of CF encoded variables and attributes. See Also, decode_cf_variable Parameters ---------- variables : dict A dictionary mapping from variable name to xarray.Variable attributes : dict A dictionary mapping from attribute name to value Returns ------- encoded_variables : dict A dictionary mapping from variable name to xarray.Variable, encoded_attributes : dict A dictionary mapping from attribute name to value See also: encode_cf_variable """ new_vars = OrderedDict((k, encode_cf_variable(v, name=k)) for k, v in iteritems(variables)) return new_vars, attributes
{ "repo_name": "jcmgray/xarray", "path": "xarray/conventions.py", "copies": "1", "size": "20549", "license": "apache-2.0", "hash": -7202417387283354000, "line_mean": 34.5519031142, "line_max": 79, "alpha_frac": 0.6239233053, "autogenerated": false, "ratio": 4.212587125871258, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 578 }
from __future__ import absolute_import, division, print_function import warnings from distutils.version import LooseVersion import numpy as np import pandas as pd from . import duck_array_ops, dtypes, formatting, ops from .arithmetic import SupportsArithmetic from .pycompat import OrderedDict, basestring, dask_array_type, suppress from .utils import Frozen, SortedKeysDict class ImplementsArrayReduce(object): @classmethod def _reduce_method(cls, func, include_skipna, numeric_only): if include_skipna: def wrapped_func(self, dim=None, axis=None, skipna=None, keep_attrs=False, **kwargs): return self.reduce(func, dim, axis, keep_attrs=keep_attrs, skipna=skipna, allow_lazy=True, **kwargs) else: def wrapped_func(self, dim=None, axis=None, keep_attrs=False, **kwargs): return self.reduce(func, dim, axis, keep_attrs=keep_attrs, allow_lazy=True, **kwargs) return wrapped_func _reduce_extra_args_docstring = \ """dim : str or sequence of str, optional Dimension(s) over which to apply `{name}`. axis : int or sequence of int, optional Axis(es) over which to apply `{name}`. Only one of the 'dim' and 'axis' arguments can be supplied. If neither are supplied, then `{name}` is calculated over axes.""" _cum_extra_args_docstring = \ """dim : str or sequence of str, optional Dimension over which to apply `{name}`. axis : int or sequence of int, optional Axis over which to apply `{name}`. Only one of the 'dim' and 'axis' arguments can be supplied.""" class ImplementsDatasetReduce(object): @classmethod def _reduce_method(cls, func, include_skipna, numeric_only): if include_skipna: def wrapped_func(self, dim=None, keep_attrs=False, skipna=None, **kwargs): return self.reduce(func, dim, keep_attrs, skipna=skipna, numeric_only=numeric_only, allow_lazy=True, **kwargs) else: def wrapped_func(self, dim=None, keep_attrs=False, **kwargs): return self.reduce(func, dim, keep_attrs, numeric_only=numeric_only, allow_lazy=True, **kwargs) return wrapped_func _reduce_extra_args_docstring = \ """dim : str or sequence of str, optional Dimension(s) over which to apply `{name}`. By default `{name}` is applied over all dimensions.""" _cum_extra_args_docstring = \ """dim : str or sequence of str, optional Dimension over which to apply `{name}`. axis : int or sequence of int, optional Axis over which to apply `{name}`. Only one of the 'dim' and 'axis' arguments can be supplied.""" class AbstractArray(ImplementsArrayReduce, formatting.ReprMixin): """Shared base class for DataArray and Variable.""" def __bool__(self): return bool(self.values) # Python 3 uses __bool__, Python 2 uses __nonzero__ __nonzero__ = __bool__ def __float__(self): return float(self.values) def __int__(self): return int(self.values) def __complex__(self): return complex(self.values) def __long__(self): return long(self.values) # flake8: noqa def __array__(self, dtype=None): return np.asarray(self.values, dtype=dtype) def __repr__(self): return formatting.array_repr(self) def _iter(self): for n in range(len(self)): yield self[n] def __iter__(self): if self.ndim == 0: raise TypeError('iteration over a 0-d array') return self._iter() @property def T(self): return self.transpose() def get_axis_num(self, dim): """Return axis number(s) corresponding to dimension(s) in this array. Parameters ---------- dim : str or iterable of str Dimension name(s) for which to lookup axes. Returns ------- int or tuple of int Axis number or numbers corresponding to the given dimensions. """ if isinstance(dim, basestring): return self._get_axis_num(dim) else: return tuple(self._get_axis_num(d) for d in dim) def _get_axis_num(self, dim): try: return self.dims.index(dim) except ValueError: raise ValueError("%r not found in array dimensions %r" % (dim, self.dims)) @property def sizes(self): """Ordered mapping from dimension names to lengths. Immutable. See also -------- Dataset.sizes """ return Frozen(OrderedDict(zip(self.dims, self.shape))) class AttrAccessMixin(object): """Mixin class that allows getting keys with attribute access """ _initialized = False @property def _attr_sources(self): """List of places to look-up items for attribute-style access""" return [] @property def _item_sources(self): """List of places to look-up items for key-autocompletion """ return [] def __getattr__(self, name): if name != '__setstate__': # this avoids an infinite loop when pickle looks for the # __setstate__ attribute before the xarray object is initialized for source in self._attr_sources: with suppress(KeyError): return source[name] raise AttributeError("%r object has no attribute %r" % (type(self).__name__, name)) def __setattr__(self, name, value): if self._initialized: try: # Allow setting instance variables if they already exist # (e.g., _attrs). We use __getattribute__ instead of hasattr # to avoid key lookups with attribute-style access. self.__getattribute__(name) except AttributeError: raise AttributeError( "cannot set attribute %r on a %r object. Use __setitem__ " "style assignment (e.g., `ds['name'] = ...`) instead to " "assign variables." % (name, type(self).__name__)) object.__setattr__(self, name, value) def __dir__(self): """Provide method name lookup and completion. Only provide 'public' methods. """ extra_attrs = [item for sublist in self._attr_sources for item in sublist if isinstance(item, basestring)] return sorted(set(dir(type(self)) + extra_attrs)) def _ipython_key_completions_(self): """Provide method for the key-autocompletions in IPython. See http://ipython.readthedocs.io/en/stable/config/integrating.html#tab-completion For the details. """ item_lists = [item for sublist in self._item_sources for item in sublist if isinstance(item, basestring)] return list(set(item_lists)) def get_squeeze_dims(xarray_obj, dim, axis=None): """Get a list of dimensions to squeeze out. """ if dim is not None and axis is not None: raise ValueError('cannot use both parameters `axis` and `dim`') if dim is None and axis is None: dim = [d for d, s in xarray_obj.sizes.items() if s == 1] else: if isinstance(dim, basestring): dim = [dim] if isinstance(axis, int): axis = (axis, ) if isinstance(axis, tuple): for a in axis: if not isinstance(a, int): raise ValueError( 'parameter `axis` must be int or tuple of int.') alldims = list(xarray_obj.sizes.keys()) dim = [alldims[a] for a in axis] if any(xarray_obj.sizes[k] > 1 for k in dim): raise ValueError('cannot select a dimension to squeeze out ' 'which has length greater than one') return dim class DataWithCoords(SupportsArithmetic, AttrAccessMixin): """Shared base class for Dataset and DataArray.""" def squeeze(self, dim=None, drop=False, axis=None): """Return a new object with squeezed data. Parameters ---------- dim : None or str or tuple of str, optional Selects a subset of the length one dimensions. If a dimension is selected with length greater than one, an error is raised. If None, all length one dimensions are squeezed. drop : bool, optional If ``drop=True``, drop squeezed coordinates instead of making them scalar. axis : int, optional Select the dimension to squeeze. Added for compatibility reasons. Returns ------- squeezed : same type as caller This object, but with with all or a subset of the dimensions of length 1 removed. See Also -------- numpy.squeeze """ dims = get_squeeze_dims(self, dim, axis) return self.isel(drop=drop, **{d: 0 for d in dims}) def get_index(self, key): """Get an index for a dimension, with fall-back to a default RangeIndex """ if key not in self.dims: raise KeyError(key) try: return self.indexes[key] except KeyError: # need to ensure dtype=int64 in case range is empty on Python 2 return pd.Index(range(self.sizes[key]), name=key, dtype=np.int64) def _calc_assign_results(self, kwargs): results = SortedKeysDict() for k, v in kwargs.items(): if callable(v): results[k] = v(self) else: results[k] = v return results def assign_coords(self, **kwargs): """Assign new coordinates to this object. Returns a new object with all the original data in addition to the new coordinates. Parameters ---------- kwargs : keyword, value pairs keywords are the variables names. If the values are callable, they are computed on this object and assigned to new coordinate variables. If the values are not callable, (e.g. a DataArray, scalar, or array), they are simply assigned. Returns ------- assigned : same type as caller A new object with the new coordinates in addition to the existing data. Examples -------- Convert longitude coordinates from 0-359 to -180-179: >>> da = xr.DataArray(np.random.rand(4), ... coords=[np.array([358, 359, 0, 1])], ... dims='lon') >>> da <xarray.DataArray (lon: 4)> array([0.28298 , 0.667347, 0.657938, 0.177683]) Coordinates: * lon (lon) int64 358 359 0 1 >>> da.assign_coords(lon=(((da.lon + 180) % 360) - 180)) <xarray.DataArray (lon: 4)> array([0.28298 , 0.667347, 0.657938, 0.177683]) Coordinates: * lon (lon) int64 -2 -1 0 1 Notes ----- Since ``kwargs`` is a dictionary, the order of your arguments may not be preserved, and so the order of the new variables is not well defined. Assigning multiple variables within the same ``assign_coords`` is possible, but you cannot reference other variables created within the same ``assign_coords`` call. See also -------- Dataset.assign """ data = self.copy(deep=False) results = self._calc_assign_results(kwargs) data.coords.update(results) return data def assign_attrs(self, *args, **kwargs): """Assign new attrs to this object. Returns a new object equivalent to self.attrs.update(*args, **kwargs). Parameters ---------- args : positional arguments passed into ``attrs.update``. kwargs : keyword arguments passed into ``attrs.update``. Returns ------- assigned : same type as caller A new object with the new attrs in addition to the existing data. See also -------- Dataset.assign """ out = self.copy(deep=False) out.attrs.update(*args, **kwargs) return out def pipe(self, func, *args, **kwargs): """ Apply func(self, *args, **kwargs) This method replicates the pandas method of the same name. Parameters ---------- func : function function to apply to this xarray object (Dataset/DataArray). ``args``, and ``kwargs`` are passed into ``func``. Alternatively a ``(callable, data_keyword)`` tuple where ``data_keyword`` is a string indicating the keyword of ``callable`` that expects the xarray object. args : positional arguments passed into ``func``. kwargs : a dictionary of keyword arguments passed into ``func``. Returns ------- object : the return type of ``func``. Notes ----- Use ``.pipe`` when chaining together functions that expect xarray or pandas objects, e.g., instead of writing >>> f(g(h(ds), arg1=a), arg2=b, arg3=c) You can write >>> (ds.pipe(h) ... .pipe(g, arg1=a) ... .pipe(f, arg2=b, arg3=c) ... ) If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose ``f`` takes its data as ``arg2``: >>> (ds.pipe(h) ... .pipe(g, arg1=a) ... .pipe((f, 'arg2'), arg1=a, arg3=c) ... ) See Also -------- pandas.DataFrame.pipe """ if isinstance(func, tuple): func, target = func if target in kwargs: msg = '%s is both the pipe target and a keyword argument' % target raise ValueError(msg) kwargs[target] = self return func(*args, **kwargs) else: return func(self, *args, **kwargs) def groupby(self, group, squeeze=True): """Returns a GroupBy object for performing grouped operations. Parameters ---------- group : str, DataArray or IndexVariable Array whose unique values should be used to group this array. If a string, must be the name of a variable contained in this dataset. squeeze : boolean, optional If "group" is a dimension of any arrays in this dataset, `squeeze` controls whether the subarrays have a dimension of length 1 along that dimension or if the dimension is squeezed out. Returns ------- grouped : GroupBy A `GroupBy` object patterned after `pandas.GroupBy` that can be iterated over in the form of `(unique_value, grouped_array)` pairs. Examples -------- Calculate daily anomalies for daily data: >>> da = xr.DataArray(np.linspace(0, 1826, num=1827), ... coords=[pd.date_range('1/1/2000', '31/12/2004', ... freq='D')], ... dims='time') >>> da <xarray.DataArray (time: 1827)> array([0.000e+00, 1.000e+00, 2.000e+00, ..., 1.824e+03, 1.825e+03, 1.826e+03]) Coordinates: * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 ... >>> da.groupby('time.dayofyear') - da.groupby('time.dayofyear').mean('time') <xarray.DataArray (time: 1827)> array([-730.8, -730.8, -730.8, ..., 730.2, 730.2, 730.5]) Coordinates: * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 ... dayofyear (time) int64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... See Also -------- core.groupby.DataArrayGroupBy core.groupby.DatasetGroupBy """ return self._groupby_cls(self, group, squeeze=squeeze) def groupby_bins(self, group, bins, right=True, labels=None, precision=3, include_lowest=False, squeeze=True): """Returns a GroupBy object for performing grouped operations. Rather than using all unique values of `group`, the values are discretized first by applying `pandas.cut` [1]_ to `group`. Parameters ---------- group : str, DataArray or IndexVariable Array whose binned values should be used to group this array. If a string, must be the name of a variable contained in this dataset. bins : int or array of scalars If bins is an int, it defines the number of equal-width bins in the range of x. However, in this case, the range of x is extended by .1% on each side to include the min or max values of x. If bins is a sequence it defines the bin edges allowing for non-uniform bin width. No extension of the range of x is done in this case. right : boolean, optional Indicates whether the bins include the rightmost edge or not. If right == True (the default), then the bins [1,2,3,4] indicate (1,2], (2,3], (3,4]. labels : array or boolean, default None Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, string bin labels are assigned by `pandas.cut`. precision : int The precision at which to store and display the bins labels. include_lowest : bool Whether the first interval should be left-inclusive or not. squeeze : boolean, optional If "group" is a dimension of any arrays in this dataset, `squeeze` controls whether the subarrays have a dimension of length 1 along that dimension or if the dimension is squeezed out. Returns ------- grouped : GroupBy A `GroupBy` object patterned after `pandas.GroupBy` that can be iterated over in the form of `(unique_value, grouped_array)` pairs. The name of the group has the added suffix `_bins` in order to distinguish it from the original variable. References ---------- .. [1] http://pandas.pydata.org/pandas-docs/stable/generated/pandas.cut.html """ return self._groupby_cls(self, group, squeeze=squeeze, bins=bins, cut_kwargs={'right': right, 'labels': labels, 'precision': precision, 'include_lowest': include_lowest}) def rolling(self, min_periods=None, center=False, **windows): """ Rolling window object. Parameters ---------- min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). The default, None, is equivalent to setting min_periods equal to the size of the window. center : boolean, default False Set the labels at the center of the window. **windows : dim=window dim : str Name of the dimension to create the rolling iterator along (e.g., `time`). window : int Size of the moving window. Returns ------- Rolling object (core.rolling.DataArrayRolling for DataArray, core.rolling.DatasetRolling for Dataset.) Examples -------- Create rolling seasonal average of monthly data e.g. DJF, JFM, ..., SON: >>> da = xr.DataArray(np.linspace(0, 11, num=12), ... coords=[pd.date_range('15/12/1999', ... periods=12, freq=pd.DateOffset(months=1))], ... dims='time') >>> da <xarray.DataArray (time: 12)> array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.]) Coordinates: * time (time) datetime64[ns] 1999-12-15 2000-01-15 2000-02-15 ... >>> da.rolling(time=3, center=True).mean() <xarray.DataArray (time: 12)> array([nan, 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., nan]) Coordinates: * time (time) datetime64[ns] 1999-12-15 2000-01-15 2000-02-15 ... Remove the NaNs using ``dropna()``: >>> da.rolling(time=3, center=True).mean().dropna('time') <xarray.DataArray (time: 10)> array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) Coordinates: * time (time) datetime64[ns] 2000-01-15 2000-02-15 2000-03-15 ... See Also -------- core.rolling.DataArrayRolling core.rolling.DatasetRolling """ return self._rolling_cls(self, min_periods=min_periods, center=center, **windows) def resample(self, freq=None, dim=None, how=None, skipna=None, closed=None, label=None, base=0, keep_attrs=False, **indexer): """Returns a Resample object for performing resampling operations. Handles both downsampling and upsampling. If any intervals contain no values from the original object, they will be given the value ``NaN``. Parameters ---------- skipna : bool, optional Whether to skip missing values when aggregating in downsampling. closed : 'left' or 'right', optional Side of each interval to treat as closed. label : 'left or 'right', optional Side of each interval to use for labeling. base : int, optional For frequencies that evenly subdivide 1 day, the "origin" of the aggregated intervals. For example, for '24H' frequency, base could range from 0 through 23. keep_attrs : bool, optional If True, the object's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **indexer : {dim: freq} Dictionary with a key indicating the dimension name to resample over and a value corresponding to the resampling frequency. Returns ------- resampled : same type as caller This object resampled. Examples -------- Downsample monthly time-series data to seasonal data: >>> da = xr.DataArray(np.linspace(0, 11, num=12), ... coords=[pd.date_range('15/12/1999', ... periods=12, freq=pd.DateOffset(months=1))], ... dims='time') >>> da <xarray.DataArray (time: 12)> array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.]) Coordinates: * time (time) datetime64[ns] 1999-12-15 2000-01-15 2000-02-15 ... >>> da.resample(time="Q-DEC").mean() <xarray.DataArray (time: 4)> array([ 1., 4., 7., 10.]) Coordinates: * time (time) datetime64[ns] 2000-02-29 2000-05-31 2000-08-31 2000-11-30 Upsample monthly time-series data to daily data: >>> da.resample(time='1D').interpolate('linear') <xarray.DataArray (time: 337)> array([ 0. , 0.032258, 0.064516, ..., 10.935484, 10.967742, 11. ]) Coordinates: * time (time) datetime64[ns] 1999-12-15 1999-12-16 1999-12-17 ... References ---------- .. [1] http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases """ from .dataarray import DataArray from .resample import RESAMPLE_DIM if dim is not None: if how is None: how = 'mean' return self._resample_immediately(freq, dim, how, skipna, closed, label, base, keep_attrs) if (how is not None) and indexer: raise TypeError("If passing an 'indexer' then 'dim' " "and 'how' should not be used") # More than one indexer is ambiguous, but we do in fact need one if # "dim" was not provided, until the old API is fully deprecated if len(indexer) != 1: raise ValueError( "Resampling only supported along single dimensions." ) dim, freq = indexer.popitem() if isinstance(dim, basestring): dim_name = dim dim = self[dim] else: raise TypeError("Dimension name should be a string; " "was passed %r" % dim) group = DataArray(dim, [(dim.dims, dim)], name=RESAMPLE_DIM) grouper = pd.Grouper(freq=freq, closed=closed, label=label, base=base) resampler = self._resample_cls(self, group=group, dim=dim_name, grouper=grouper, resample_dim=RESAMPLE_DIM) return resampler def _resample_immediately(self, freq, dim, how, skipna, closed, label, base, keep_attrs): """Implement the original version of .resample() which immediately executes the desired resampling operation. """ from .dataarray import DataArray RESAMPLE_DIM = '__resample_dim__' warnings.warn("\n.resample() has been modified to defer " "calculations. Instead of passing 'dim' and " "how=\"{how}\", instead consider using " ".resample({dim}=\"{freq}\").{how}('{dim}') ".format( dim=dim, freq=freq, how=how), DeprecationWarning, stacklevel=3) if isinstance(dim, basestring): dim = self[dim] group = DataArray(dim, [(dim.dims, dim)], name=RESAMPLE_DIM) grouper = pd.Grouper(freq=freq, how=how, closed=closed, label=label, base=base) gb = self._groupby_cls(self, group, grouper=grouper) if isinstance(how, basestring): f = getattr(gb, how) if how in ['first', 'last']: result = f(skipna=skipna, keep_attrs=keep_attrs) elif how == 'count': result = f(dim=dim.name, keep_attrs=keep_attrs) else: result = f(dim=dim.name, skipna=skipna, keep_attrs=keep_attrs) else: result = gb.reduce(how, dim=dim.name, keep_attrs=keep_attrs) result = result.rename({RESAMPLE_DIM: dim.name}) return result def where(self, cond, other=dtypes.NA, drop=False): """Filter elements from this object according to a condition. This operation follows the normal broadcasting and alignment rules that xarray uses for binary arithmetic. Parameters ---------- cond : DataArray or Dataset with boolean dtype Locations at which to preserve this object's values. other : scalar, DataArray or Dataset, optional Value to use for locations in this object where ``cond`` is False. By default, these locations filled with NA. drop : boolean, optional If True, coordinate labels that only correspond to False values of the condition are dropped from the result. Mutually exclusive with ``other``. Returns ------- Same type as caller. Examples -------- >>> import numpy as np >>> a = xr.DataArray(np.arange(25).reshape(5, 5), dims=('x', 'y')) >>> a.where(a.x + a.y < 4) <xarray.DataArray (x: 5, y: 5)> array([[ 0., 1., 2., 3., nan], [ 5., 6., 7., nan, nan], [ 10., 11., nan, nan, nan], [ 15., nan, nan, nan, nan], [ nan, nan, nan, nan, nan]]) Dimensions without coordinates: x, y >>> a.where(a.x + a.y < 5, -1) <xarray.DataArray (x: 5, y: 5)> array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, -1], [10, 11, 12, -1, -1], [15, 16, -1, -1, -1], [20, -1, -1, -1, -1]]) Dimensions without coordinates: x, y >>> a.where(a.x + a.y < 4, drop=True) <xarray.DataArray (x: 4, y: 4)> array([[ 0., 1., 2., 3.], [ 5., 6., 7., nan], [ 10., 11., nan, nan], [ 15., nan, nan, nan]]) Dimensions without coordinates: x, y See also -------- numpy.where : corresponding numpy function where : equivalent function """ from .alignment import align from .dataarray import DataArray from .dataset import Dataset if drop: if other is not dtypes.NA: raise ValueError('cannot set `other` if drop=True') if not isinstance(cond, (Dataset, DataArray)): raise TypeError("cond argument is %r but must be a %r or %r" % (cond, Dataset, DataArray)) # align so we can use integer indexing self, cond = align(self, cond) # get cond with the minimal size needed for the Dataset if isinstance(cond, Dataset): clipcond = cond.to_array().any('variable') else: clipcond = cond # clip the data corresponding to coordinate dims that are not used nonzeros = zip(clipcond.dims, np.nonzero(clipcond.values)) indexers = {k: np.unique(v) for k, v in nonzeros} self = self.isel(**indexers) cond = cond.isel(**indexers) return ops.where_method(self, cond, other) def close(self): """Close any files linked to this object """ if self._file_obj is not None: self._file_obj.close() self._file_obj = None def isin(self, test_elements): """Tests each value in the array for whether it is in the supplied list. Parameters ---------- test_elements : array_like The values against which to test each value of `element`. This argument is flattened if an array or array_like. See numpy notes for behavior with non-array-like parameters. Returns ------- isin : same as object, bool Has the same shape as this object. Examples -------- >>> array = xr.DataArray([1, 2, 3], dims='x') >>> array.isin([1, 3]) <xarray.DataArray (x: 3)> array([ True, False, True]) Dimensions without coordinates: x See also -------- numpy.isin """ from .computation import apply_ufunc from .dataset import Dataset from .dataarray import DataArray from .variable import Variable if isinstance(test_elements, Dataset): raise TypeError( 'isin() argument must be convertible to an array: {}' .format(test_elements)) elif isinstance(test_elements, (Variable, DataArray)): # need to explicitly pull out data to support dask arrays as the # second argument test_elements = test_elements.data return apply_ufunc( duck_array_ops.isin, self, kwargs=dict(test_elements=test_elements), dask='allowed', ) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def full_like(other, fill_value, dtype=None): """Return a new object with the same shape and type as a given object. Parameters ---------- other : DataArray, Dataset, or Variable The reference object in input fill_value : scalar Value to fill the new object with before returning it. dtype : dtype, optional dtype of the new array. If omitted, it defaults to other.dtype. Returns ------- out : same as object New object with the same shape and type as other, with the data filled with fill_value. Coords will be copied from other. If other is based on dask, the new one will be as well, and will be split in the same chunks. """ from .dataarray import DataArray from .dataset import Dataset from .variable import Variable if isinstance(other, Dataset): data_vars = OrderedDict( (k, _full_like_variable(v, fill_value, dtype)) for k, v in other.data_vars.items()) return Dataset(data_vars, coords=other.coords, attrs=other.attrs) elif isinstance(other, DataArray): return DataArray( _full_like_variable(other.variable, fill_value, dtype), dims=other.dims, coords=other.coords, attrs=other.attrs, name=other.name) elif isinstance(other, Variable): return _full_like_variable(other, fill_value, dtype) else: raise TypeError("Expected DataArray, Dataset, or Variable") def _full_like_variable(other, fill_value, dtype=None): """Inner function of full_like, where other must be a variable """ from .variable import Variable if isinstance(other.data, dask_array_type): import dask.array if dtype is None: dtype = other.dtype data = dask.array.full(other.shape, fill_value, dtype=dtype, chunks=other.data.chunks) else: data = np.full_like(other, fill_value, dtype=dtype) return Variable(dims=other.dims, data=data, attrs=other.attrs) def zeros_like(other, dtype=None): """Shorthand for full_like(other, 0, dtype) """ return full_like(other, 0, dtype) def ones_like(other, dtype=None): """Shorthand for full_like(other, 1, dtype) """ return full_like(other, 1, dtype) def is_np_datetime_like(dtype): """Check if a dtype is a subclass of the numpy datetime types """ return (np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64)) def contains_cftime_datetimes(var): """Check if a variable contains cftime datetime objects""" try: from cftime import datetime as cftime_datetime except ImportError: return False else: if var.dtype == np.dtype('O') and var.data.size > 0: sample = var.data.ravel()[0] if isinstance(sample, dask_array_type): sample = sample.compute() if isinstance(sample, np.ndarray): sample = sample.item() return isinstance(sample, cftime_datetime) else: return False def _contains_datetime_like_objects(var): """Check if a variable contains datetime like objects (either np.datetime64, np.timedelta64, or cftime.datetime)""" return is_np_datetime_like(var.dtype) or contains_cftime_datetimes(var)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/common.py", "copies": "1", "size": "36053", "license": "apache-2.0", "hash": 8784939485576623000, "line_mean": 36.3219461698, "line_max": 90, "alpha_frac": 0.5509943694, "autogenerated": false, "ratio": 4.2696589294173375, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5320653298817337, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings from distutils.version import LooseVersion import numpy as np from . import dtypes from .dask_array_ops import dask_rolling_wrapper from .ops import ( bn, has_bottleneck, inject_bottleneck_rolling_methods, inject_datasetrolling_methods) from .pycompat import OrderedDict, dask_array_type, zip def _get_new_dimname(dims, new_dim): """ Get an new dimension name based on new_dim, that is not used in dims. If the same name exists, we add an underscore(s) in the head. Example1: dims: ['a', 'b', 'c'] new_dim: ['_rolling'] -> ['_rolling'] Example2: dims: ['a', 'b', 'c', '_rolling'] new_dim: ['_rolling'] -> ['__rolling'] """ while new_dim in dims: new_dim = '_' + new_dim return new_dim class Rolling(object): """A object that implements the moving window pattern. See Also -------- Dataset.groupby DataArray.groupby Dataset.rolling DataArray.rolling """ _attributes = ['window', 'min_periods', 'center', 'dim'] def __init__(self, obj, min_periods=None, center=False, **windows): """ Moving window object. Parameters ---------- obj : Dataset or DataArray Object to window. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). The default, None, is equivalent to setting min_periods equal to the size of the window. center : boolean, default False Set the labels at the center of the window. **windows : dim=window dim : str Name of the dimension to create the rolling iterator along (e.g., `time`). window : int Size of the moving window. Returns ------- rolling : type of input argument """ if (has_bottleneck and (LooseVersion(bn.__version__) < LooseVersion('1.0'))): warnings.warn('xarray requires bottleneck version of 1.0 or ' 'greater for rolling operations. Rolling ' 'aggregation methods will use numpy instead' 'of bottleneck.') if len(windows) != 1: raise ValueError('exactly one dim/window should be provided') dim, window = next(iter(windows.items())) if window <= 0: raise ValueError('window must be > 0') self.obj = obj # attributes self.window = window self.min_periods = min_periods if min_periods is None: self._min_periods = window else: if min_periods <= 0: raise ValueError( 'min_periods must be greater than zero or None') self._min_periods = min_periods self.center = center self.dim = dim def __repr__(self): """provide a nice str repr of our rolling object""" attrs = ["{k}->{v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None] return "{klass} [{attrs}]".format(klass=self.__class__.__name__, attrs=','.join(attrs)) def __len__(self): return self.obj.sizes[self.dim] class DataArrayRolling(Rolling): def __init__(self, obj, min_periods=None, center=False, **windows): """ Moving window object for DataArray. You should use DataArray.rolling() method to construct this object instead of the class constructor. Parameters ---------- obj : DataArray Object to window. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). The default, None, is equivalent to setting min_periods equal to the size of the window. center : boolean, default False Set the labels at the center of the window. **windows : dim=window dim : str Name of the dimension to create the rolling iterator along (e.g., `time`). window : int Size of the moving window. Returns ------- rolling : type of input argument See Also -------- DataArray.rolling DataArray.groupby Dataset.rolling Dataset.groupby """ super(DataArrayRolling, self).__init__(obj, min_periods=min_periods, center=center, **windows) self.window_labels = self.obj[self.dim] def __iter__(self): stops = np.arange(1, len(self.window_labels) + 1) starts = stops - int(self.window) starts[:int(self.window)] = 0 for (label, start, stop) in zip(self.window_labels, starts, stops): window = self.obj.isel(**{self.dim: slice(start, stop)}) counts = window.count(dim=self.dim) window = window.where(counts >= self._min_periods) yield (label, window) def construct(self, window_dim, stride=1, fill_value=dtypes.NA): """ Convert this rolling object to xr.DataArray, where the window dimension is stacked as a new dimension Parameters ---------- window_dim: str New name of the window dimension. stride: integer, optional Size of stride for the rolling window. fill_value: optional. Default dtypes.NA Filling value to match the dimension size. Returns ------- DataArray that is a view of the original array. The returned array is not writeable. Examples -------- >>> da = DataArray(np.arange(8).reshape(2, 4), dims=('a', 'b')) >>> >>> rolling = da.rolling(a=3) >>> rolling.to_datarray('window_dim') <xarray.DataArray (a: 2, b: 4, window_dim: 3)> array([[[np.nan, np.nan, 0], [np.nan, 0, 1], [0, 1, 2], [1, 2, 3]], [[np.nan, np.nan, 4], [np.nan, 4, 5], [4, 5, 6], [5, 6, 7]]]) Dimensions without coordinates: a, b, window_dim >>> >>> rolling = da.rolling(a=3, center=True) >>> rolling.to_datarray('window_dim') <xarray.DataArray (a: 2, b: 4, window_dim: 3)> array([[[np.nan, 0, 1], [0, 1, 2], [1, 2, 3], [2, 3, np.nan]], [[np.nan, 4, 5], [4, 5, 6], [5, 6, 7], [6, 7, np.nan]]]) Dimensions without coordinates: a, b, window_dim """ from .dataarray import DataArray window = self.obj.variable.rolling_window(self.dim, self.window, window_dim, self.center, fill_value=fill_value) result = DataArray(window, dims=self.obj.dims + (window_dim,), coords=self.obj.coords) return result.isel(**{self.dim: slice(None, None, stride)}) def reduce(self, func, **kwargs): """Reduce the items in this group by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `func(x, **kwargs)` to return the result of collapsing an np.ndarray over an the rolling dimension. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : DataArray Array with summarized data. """ rolling_dim = _get_new_dimname(self.obj.dims, '_rolling_dim') windows = self.construct(rolling_dim) result = windows.reduce(func, dim=rolling_dim, **kwargs) # Find valid windows based on count. counts = self._counts() return result.where(counts >= self._min_periods) def _counts(self): """ Number of non-nan entries in each rolling window. """ rolling_dim = _get_new_dimname(self.obj.dims, '_rolling_dim') # We use False as the fill_value instead of np.nan, since boolean # array is faster to be reduced than object array. # The use of skipna==False is also faster since it does not need to # copy the strided array. counts = (self.obj.notnull() .rolling(center=self.center, **{self.dim: self.window}) .construct(rolling_dim, fill_value=False) .sum(dim=rolling_dim, skipna=False)) return counts @classmethod def _reduce_method(cls, func): """ Methods to return a wrapped function for any function `func` for numpy methods. """ def wrapped_func(self, **kwargs): return self.reduce(func, **kwargs) return wrapped_func @classmethod def _bottleneck_reduce(cls, func): """ Methods to return a wrapped function for any function `func` for bottoleneck method, except for `median`. """ def wrapped_func(self, **kwargs): from .dataarray import DataArray # bottleneck doesn't allow min_count to be 0, although it should # work the same as if min_count = 1 if self.min_periods is not None and self.min_periods == 0: min_count = 1 else: min_count = self.min_periods axis = self.obj.get_axis_num(self.dim) padded = self.obj.variable if self.center: if (LooseVersion(np.__version__) < LooseVersion('1.13') and self.obj.dtype.kind == 'b'): # with numpy < 1.13 bottleneck cannot handle np.nan-Boolean # mixed array correctly. We cast boolean array to float. padded = padded.astype(float) if isinstance(padded.data, dask_array_type): # Workaround to make the padded chunk size is larger than # self.window-1 shift = - (self.window + 1) // 2 offset = (self.window - 1) // 2 valid = (slice(None), ) * axis + ( slice(offset, offset + self.obj.shape[axis]), ) else: shift = (-self.window // 2) + 1 valid = (slice(None), ) * axis + (slice(-shift, None), ) padded = padded.pad_with_fill_value(**{self.dim: (0, -shift)}) if isinstance(padded.data, dask_array_type): values = dask_rolling_wrapper(func, padded, window=self.window, min_count=min_count, axis=axis) else: values = func(padded.data, window=self.window, min_count=min_count, axis=axis) if self.center: values = values[valid] result = DataArray(values, self.obj.coords) return result return wrapped_func class DatasetRolling(Rolling): def __init__(self, obj, min_periods=None, center=False, **windows): """ Moving window object for Dataset. You should use Dataset.rolling() method to construct this object instead of the class constructor. Parameters ---------- obj : Dataset Object to window. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). The default, None, is equivalent to setting min_periods equal to the size of the window. center : boolean, default False Set the labels at the center of the window. **windows : dim=window dim : str Name of the dimension to create the rolling iterator along (e.g., `time`). window : int Size of the moving window. Returns ------- rolling : type of input argument See Also -------- Dataset.rolling DataArray.rolling Dataset.groupby DataArray.groupby """ super(DatasetRolling, self).__init__(obj, min_periods, center, **windows) if self.dim not in self.obj.dims: raise KeyError(self.dim) # Keep each Rolling object as an OrderedDict self.rollings = OrderedDict() for key, da in self.obj.data_vars.items(): # keeps rollings only for the dataset depending on slf.dim if self.dim in da.dims: self.rollings[key] = DataArrayRolling(da, min_periods, center, **windows) def reduce(self, func, **kwargs): """Reduce the items in this group by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `func(x, **kwargs)` to return the result of collapsing an np.ndarray over an the rolling dimension. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : DataArray Array with summarized data. """ from .dataset import Dataset reduced = OrderedDict() for key, da in self.obj.data_vars.items(): if self.dim in da.dims: reduced[key] = self.rollings[key].reduce(func, **kwargs) else: reduced[key] = self.obj[key] return Dataset(reduced, coords=self.obj.coords) def _counts(self): from .dataset import Dataset reduced = OrderedDict() for key, da in self.obj.data_vars.items(): if self.dim in da.dims: reduced[key] = self.rollings[key]._counts() else: reduced[key] = self.obj[key] return Dataset(reduced, coords=self.obj.coords) @classmethod def _reduce_method(cls, func): """ Return a wrapped function for injecting numpy and bottoleneck methods. see ops.inject_datasetrolling_methods """ def wrapped_func(self, **kwargs): from .dataset import Dataset reduced = OrderedDict() for key, da in self.obj.data_vars.items(): if self.dim in da.dims: reduced[key] = getattr(self.rollings[key], func.__name__)(**kwargs) else: reduced[key] = self.obj[key] return Dataset(reduced, coords=self.obj.coords) return wrapped_func def construct(self, window_dim, stride=1, fill_value=dtypes.NA): """ Convert this rolling object to xr.Dataset, where the window dimension is stacked as a new dimension Parameters ---------- window_dim: str New name of the window dimension. stride: integer, optional size of stride for the rolling window. fill_value: optional. Default dtypes.NA Filling value to match the dimension size. Returns ------- Dataset with variables converted from rolling object. """ from .dataset import Dataset dataset = OrderedDict() for key, da in self.obj.data_vars.items(): if self.dim in da.dims: dataset[key] = self.rollings[key].construct( window_dim, fill_value=fill_value) else: dataset[key] = da return Dataset(dataset, coords=self.obj.coords).isel( **{self.dim: slice(None, None, stride)}) inject_bottleneck_rolling_methods(DataArrayRolling) inject_datasetrolling_methods(DatasetRolling)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/rolling.py", "copies": "1", "size": "16276", "license": "apache-2.0", "hash": 1268512750411181800, "line_mean": 34.4596949891, "line_max": 79, "alpha_frac": 0.5381543377, "autogenerated": false, "ratio": 4.412035782054757, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5450190119754758, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings from functools import wraps import pandas as pd from pandas.core.window import Rolling as pd_Rolling from ..base import tokenize from ..utils import M, funcname, derived_from from .core import _emulate from .utils import make_meta def overlap_chunk(func, prev_part, current_part, next_part, before, after, args, kwargs): if ((prev_part is not None and prev_part.shape[0] != before) or (next_part is not None and next_part.shape[0] != after)): raise NotImplementedError("Partition size is less than overlapping " "window size. Try using ``df.repartition`` " "to increase the partition size.") parts = [p for p in (prev_part, current_part, next_part) if p is not None] combined = pd.concat(parts) out = func(combined, *args, **kwargs) if prev_part is None: before = None if next_part is None: return out.iloc[before:] return out.iloc[before:-after] def map_overlap(func, df, before, after, *args, **kwargs): """Apply a function to each partition, sharing rows with adjacent partitions. Parameters ---------- func : function Function applied to each partition. df : dd.DataFrame, dd.Series before : int The number of rows to prepend to partition ``i`` from the end of partition ``i - 1``. after : int The number of rows to append to partition ``i`` from the beginning of partition ``i + 1``. args, kwargs : Arguments and keywords to pass to the function. The partition will be the first argument, and these will be passed *after*. See Also -------- dd.DataFrame.map_overlap """ if not (isinstance(before, int) and before >= 0 and isinstance(after, int) and after >= 0): raise ValueError("before and after must be positive integers") if 'token' in kwargs: func_name = kwargs.pop('token') token = tokenize(df, before, after, *args, **kwargs) else: func_name = 'overlap-' + funcname(func) token = tokenize(func, df, before, after, *args, **kwargs) if 'meta' in kwargs: meta = kwargs.pop('meta') else: meta = _emulate(func, df, *args, **kwargs) meta = make_meta(meta) name = '{0}-{1}'.format(func_name, token) name_a = 'overlap-prepend-' + tokenize(df, before) name_b = 'overlap-append-' + tokenize(df, after) df_name = df._name dsk = df.dask.copy() if before: dsk.update({(name_a, i): (M.tail, (df_name, i), before) for i in range(df.npartitions - 1)}) prevs = [None] + [(name_a, i) for i in range(df.npartitions - 1)] else: prevs = [None] * df.npartitions if after: dsk.update({(name_b, i): (M.head, (df_name, i), after) for i in range(1, df.npartitions)}) nexts = [(name_b, i) for i in range(1, df.npartitions)] + [None] else: nexts = [None] * df.npartitions for i, (prev, current, next) in enumerate(zip(prevs, df._keys(), nexts)): dsk[(name, i)] = (overlap_chunk, func, prev, current, next, before, after, args, kwargs) return df._constructor(dsk, name, meta, df.divisions) def wrap_rolling(func, method_name): """Create a chunked version of a pandas.rolling_* function""" @wraps(func) def rolling(arg, window, *args, **kwargs): # pd.rolling_* functions are deprecated warnings.warn(("DeprecationWarning: dd.rolling_{0} is deprecated and " "will be removed in a future version, replace with " "df.rolling(...).{0}(...)").format(method_name)) rolling_kwargs = {} method_kwargs = {} for k, v in kwargs.items(): if k in {'min_periods', 'center', 'win_type', 'axis', 'freq'}: rolling_kwargs[k] = v else: method_kwargs[k] = v rolling = arg.rolling(window, **rolling_kwargs) return getattr(rolling, method_name)(*args, **method_kwargs) return rolling rolling_count = wrap_rolling(pd.rolling_count, 'count') rolling_sum = wrap_rolling(pd.rolling_sum, 'sum') rolling_mean = wrap_rolling(pd.rolling_mean, 'mean') rolling_median = wrap_rolling(pd.rolling_median, 'median') rolling_min = wrap_rolling(pd.rolling_min, 'min') rolling_max = wrap_rolling(pd.rolling_max, 'max') rolling_std = wrap_rolling(pd.rolling_std, 'std') rolling_var = wrap_rolling(pd.rolling_var, 'var') rolling_skew = wrap_rolling(pd.rolling_skew, 'skew') rolling_kurt = wrap_rolling(pd.rolling_kurt, 'kurt') rolling_quantile = wrap_rolling(pd.rolling_quantile, 'quantile') rolling_apply = wrap_rolling(pd.rolling_apply, 'apply') @wraps(pd.rolling_window) def rolling_window(arg, window, **kwargs): if kwargs.pop('mean', True): return rolling_mean(arg, window, **kwargs) return rolling_sum(arg, window, **kwargs) def pandas_rolling_method(df, rolling_kwargs, name, *args, **kwargs): rolling = df.rolling(**rolling_kwargs) return getattr(rolling, name)(*args, **kwargs) class Rolling(object): """Provides rolling window calculations.""" def __init__(self, obj, window=None, min_periods=None, freq=None, center=False, win_type=None, axis=0): if freq is not None: msg = 'The deprecated freq argument is not supported.' raise NotImplementedError(msg) self.obj = obj # dataframe or series self.window = window self.min_periods = min_periods self.center = center self.win_type = win_type self.axis = axis # Allow pandas to raise if appropriate obj._meta.rolling(**self._rolling_kwargs()) def _rolling_kwargs(self): return {'window': self.window, 'min_periods': self.min_periods, 'center': self.center, 'win_type': self.win_type, 'axis': self.axis} def _call_method(self, method_name, *args, **kwargs): rolling_kwargs = self._rolling_kwargs() meta = pandas_rolling_method(self.obj._meta_nonempty, rolling_kwargs, method_name, *args, **kwargs) if (self.axis in (1, 'columns') or self.window <= 1 or self.obj.npartitions == 1): # There's no overlap just use map_partitions return self.obj.map_partitions(pandas_rolling_method, rolling_kwargs, method_name, *args, token=method_name, meta=meta, **kwargs) # Convert window to overlap if self.center: before = self.window // 2 after = self.window - before - 1 else: before = self.window - 1 after = 0 return map_overlap(pandas_rolling_method, self.obj, before, after, rolling_kwargs, method_name, *args, token=method_name, meta=meta, **kwargs) @derived_from(pd_Rolling) def count(self): return self._call_method('count') @derived_from(pd_Rolling) def sum(self): return self._call_method('sum') @derived_from(pd_Rolling) def mean(self): return self._call_method('mean') @derived_from(pd_Rolling) def median(self): return self._call_method('median') @derived_from(pd_Rolling) def min(self): return self._call_method('min') @derived_from(pd_Rolling) def max(self): return self._call_method('max') @derived_from(pd_Rolling) def std(self, ddof=1): return self._call_method('std', ddof=1) @derived_from(pd_Rolling) def var(self, ddof=1): return self._call_method('var', ddof=1) @derived_from(pd_Rolling) def skew(self): return self._call_method('skew') @derived_from(pd_Rolling) def kurt(self): return self._call_method('kurt') @derived_from(pd_Rolling) def quantile(self, quantile): return self._call_method('quantile', quantile) @derived_from(pd_Rolling) def apply(self, func, args=(), kwargs={}): return self._call_method('apply', func, args=args, kwargs=kwargs) def __repr__(self): return 'Rolling [{}]'.format(','.join( '{}={}'.format(k, v) for k, v in self._rolling_kwargs().items() if v is not None))
{ "repo_name": "gameduell/dask", "path": "dask/dataframe/rolling.py", "copies": "3", "size": "8631", "license": "bsd-3-clause", "hash": -9126737527843209000, "line_mean": 34.2285714286, "line_max": 81, "alpha_frac": 0.5871857259, "autogenerated": false, "ratio": 3.713855421686747, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5801041147586747, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings from operator import attrgetter from hashlib import md5 from functools import partial from toolz import merge, groupby, curry from toolz.functoolz import Compose from .compatibility import bind_method from .context import _globals from .utils import Dispatch, ignoring __all__ = ("Base", "compute", "normalize_token", "tokenize", "visualize") class Base(object): """Base class for dask collections""" def visualize(self, filename='mydask', format=None, optimize_graph=False, **kwargs): return visualize(self, filename=filename, format=format, optimize_graph=optimize_graph, **kwargs) def _visualize(self, filename='mydask', format=None, optimize_graph=False): warn = DeprecationWarning("``_visualize`` is deprecated, use " "``visualize`` instead.") warnings.warn(warn) return self.visualize(filename=filename, format=format, optimize_graph=optimize_graph) def compute(self, **kwargs): return compute(self, **kwargs)[0] @classmethod def _get(cls, dsk, keys, get=None, **kwargs): get = get or _globals['get'] or cls._default_get dsk2 = cls._optimize(dsk, keys) return get(dsk2, keys, **kwargs) @classmethod def _bind_operator(cls, op): """ bind operator to this class """ name = op.__name__ if name.endswith('_'): # for and_ and or_ name = name[:-1] elif name == 'inv': name = 'invert' meth = '__{0}__'.format(name) if name in ('abs', 'invert', 'neg'): bind_method(cls, meth, cls._get_unary_operator(op)) else: bind_method(cls, meth, cls._get_binary_operator(op)) if name in ('eq', 'gt', 'ge', 'lt', 'le', 'ne'): return rmeth = '__r{0}__'.format(name) bind_method(cls, rmeth, cls._get_binary_operator(op, inv=True)) @classmethod def _get_unary_operator(cls, op): """ Must return a method used by unary operator """ raise NotImplementedError @classmethod def _get_binary_operator(cls, op, inv=False): """ Must return a method used by binary operator """ raise NotImplementedError def compute(*args, **kwargs): """Compute several dask collections at once. Examples -------- >>> import dask.array as da >>> a = da.arange(10, chunks=2).sum() >>> b = da.arange(10, chunks=2).mean() >>> compute(a, b) (45, 4.5) """ groups = groupby(attrgetter('_optimize'), args) get = kwargs.pop('get', None) or _globals['get'] if not get: get = args[0]._default_get if not all(a._default_get == get for a in args): raise ValueError("Compute called on multiple collections with " "differing default schedulers. Please specify a " "scheduler `get` function using either " "the `get` kwarg or globally with `set_options`.") dsk = merge([opt(merge([v.dask for v in val]), [v._keys() for v in val]) for opt, val in groups.items()]) keys = [arg._keys() for arg in args] results = get(dsk, keys, **kwargs) return tuple(a._finalize(a, r) for a, r in zip(args, results)) def visualize(*args, **kwargs): filename = kwargs.pop('filename', 'mydask') optimize_graph = kwargs.pop('optimize_graph', False) from dask.dot import dot_graph if optimize_graph: dsks = [arg._optimize(arg.dask, arg._keys()) for arg in args] else: dsks = [arg.dask for arg in args] dsk = merge(dsks) return dot_graph(dsk, filename=filename, **kwargs) def normalize_function(func): if isinstance(func, curry): func = func._partial if isinstance(func, Compose): first = getattr(func, 'first', None) funcs = reversed((first,) + func.funcs) if first else func.funcs return tuple(normalize_function(f) for f in funcs) elif isinstance(func, partial): kws = tuple(sorted(func.keywords.items())) if func.keywords else () return (normalize_function(func.func), func.args, kws) else: return str(func) normalize_token = Dispatch() normalize_token.register((int, float, str, tuple, list), lambda a: a) normalize_token.register(object, lambda a: normalize_function(a) if callable(a) else a) normalize_token.register(dict, lambda a: tuple(sorted(a.items()))) with ignoring(ImportError): import pandas as pd @partial(normalize_token.register, pd.Index) def normalize_index(ind): return [ind.name, normalize_token(ind.values)] @partial(normalize_token.register, pd.Categorical) def normalize_categorical(cat): return [normalize_token(cat.codes), normalize_token(cat.categories), cat.ordered] @partial(normalize_token.register, pd.Series) def normalize_series(s): return [s.name, s.dtype, normalize_token(s._data.blocks[0].values), normalize_token(s.index)] @partial(normalize_token.register, pd.DataFrame) def normalize_dataframe(df): data = [block.values for block in df._data.blocks] data += [df.columns, df.index] return list(map(normalize_token, data)) with ignoring(ImportError): import numpy as np @partial(normalize_token.register, np.ndarray) def normalize_array(x): if not x.shape: return (str(x), x.dtype) if x.dtype.hasobject: try: data = md5('-'.join(x.flat)).hexdigest() except TypeError: data = md5(b'-'.join([str(item).encode() for item in x.flat])).hexdigest() else: try: data = md5(x.ravel().view('i1').data).hexdigest() except (BufferError, AttributeError, ValueError): data = md5(x.copy().ravel().view('i1').data).hexdigest() return (data, x.dtype, x.shape, x.strides) def tokenize(*args, **kwargs): """ Deterministic token >>> tokenize([1, 2, '3']) '9d71491b50023b06fc76928e6eddb952' >>> tokenize('Hello') == tokenize('Hello') True """ if kwargs: args = args + (kwargs,) return md5(str(tuple(map(normalize_token, args))).encode()).hexdigest()
{ "repo_name": "pombredanne/dask", "path": "dask/base.py", "copies": "1", "size": "6501", "license": "bsd-3-clause", "hash": -248236159776766340, "line_mean": 32.3384615385, "line_max": 90, "alpha_frac": 0.5945239194, "autogenerated": false, "ratio": 3.8151408450704225, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4909664764470423, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings from os.path import basename from collections import OrderedDict from glue.core.coordinates import coordinates_from_header, WCSCoordinates from glue.core.data import Component, Data from glue.config import data_factory, qglue_parser __all__ = ['is_fits', 'fits_reader', 'is_casalike', 'casalike_cube'] def is_fits(filename): from astropy.io import fits try: with warnings.catch_warnings(): warnings.simplefilter("ignore") with fits.open(filename, ignore_missing_end=True): return True except IOError: return False @data_factory( label='FITS file', identifier=is_fits, priority=100, ) def fits_reader(source, auto_merge=False, exclude_exts=None, label=None): """ Read in all extensions from a FITS file. Parameters ---------- source: str or HDUList The pathname to the FITS file. If an HDUList is passed in, simply use that. auto_merge: bool Merge extensions that have the same shape and only one has a defined WCS. exclude_exts: [hdu, ] or [index, ] List of HDU's to exclude from reading. This can be a list of HDU's or a list of HDU indexes. """ from astropy.io import fits from astropy.table import Table exclude_exts = exclude_exts or [] if not isinstance(source, fits.hdu.hdulist.HDUList): hdulist = fits.open(source, ignore_missing_end=True) hdulist.verify('fix') else: hdulist = source groups = OrderedDict() extension_by_shape = OrderedDict() if label is not None: label_base = label else: hdulist_name = hdulist.filename() if hdulist_name is None: hdulist_name = "HDUList" label_base = basename(hdulist_name).rpartition('.')[0] if not label_base: label_base = basename(hdulist_name) # Create a new image Data. def new_data(): label = '{0}[{1}]'.format( label_base, hdu_name ) data = Data(label=label) data.coords = coords groups[hdu_name] = data extension_by_shape[shape] = hdu_name return data for extnum, hdu in enumerate(hdulist): hdu_name = hdu.name if hdu.name else "HDU{0}".format(extnum) if (hdu.data is not None and hdu.data.size > 0 and hdu_name not in exclude_exts and extnum not in exclude_exts): if is_image_hdu(hdu): shape = hdu.data.shape coords = coordinates_from_header(hdu.header) if not auto_merge or has_wcs(coords): data = new_data() else: try: data = groups[extension_by_shape[shape]] except KeyError: data = new_data() data.add_component(component=hdu.data, label=hdu_name) elif is_table_hdu(hdu): # Loop through columns and make component list table = Table.read(hdu, format='fits') label = '{0}[{1}]'.format( label_base, hdu_name ) data = Data(label=label) groups[hdu_name] = data for column_name in table.columns: column = table[column_name] if column.ndim != 1: warnings.warn("Dropping column '{0}' since it is not 1-dimensional".format(column_name)) continue component = Component.autotyped(column, units=column.unit) data.add_component(component=component, label=column_name) return [groups[idx] for idx in groups] # Utilities def is_image_hdu(hdu): from astropy.io.fits.hdu import PrimaryHDU, ImageHDU, CompImageHDU return isinstance(hdu, (PrimaryHDU, ImageHDU, CompImageHDU)) def is_table_hdu(hdu): from astropy.io.fits.hdu import TableHDU, BinTableHDU return isinstance(hdu, (TableHDU, BinTableHDU)) def has_wcs(coords): return (isinstance(coords, WCSCoordinates) and any(axis['coordinate_type'] is not None for axis in coords.wcs.get_axis_types())) def is_casalike(filename, **kwargs): """ Check if a FITS file is a CASA like cube, with (P, P, V, Stokes) layout """ from astropy.io import fits if not is_fits(filename): return False with fits.open(filename, ignore_missing_end=True) as hdulist: if len(hdulist) != 1: return False if hdulist[0].header['NAXIS'] != 4: return False from astropy.wcs import WCS w = WCS(hdulist[0].header) ax = [a.get('coordinate_type') for a in w.get_axis_types()] return ax == ['celestial', 'celestial', 'spectral', 'stokes'] @data_factory(label='CASA PPV Cube', identifier=is_casalike, deprecated=True) def casalike_cube(filename, **kwargs): """ This provides special support for 4D CASA FITS - like cubes, which have 2 spatial axes, a spectral axis, and a stokes axis in that order. Each stokes cube is split out as a separate component """ from astropy.io import fits result = Data() if 'ignore_missing_end' not in kwargs: kwargs['ignore_missing_end'] = True with fits.open(filename, **kwargs) as hdulist: array = hdulist[0].data header = hdulist[0].header result.coords = coordinates_from_header(header) for i in range(array.shape[0]): result.add_component(array[[i]], label='STOKES %i' % i) return result try: from astropy.io.fits import HDUList except ImportError: pass else: # Put HDUList parser before list parser @qglue_parser(HDUList, priority=100) def _parse_data_hdulist(data, label): from glue.core.data_factories.fits import fits_reader return fits_reader(data, label=label)
{ "repo_name": "saimn/glue", "path": "glue/core/data_factories/fits.py", "copies": "3", "size": "6169", "license": "bsd-3-clause", "hash": -8495161455730323000, "line_mean": 29.5396039604, "line_max": 112, "alpha_frac": 0.5882639001, "autogenerated": false, "ratio": 3.789312039312039, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00022066948194586575, "num_lines": 202 }
from __future__ import absolute_import, division, print_function import warnings import functools import inspect import datetime import tempfile import os import shutil import numpy as np from contextlib import contextmanager from multiprocessing.pool import ThreadPool from multipledispatch import Dispatcher from datashape import dshape, Record from datashape.discovery import is_zero_time from toolz import pluck, get, curry, keyfilter from .compatibility import unicode sample = Dispatcher('sample') def iter_except(func, exception, first=None): """Call a `func` repeatedly until `exception` is raised. Optionally call `first` first. Parameters ---------- func : callable Repeatedly call this until `exception` is raised. exception : Exception Stop calling `func` when this is raised. first : callable, optional, default ``None`` Call this first if it isn't ``None``. Examples -------- >>> x = {'a': 1, 'b': 2} >>> def iterate(): ... yield 'a' ... yield 'b' ... yield 'c' ... >>> keys = iterate() >>> diter = iter_except(lambda: x[next(keys)], KeyError) >>> list(diter) [1, 2] Notes ----- * Taken from https://docs.python.org/2/library/itertools.html#recipes """ try: if first is not None: yield first() while 1: # True isn't a reserved word in Python 2.x yield func() except exception: pass def ext(filename): _, e = os.path.splitext(filename) return e.lstrip(os.extsep) def raises(err, lamda): try: lamda() return False except err: return True def expand_tuples(L): """ >>> expand_tuples([1, (2, 3)]) [(1, 2), (1, 3)] >>> expand_tuples([1, 2]) [(1, 2)] """ if not L: return [()] elif not isinstance(L[0], tuple): rest = expand_tuples(L[1:]) return [(L[0],) + t for t in rest] else: rest = expand_tuples(L[1:]) return [(item,) + t for t in rest for item in L[0]] @contextmanager def tmpfile(extension='', dir=None): extension = '.' + extension.lstrip('.') handle, filename = tempfile.mkstemp(extension, dir=dir) os.close(handle) os.remove(filename) try: yield filename finally: if os.path.exists(filename): if os.path.isdir(filename): shutil.rmtree(filename) else: try: os.remove(filename) except OSError: # sometimes we can't remove a generated temp file pass def keywords(func): """ Get the argument names of a function >>> def f(x, y=2): ... pass >>> keywords(f) ['x', 'y'] """ if isinstance(func, type): return keywords(func.__init__) return inspect.getargspec(func).args def cls_name(cls): if 'builtin' in cls.__module__: return cls.__name__ else: return cls.__module__.split('.')[0] + '.' + cls.__name__ @contextmanager def filetext(text, extension='', open=open, mode='w'): with tmpfile(extension=extension) as filename: f = open(filename, mode=mode) try: f.write(text) finally: try: f.close() except AttributeError: pass try: yield filename finally: if os.path.exists(filename): try: os.remove(filename) except OSError: pass @contextmanager def filetexts(d, open=open): """ Dumps a number of textfiles to disk d - dict a mapping from filename to text like {'a.csv': '1,1\n2,2'} """ for filename, text in d.items(): f = open(filename, 'wt') try: f.write(text) finally: try: f.close() except AttributeError: pass try: yield list(d) finally: for filename in d: if os.path.exists(filename): try: os.remove(filename) except OSError: pass def normalize_to_date(dt): if isinstance(dt, datetime.datetime) and is_zero_time(dt.time()): return dt.date() else: return dt def assert_allclose(lhs, rhs): for tb in map(zip, lhs, rhs): for left, right in tb: if isinstance(left, (np.floating, float)): # account for nans assert np.all(np.isclose(left, right, equal_nan=True)) continue if isinstance(left, datetime.datetime): left = normalize_to_date(left) if isinstance(right, datetime.datetime): right = normalize_to_date(right) assert left == right def records_to_tuples(ds, data): """ Transform records into tuples Examples -------- >>> seq = [{'a': 1, 'b': 10}, {'a': 2, 'b': 20}] >>> list(records_to_tuples('var * {a: int, b: int}', seq)) [(1, 10), (2, 20)] >>> records_to_tuples('{a: int, b: int}', seq[0]) # single elements (1, 10) >>> records_to_tuples('var * int', [1, 2, 3]) # pass through on non-records [1, 2, 3] See Also -------- tuples_to_records """ if isinstance(ds, (str, unicode)): ds = dshape(ds) if isinstance(ds.measure, Record) and len(ds.shape) == 1: return pluck(ds.measure.names, data, default=None) if isinstance(ds.measure, Record) and len(ds.shape) == 0: return get(ds.measure.names, data) if not isinstance(ds.measure, Record): return data raise NotImplementedError() def tuples_to_records(ds, data): """ Transform tuples into records Examples -------- >>> seq = [(1, 10), (2, 20)] >>> list(tuples_to_records('var * {a: int, b: int}', seq)) # doctest: +SKIP [{'a': 1, 'b': 10}, {'a': 2, 'b': 20}] >>> tuples_to_records('{a: int, b: int}', seq[0]) # doctest: +SKIP {'a': 1, 'b': 10} >>> tuples_to_records('var * int', [1, 2, 3]) # pass through on non-records [1, 2, 3] See Also -------- records_to_tuples """ if isinstance(ds, (str, unicode)): ds = dshape(ds) if isinstance(ds.measure, Record) and len(ds.shape) == 1: names = ds.measure.names return (dict(zip(names, tup)) for tup in data) if isinstance(ds.measure, Record) and len(ds.shape) == 0: names = ds.measure.names return dict(zip(names, data)) if not isinstance(ds.measure, Record): return data raise NotImplementedError() @contextmanager def ignoring(*exceptions): try: yield except exceptions: pass def into_path(*path): """ Path to file in into directory >>> into_path('backends', 'tests', 'myfile.csv') # doctest: +SKIP '/home/user/odo/odo/backends/tests/myfile.csv' """ import odo return os.path.join(os.path.dirname(odo.__file__), *path) @curry def pmap(f, iterable): """Map `f` over `iterable` in parallel using a ``ThreadPool``. """ p = ThreadPool() try: result = p.map(f, iterable) finally: p.terminate() return result @curry def write(triple, writer): """Write a file using the input from `gentemp` using `writer` and return its index and filename. Parameters ---------- triple : tuple of int, str, str The first element is the index in the set of chunks of a file, the second element is the path to write to, the third element is the data to write. Returns ------- i, filename : int, str File's index and filename. This is used to return the index and filename after splitting files. Notes ----- This could be adapted to write to an already open handle, which would allow, e.g., multipart gzip uploads. Currently we open write a new file every time. """ i, filename, data = triple with writer(filename, mode='wb') as f: f.write(data) return i, filename def gentemp(it, suffix=None, start=0): """Yield an index, a temp file, and data for each element in `it`. Parameters ---------- it : Iterable suffix : str or ``None``, optional Suffix to add to each temporary file's name start : int, optional A integer indicating where to start the numbering of chunks in `it`. """ for i, data in enumerate(it, start=start): # aws needs parts to start at 1 with tmpfile('.into') as fn: yield i, fn, data @curry def split(filename, nbytes, suffix=None, writer=open, start=0): """Split a file into chunks of size `nbytes` with each filename containing a suffix specified by `suffix`. The file will be written with the ``write`` method of an instance of `writer`. Parameters ---------- filename : str The file to split nbytes : int Split `filename` into chunks of this size suffix : str, optional writer : callable, optional Callable object to use to write the chunks of `filename` """ with open(filename, mode='rb') as f: byte_chunks = iter(curry(f.read, nbytes), '') return pmap(write(writer=writer), gentemp(byte_chunks, suffix=suffix, start=start)) def filter_kwargs(f, kwargs): """Return a dict of valid kwargs for `f` from a subset of `kwargs` Examples -------- >>> def f(a, b=1, c=2): ... return a + b + c ... >>> raw_kwargs = dict(a=1, b=3, d=4) >>> f(**raw_kwargs) Traceback (most recent call last): ... TypeError: f() got an unexpected keyword argument 'd' >>> kwargs = filter_kwargs(f, raw_kwargs) >>> f(**kwargs) 6 """ return keyfilter(keywords(f).__contains__, kwargs) @curry def copydoc(from_, to): """Copies the docstring from one function to another. Parameters ---------- from_ : any The object to copy the docstring from. to : any The object to copy the docstring to. Returns ------- to : any ``to`` with the docstring from ``from_`` """ to.__doc__ = from_.__doc__ return to def deprecated(replacement=None): """A decorator which can be used to mark functions as deprecated. replacement is a callable that will be called with the same args as the decorated function. """ def outer(fun): msg = "{} is deprecated".format(fun.__name__) if replacement is not None: msg += "; use {} instead".format(replacement) if fun.__doc__ is None: fun.__doc__ = msg @functools.wraps(fun) def inner(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning, stacklevel=2) return fun(*args, **kwargs) return inner return outer def literal_compile(s): """Compile a sql expression with bind params inlined as literals. Parameters ---------- s : Selectable The expression to compile. Returns ------- cs : str An equivalent sql string. """ return str(s.compile(compile_kwargs={'literal_binds': True}))
{ "repo_name": "ContinuumIO/odo", "path": "odo/utils.py", "copies": "4", "size": "11332", "license": "bsd-3-clause", "hash": 6774509659130769000, "line_mean": 24.4651685393, "line_max": 80, "alpha_frac": 0.562919167, "autogenerated": false, "ratio": 3.9170411337711717, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6479960300771173, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings from datashape import dshape import flask from flask.testing import FlaskClient from odo import resource import requests from requests.packages.urllib3.exceptions import InsecureRequestWarning from toolz import assoc, keymap from ..compatibility import u8 from ..expr import Expr from ..dispatch import dispatch from .server import DEFAULT_PORT from .serialization import json # These are a hack for testing # It's convenient to use requests for live production but use # flask for testing. Sadly they have different Response objects, # hence the dispatched functions __all__ = 'Client', def content(response): if isinstance(response, flask.Response): return response.data if isinstance(response, requests.Response): return response.content def ok(response): if isinstance(response, flask.Response): return 200 <= response.status_code <= 299 if isinstance(response, requests.Response): return response.ok def reason(response): if isinstance(response, flask.Response): return response.status if isinstance(response, requests.Response): return response.text def _request(method, client, url, params=None, auth=None, **kwargs): if not isinstance(requests, FlaskClient): kwargs['verify'] = client.verify_ssl kwargs['params'] = params kwargs['auth'] = auth with warnings.catch_warnings(): warnings.simplefilter('ignore', InsecureRequestWarning) return method( '{base}{url}'.format( base=client.url, url=url, ), **kwargs ) def get(*args, **kwargs): return _request(requests.get, *args, **kwargs) def post(*args, **kwargs): return _request(requests.post, *args, **kwargs) class Client(object): """ Client for Blaze Server Provides programmatic access to datasets living on Blaze Server Parameters ---------- url : str URL of a Blaze server serial : SerializationFormat, optional The serialization format object to use. Defaults to JSON. A serialization format is an object that supports: name, loads, and dumps. verify_ssl : bool, optional Verify the ssl certificate from the server. This is enabled by default. auth : tuple, optional The username and password to use when connecting to the server. If not provided, no auth header will be sent. Examples -------- >>> # This example matches with the docstring of ``Server`` >>> from blaze import data >>> c = Client('localhost:6363') >>> t = data(c) # doctest: +SKIP See Also -------- blaze.server.server.Server """ __slots__ = 'url', 'serial', 'verify_ssl', 'auth' def __init__(self, url, serial=json, verify_ssl=True, auth=None, **kwargs): url = url.strip('/') if not url.startswith('http'): url = 'http://' + url self.url = url self.serial = serial self.verify_ssl = verify_ssl self.auth = auth @property def dshape(self): """The datashape of the client""" response = get(self, '/datashape', auth=self.auth) if not ok(response): raise ValueError("Bad Response: %s" % reason(response)) return dshape(content(response).decode('utf-8')) def add(self, name, resource_uri, *args, **kwargs): """Add the given resource URI to the Blaze server. Parameters ---------- name : str The name to give the resource resource_uri : str The URI string describing the resource to add to the server, e.g 'sqlite:///path/to/file.db::table' imports : list A list of string names for any modules that must be imported on the Blaze server before the resource can be added. This is identical to the `imports` field in a Blaze server YAML file. args : any, optional Any additional positional arguments that can be passed to the ``blaze.resource`` constructor for this resource type kwargs : any, optional Any additional keyword arguments that can be passed to the ``blaze.resource`` constructor for this resource type """ payload = {name: {'source': resource_uri}} imports = kwargs.pop('imports', None) if imports is not None: payload[name]['imports'] = imports if args: payload[name]['args'] = args if kwargs: payload[name]['kwargs'] = kwargs response = post(self, '/add', auth=self.auth, data=self.serial.dumps(payload), headers={'Content-Type': 'application/vnd.blaze+' + self.serial.name}) # A special case for the "Not Found" error, since that means that this # server doesn't support adding datasets, and the user should see a more # helpful response if response.status_code == 404: raise ValueError("Server does not support dynamically adding datasets") if not ok(response): raise ValueError("Bad Response: %s" % reason(response)) @dispatch(Client) def discover(c): return c.dshape def mimetype(serial): """Function to generate a blaze serialization format mimetype put into a dictionary of headers for consumption by requests. Examples -------- >>> from blaze.server.serialization import msgpack >>> mimetype(msgpack) {'Content-Type': 'application/vnd.blaze+msgpack'} """ return {'Content-Type': 'application/vnd.blaze+%s' % serial.name} @dispatch(Expr, Client) def compute_down(expr, ec, profiler_output=None, compute_kwargs=None, odo_kwargs=None, **kwargs): """Compute down for blaze clients. Parameters ---------- expr : Expr The expression to send to the server. ec : Client The blaze client to compute against. namespace : dict[Symbol -> any], optional The namespace to compute the expression in. This will be amended to include that data for the server. By default this will just be the client mapping to the server's data. compute_kwargs : dict, optional Extra kwargs to pass to compute on the server. odo_kwargs : dict, optional Extra kwargs to pass to odo on the server. profile : bool, optional Should blaze server run cProfile over the computation of the expression and the serialization of the response. profiler_output : file-like object, optional A file like object to hold the profiling output from the server. If this is not passed then the server will write the data to the server's filesystem """ from .server import to_tree kwargs = keymap(u8, kwargs) tree = to_tree(expr) serial = ec.serial if profiler_output is not None: kwargs[u'profile'] = True kwargs[u'profiler_output'] = ':response' kwargs[u'compute_kwargs'] = keymap(u8, compute_kwargs or {}) kwargs[u'odo_kwargs'] = keymap(u8, odo_kwargs or {}) r = post( ec, '/compute', data=serial.dumps(assoc(kwargs, u'expr', tree)), auth=ec.auth, headers=mimetype(serial), ) if not ok(r): raise ValueError("Bad response: %s" % reason(r)) response = serial.loads(content(r)) if profiler_output is not None: profiler_output.write(response[u'profiler_output']) return serial.data_loads(response[u'data']) @resource.register('blaze://.+') def resource_blaze(uri, leaf=None, **kwargs): if leaf is not None: raise ValueError('The syntax blaze://...::{leaf} is no longer ' 'supported as of version 0.8.1.\n' 'You can access {leaf!r} using this syntax:\n' 'data({uri})[{leaf!r}]' .format(leaf=leaf, uri=uri)) uri = uri[len('blaze://'):] sp = uri.split('/') tld, rest = sp[0], sp[1:] if ':' not in tld: tld += ':%d' % DEFAULT_PORT uri = '/'.join([tld] + list(rest)) return Client(uri)
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/server/client.py", "copies": "2", "size": "8386", "license": "bsd-3-clause", "hash": 4445558518802110000, "line_mean": 30.8859315589, "line_max": 94, "alpha_frac": 0.6148342476, "autogenerated": false, "ratio": 4.246075949367088, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0001791727593875549, "num_lines": 263 }
from __future__ import (absolute_import, division, print_function) import warnings from odm2api import serviceBase from odm2api.models import ( ActionAnnotations, ActionDirectives, ActionExtensionPropertyValues, Actions, Affiliations, Annotations, AuthorLists, CVActionType, CVAggregationStatistic, CVAnnotationType, CVCensorCode, CVDataQualityType, CVDataSetType, CVDirectiveType, CVElevationDatum, CVEquipmentType, CVMediumType, CVMethodType, CVOrganizationType, CVPropertyDataType, CVQualityCode, CVRelationshipType, CVResultType, CVSamplingFeatureGeoType, CVSamplingFeatureType, CVSiteType, CVSpatialOffsetType, CVSpeciation, CVSpecimenType, CVStatus, CVTaxonomicClassifierType, CVUnitsType, CVVariableName, CVVariableType, CalibrationActions, CalibrationReferenceEquipment, CalibrationStandards, CategoricalResultValueAnnotations, CategoricalResultValues, CitationExtensionPropertyValues, CitationExternalIdentifiers, DataLoggerFileColumns, DataLoggerFiles, DataLoggerProgramFiles, DataQuality, DataSetCitations, DataSets, DataSetsResults, DerivationEquations, Directives, Equipment, EquipmentActions, EquipmentAnnotations, EquipmentModels, EquipmentUsed, ExtensionProperties, ExternalIdentifierSystems, FeatureActions, InstrumentOutputVariables, MaintenanceActions, MeasurementResultValueAnnotations, MeasurementResultValues, MethodAnnotations, MethodCitations, MethodExtensionPropertyValues, MethodExternalIdentifiers, Methods, Models, Organizations, People, PersonExternalIdentifiers, PointCoverageResultValueAnnotations, PointCoverageResultValues, ProcessingLevels, ProfileResultValueAnnotations, ProfileResultValues, ReferenceMaterialExternalIdentifiers, ReferenceMaterialValues, ReferenceMaterials, RelatedActions, RelatedAnnotations, RelatedCitations, RelatedDataSets, RelatedEquipment, RelatedFeatures, RelatedModels, RelatedResults, ResultAnnotations, ResultDerivationEquations, ResultExtensionPropertyValues, ResultNormalizationValues, Results, ResultsDataQuality, SamplingFeatureAnnotations, SamplingFeatureExtensionPropertyValues, SamplingFeatureExternalIdentifiers, SamplingFeatures, SectionResultValueAnnotations, SectionResults, Simulations, SpatialReferenceExternalIdentifiers, SpatialReferences, SpecimenBatchPositions, SpectraResultValueAnnotations, SpectraResultValues, TaxonomicClassifierExternalIdentifiers, TaxonomicClassifiers, TimeSeriesResultValueAnnotations, TimeSeriesResultValues, TrajectoryResultValueAnnotations, TrajectoryResultValues, TransectResultValueAnnotations, TransectResultValues, Units, VariableExtensionPropertyValues, VariableExternalIdentifiers, Variables, ) import pandas as pd from sqlalchemy import distinct, exists from sqlalchemy.orm import contains_eager __author__ = 'sreeder' class DetailedResult: def __init__(self, action, result, sc, sn, method, variable, processingLevel, unit): # result.result_id etc. self.ResultID = result.ResultID self.SamplingFeatureCode = sc self.MethodCode = method.MethodCode self.VariableCode = variable.VariableCode self.ProcessingLevelCode = processingLevel.ProcessingLevelCode self.UnitsName = unit.UnitsName self.SamplingFeatureName = sn self.MethodName = method.MethodName self.VariableNameCV = variable.VariableNameCV self.ProcessingLevelDefinition = processingLevel.Definition self.ValueCount = result.ValueCount self.BeginDateTime = action.BeginDateTime self.EndDateTime = action.EndDateTime self.ResultObj = result class DetailedAffiliation: def __init__(self, affiliation, person, org): self.AffiliationID = affiliation.AffiliationID self.Name = person.PersonFirstName + ' ' + person.PersonLastName self.Organization = '(' + org.OrganizationCode + ') ' + org.OrganizationName class SamplingFeatureDataSet(): datasets = {} related_features = {} def __init__(self, samplingfeature, datasetresults, relatedfeatures): sf = samplingfeature self.SamplingFeatureID = sf.SamplingFeatureID self.SamplingFeatureUUID = sf.SamplingFeatureUUID self.SamplingFeatureTypeCV = sf.SamplingFeatureTypeCV self.SamplingFeatureCode = sf.SamplingFeatureCode self.SamplingFeatureName = sf.SamplingFeatureName self.SamplingFeatureDescription = sf.SamplingFeatureDescription self.SamplingFeatureGeotypeCV = sf.SamplingFeatureGeotypeCV self.Elevation_m = sf.Elevation_m self.ElevationDatumCV = sf.ElevationDatumCV self.FeatureGeometryWKT = sf.FeatureGeometryWKT self.assignDatasets(datasetresults) self.assignRelatedFeatures(relatedfeatures) print(self.datasets) def assignDatasets(self, datasetresults): self.datasets = {} if datasetresults: for dsr in datasetresults: if dsr.DataSetObj not in self.datasets: # if the dataset is not in the dictionary, add it and the first result self.datasets[dsr.DataSetObj] = [] res = dsr.ResultObj # res.FeatureActionObj = None self.datasets[dsr.DataSetObj].append(res) else: # if the dataset is in the dictionary, append the result object to the list res = dsr.ResultObj # res.FeatureActionObj = None self.datasets[dsr.DataSetObj].append(res) def assignRelatedFeatures(self, relatedfeatures): self.related_features = {} if relatedfeatures: for related in relatedfeatures: if related.SamplingFeatureTypeCV == 'Site': self.related_features = related class ReadODM2(serviceBase): def _get_columns(self, model): """Internal helper function to get a dictionary of a model column properties. Args: model (object): Sqlalchemy object, Ex. ODM2 model. Returns: dict: Dictionary of column properties Ex. {'resultid': 'ResultID'} """ from sqlalchemy.orm.properties import ColumnProperty columns = [(prop.key.lower(), prop.key) for prop in model.__mapper__.iterate_properties if isinstance(prop, ColumnProperty)] return dict(columns) def _check_kwargs(self, args, kwargs): """Internal helper function to check for unused keyword arguments Args: args (list): List of expected, valid arguments. kwargs (dict): Dictionary of keyword arguments from user Returns: None """ invkwd = filter(lambda x: x not in args, kwargs.keys()) if invkwd: warnings.warn('Got unexpected keyword argument(s) {}'.format(','.join(invkwd)), stacklevel=2) # Exists functions def resultExists(self, result): """ Check to see if a Result Object exists * Pass Result Object - return a boolean value of wether the given object exists """ try: ret = self._session.query(exists().where(Results.ResultTypeCV == result.ResultTypeCV) .where(Results.VariableID == result.VariableID) .where(Results.UnitsID == result.UnitsID) .where(Results.ProcessingLevelID == result.ProcessingLevelID) .where(Results.SampledMediumCV == result.SampledMediumCV) ) return ret.scalar() except Exception as e: print('Error running Query: {}'.format(e)) return None # Annotations def getAnnotations(self, annottype=None, codes=None, ids=None, **kwargs): """ * Pass Nothing - return a list of all objects * Pass AnnotationTypeCV - return a list of all objects of the fiven type * Pass a list of codes - return a list of objects, one for each of the given codes * Pass a list of ids -return a list of objects, one for each of the given ids """ # TODO What keywords do I use for type. a = Annotations self._check_kwargs(['type'], kwargs) if 'type' in kwargs: warnings.warn("The parameter 'type' is deprecated. Please use the annottype parameter instead.", DeprecationWarning, stacklevel=2) annottype = kwargs['type'] if annottype: if annottype == 'action': a = ActionAnnotations elif annottype == 'categoricalresultvalue': a = CategoricalResultValueAnnotations elif annottype == 'equipmentannotation': a = EquipmentAnnotations elif annottype == 'measurementresultvalue': a = MeasurementResultValueAnnotations elif annottype == 'method': a = MethodAnnotations elif annottype == 'pointcoverageresultvalue': a = PointCoverageResultValueAnnotations elif annottype == 'profileresultvalue': a = ProfileResultValueAnnotations elif annottype == 'result': a = ResultAnnotations elif annottype == 'samplingfeature': a = SamplingFeatureAnnotations elif annottype == 'sectionresultvalue': a = SectionResultValueAnnotations elif annottype == 'spectraresultvalue': a = SpectraResultValueAnnotations elif annottype == 'timeseriesresultvalue': a = TimeSeriesResultValueAnnotations elif annottype == 'trajectoryresultvalue': a = TrajectoryResultValueAnnotations elif annottype == 'transectresultvalue': a = TransectResultValueAnnotations try: query = self._session.query(a) if codes: query = query.filter(Annotations.AnnotationCode.in_(codes)) if ids: query = query.filter(Annotations.AnnotationID.in_(ids)) return query.all() except Exception as e: print('Error running Query: {}'.format(e)) return None # CV def getCVs(self, cvtype, **kwargs): """ getCVs(self, type): * Pass CVType - return a list of all objects of the given type """ self._check_kwargs(['type'], kwargs) if 'type' in kwargs: warnings.warn("The parameter 'type' is deprecated. Please use the cvtype parameter instead.", DeprecationWarning, stacklevel=2) cvtype = kwargs['type'] if cvtype == 'actiontype': CV = CVActionType elif cvtype == 'aggregationstatistic': CV = CVAggregationStatistic elif cvtype == 'annotationtype': CV = CVAnnotationType elif cvtype == 'censorcode': CV = CVCensorCode elif cvtype == 'dataqualitytype': CV = CVDataQualityType elif cvtype == 'dataset type': CV = CVDataSetType elif cvtype == 'Directive Type': CV = CVDirectiveType elif cvtype == 'Elevation Datum': CV = CVElevationDatum elif cvtype == 'Equipment Type': CV = CVEquipmentType elif cvtype == 'Medium': CV = CVMediumType elif cvtype == 'Method Type': CV = CVMethodType elif cvtype == 'Organization Type': CV = CVOrganizationType elif cvtype == 'Property Data Type': CV = CVPropertyDataType elif cvtype == 'Quality Code': CV = CVQualityCode elif cvtype == 'Relationship Type': CV = CVRelationshipType elif cvtype == 'Result Type': CV = CVResultType elif cvtype == 'Sampling Feature Geo-type': CV = CVSamplingFeatureGeoType elif cvtype == 'Sampling Feature Type': CV = CVSamplingFeatureType elif cvtype == 'Site Type': CV = CVSiteType elif cvtype == 'Spatial Offset Type': CV = CVSpatialOffsetType elif cvtype == 'Speciation': CV = CVSpeciation elif cvtype == 'Specimen Type': CV = CVSpecimenType elif cvtype == 'Status': CV = CVStatus elif cvtype == 'Taxonomic Classifier Type': CV = CVTaxonomicClassifierType elif cvtype == 'Units Type': CV = CVUnitsType elif cvtype == 'Variable Name': CV = CVVariableName elif cvtype == 'Variable Type': CV = CVVariableType else: return None try: return self._session.query(CV).all() except Exception as e: print('Error running Query: {}'.format(e)) # Core def getDetailedAffiliationInfo(self): """ * Pass Nothing - Return a list of all Affiliations with detailed information, including Affiliation, People and Organization """ q = self._session.query(Affiliations, People, Organizations) \ .filter(Affiliations.PersonID == People.PersonID) \ .filter(Affiliations.OrganizationID == Organizations.OrganizationID) affiliationList = [] for a, p, o in q.all(): detailedAffiliation = DetailedAffiliation(a, p, o) affiliationList.append(detailedAffiliation) return affiliationList def getDetailedResultInfo(self, resultTypeCV=None, resultID=None, sfID=None): # TODO can this be done by just getting the result object and drilling down? # What is the performance comparison. """ Get detailed information for all selected Results including , unit info, site info, method info , ProcessingLevel info. * Pass nothing - return a list of all objects * Pass resultTypeCV - All objects of given type * Pass a result ID - single object with the given result ID * Pass a SamplingFeatureID - All objects associated with the given sampling feature. """ q = self._session.query( Actions, Results, SamplingFeatures.SamplingFeatureCode, SamplingFeatures.SamplingFeatureName, Methods, Variables, ProcessingLevels, Units).filter(Results.VariableID == Variables.VariableID) \ .filter(Results.UnitsID == Units.UnitsID) \ .filter(Results.FeatureActionID == FeatureActions.FeatureActionID) \ .filter(FeatureActions.SamplingFeatureID == SamplingFeatures.SamplingFeatureID) \ .filter(FeatureActions.ActionID == Actions.ActionID) \ .filter(Actions.MethodID == Methods.MethodID) \ .filter(Results.ProcessingLevelID == ProcessingLevels.ProcessingLevelID) \ .filter(Results.ResultTypeCV == resultTypeCV) \ .order_by(Results.ResultID) resultList = [] if sfID: q = q.filter(SamplingFeatures.SamplingFeatureID == sfID) if resultID: q = q.filter(Results.ResultID == resultID) for a, r, sc, sn, m, v, p, u in q.all(): detailedResult = DetailedResult( a, r, sc, sn, m, v, p, u ) resultList.append(detailedResult) return resultList # Taxonomic Classifiers def getTaxonomicClassifiers(self): """ getTaxonomicClassifiers(self): * Pass nothing - return a list of all objects """ return self._session.query(TaxonomicClassifiers).all() # Variable def getVariables(self, ids=None, codes=None, sitecode=None, results=False): """ * Pass nothing - returns full list of variable objects * Pass a list of VariableID - returns a single variable object * Pass a list of VariableCode - returns a single variable object * Pass a SiteCode - returns a list of Variable objects that are collected at the given site. * Pass whether or not you want to return the sampling features that have results associated with them """ if sitecode: try: variables = [ x[0] for x in self._session.query(distinct(Results.VariableID)) .filter(Results.FeatureActionID == FeatureActions.FeatureActionID) .filter(FeatureActions.SamplingFeatureID == SamplingFeatures.SamplingFeatureID) .filter(SamplingFeatures.SamplingFeatureCode == sitecode).all() ] if ids: ids = list(set(ids).intersection(variables)) else: ids = variables except Exception as e: print('Error running Query: {}'.format(e)) pass if results: try: variables = [x[0] for x in self._session.query(distinct(Results.VariableID)).all()] if ids: ids = list(set(ids).intersection(variables)) else: ids = variables except Exception as e: print('Error running Query: {}'.format(e)) pass query = self._session.query(Variables) if ids: query = query.filter(Variables.VariableID.in_(ids)) if codes: query = query.filter(Variables.VariableCode.in_(codes)) try: return query.all() except Exception as e: print('Error running Query: {}'.format(e)) return None # Method def getMethods(self, ids=None, codes=None, methodtype=None, **kwargs): """ * Pass nothing - returns full list of method objects * Pass a list of MethodIDs - returns a single method object for each given id * Pass a list of MethodCode - returns a single method object for each given code * Pass a MethodType - returns a list of method objects of the given MethodType """ self._check_kwargs(['type'], kwargs) if 'type' in kwargs: warnings.warn("The parameter 'type' is deprecated. Please use the medtype parameter instead.", DeprecationWarning, stacklevel=2) methodtype = kwargs['type'] q = self._session.query(Methods) if ids: q = q.filter(Methods.MethodID.in_(ids)) if codes: q = q.filter(Methods.MethodCode.in_(codes)) if methodtype: q = q.filter_by(MethodTypeCV=methodtype) try: return q.all() except Exception as e: print('Error running Query: {}'.format(e)) return None # ProcessingLevel def getProcessingLevels(self, ids=None, codes=None): """ Retrieve a list of Processing Levels If no arguments are passed to the function, or their values are None, all Processing Levels objects in the database will be returned. Args: ids (list, optional): List of Processing Levels IDs. codes (list, optional): List of Processing Levels Codes. Returns: list: List of ProcessingLevels Objects Examples: >>> READ = ReadODM2(SESSION_FACTORY) >>> READ.getProcessingLevels(ids=[1, 3]) >>> READ.getProcessingLevels(codes=['L1', 'L3']) """ q = self._session.query(ProcessingLevels) if ids: q = q.filter(ProcessingLevels.ProcessingLevelID.in_(ids)) if codes: q = q.filter(ProcessingLevels.ProcessingLevelCode.in_(codes)) try: return q.all() except Exception as e: print('Error running Query: {}'.format(e)) return None # Sampling Feature def getSamplingFeatures(self, ids=None, codes=None, uuids=None, sftype=None, wkt=None, results=False, **kwargs): """Retrieve a list of Sampling Feature objects. If no arguments are passed to the function, or their values are None, all Sampling Feature objects in the database will be returned. Args: ids (list, optional): List of SamplingFeatureIDs. codes (list, optional): List of SamplingFeature Codes. uuids (list, optional): List of UUIDs string. sftype (str, optional): Type of Sampling Feature from `controlled vocabulary name <http://vocabulary.odm2.org/samplingfeaturetype/>`_. wkt (str, optional): SamplingFeature Well Known Text. results (bool, optional): Whether or not you want to return only the sampling features that have results associated with them. Returns: list: List of Sampling Feature objects Examples: >>> READ = ReadODM2(SESSION_FACTORY) >>> READ.getSamplingFeatures(ids=[39, 40]) >>> READ.getSamplingFeatures(codes=['HOME', 'FIELD']) >>> READ.getSamplingFeatures(uuids=['a6f114f1-5416-4606-ae10-23be32dbc202', ... '5396fdf3-ceb3-46b6-aaf9-454a37278bb4']) >>> READ.getSamplingFeatures(type='Site') >>> READ.getSamplingFeatures(wkt='POINT (30 10)') >>> READ.getSamplingFeatures(results=True) >>> READ.getSamplingFeatures(type='Site', results=True) """ self._check_kwargs(['type'], kwargs) if 'type' in kwargs: warnings.warn("The parameter 'type' is deprecated. Please use the sftype parameter instead.", DeprecationWarning, stacklevel=2) sftype = kwargs['type'] if results: try: fas = [x[0] for x in self._session.query(distinct(Results.FeatureActionID)).all()] except Exception as e: print('Error running Query: {}'.format(e)) return None sf = [x[0] for x in self._session.query(distinct(FeatureActions.SamplingFeatureID)).filter(FeatureActions.FeatureActionID.in_(fas)).all()] # noqa if ids: ids = list(set(ids).intersection(sf)) else: ids = sf q = self._session.query(SamplingFeatures) if sftype: q = q.filter_by(SamplingFeatureTypeCV=sftype) if ids: q = q.filter(SamplingFeatures.SamplingFeatureID.in_(ids)) if codes: q = q.filter(SamplingFeatures.SamplingFeatureCode.in_(codes)) if uuids: q = q.filter(SamplingFeatures.SamplingFeatureUUID.in_(uuids)) if wkt: q = q.filter_by(FeatureGeometryWKT=wkt) try: return q.all() except Exception as e: print('Error running Query: {}'.format(e)) return None def getRelatedSamplingFeatures(self, sfid=None, rfid=None, relationshiptype=None): # TODO: add functionality to filter by code """ * Pass a SamplingFeatureID - get a list of sampling feature objects related to the input sampling feature * Pass a RelatedFeatureID - get a list of Sampling features objects through the related feature * Pass a RelationshipTypeCV - get a list of sampling feature objects with the given type """ sf = self._session.query(distinct(SamplingFeatures.SamplingFeatureID)) \ .select_from(RelatedFeatures) if sfid: sf = sf.join(RelatedFeatures.RelatedFeatureObj).filter(RelatedFeatures.SamplingFeatureID == sfid) if rfid: sf = sf.join(RelatedFeatures.SamplingFeatureObj).filter(RelatedFeatures.RelatedFeatureID == rfid) if relationshiptype: sf = sf.filter(RelatedFeatures.RelationshipTypeCV == relationshiptype) try: sfids = [x[0] for x in sf.all()] if len(sfids) > 0: sflist = self.getSamplingFeatures(ids=sfids) return sflist except Exception as e: print('Error running Query: {}'.format(e)) return None # Action def getActions(self, ids=None, acttype=None, sfid=None, **kwargs): """ * Pass nothing - returns a list of all Actions * Pass a list of Action ids - returns a list of Action objects * Pass a ActionTypeCV - returns a list of Action objects of that type * Pass a SamplingFeature ID - returns a list of Action objects associated with that Sampling feature ID, Found through featureAction table """ self._check_kwargs(['type'], kwargs) if 'type' in kwargs: warnings.warn("The parameter 'type' is deprecated. Please use the acttype parameter instead.", DeprecationWarning, stacklevel=2) acttype = kwargs['type'] a = Actions if acttype == 'equipment': a = EquipmentActions elif acttype == 'calibration': a = CalibrationActions elif acttype == 'maintenance': a = MaintenanceActions q = self._session.query(a) if ids: q = q.filter(a.ActionID.in_(ids)) if sfid: q = q.join(FeatureActions).filter(FeatureActions.SamplingFeatureID == sfid) try: return q.all() except Exception as e: print('Error running Query: {}'.format(e)) return None def getRelatedActions(self, actionid=None): """ * Pass an ActionID - get a list of Action objects related to the input action along with the relationship type """ q = self._session.query(Actions).select_from(RelatedActions).join(RelatedActions.RelatedActionObj) if actionid: q = q.filter(RelatedActions.ActionID == actionid) try: return q.all() except Exception as e: print('Error running Query: {}'.format(e)) return None # Unit def getUnits(self, ids=None, name=None, unittype=None, **kwargs): """ * Pass nothing - returns a list of all units objects * Pass a list of UnitsID - returns a single units object for the given id * Pass UnitsName - returns a single units object * Pass a type- returns a list of all objects of the given type """ self._check_kwargs(['type'], kwargs) if 'type' in kwargs: warnings.warn("The parameter 'type' is deprecated. Please use the unittype parameter instead.", DeprecationWarning, stacklevel=2) unittype = kwargs['type'] q = self._session.query(Units) if ids: q = q.filter(Units.UnitsID.in_(ids)) if name: q = q.filter(Units.UnitsName.ilike(name)) if unittype: q = q.filter(Units.UnitsTypeCV.ilike(unittype)) try: return q.all() except Exception as e: print('Error running Query: {}'.format(e)) return None # Organization def getOrganizations(self, ids=None, codes=None): """ * Pass nothing - returns a list of all organization objects * Pass a list of OrganizationID - returns a single organization object * Pass a list of OrganizationCode - returns a single organization object """ q = self._session.query(Organizations) if ids: q = q.filter(Organizations.OrganizationID.in_(ids)) if codes: q = q.filter(Organizations.OrganizationCode.in_(codes)) try: return q.all() except Exception as e: print('Error running Query: {}'.format(e)) return None # Person def getPeople(self, ids=None, firstname=None, lastname=None): """ * Pass nothing - returns a list of all People objects * Pass a list of PeopleID - returns a single People object * Pass a First Name - returns a single People object * Pass a Last Name - returns a single People object """ q = self._session.query(People) if ids: q = q.filter(People.PersonID.in_(ids)) if firstname: q = q.filter(People.PersonFirstName.ilike(firstname)) if lastname: q = q.filter(People.PersonLastName.ilike(lastname)) try: return q.all() except Exception as e: print('Error running Query: {}'.format(e)) return None def getAffiliations(self, ids=None, personfirst=None, personlast=None, orgcode=None): """Retrieve a list of Affiliation objects. If no arguments are passed to the function, or their values are None, all Affiliation objects in the database will be returned. Args: ids (list, optional): List of AffiliationIDs. personfirst (str, optional): Person First Name. personlast (str, optional): Person Last Name. orgcode (str, optional): Organization Code. Returns: list: List of Affiliation objects Examples: >>> ReadODM2.getAffiliations(ids=[39,40]) >>> ReadODM2.getAffiliations(personfirst='John', ... personlast='Smith') >>> ReadODM2.getAffiliations(orgcode='Acme') """ q = self._session.query(Affiliations) if ids: q = q.filter(Affiliations.AffiliationID.in_(ids)) if orgcode: q = q.join(Affiliations.OrganizationObj).filter(Organizations.OrganizationCode.ilike(orgcode)) if personfirst: q = q.join(Affiliations.PersonObj).filter(People.PersonFirstName.ilike(personfirst)) if personlast: q = q.join(Affiliations.PersonObj).filter(People.PersonLastName.ilike(personlast)) try: return q.all() except Exception as e: print('Error running Query: {}'.format(e)) return None # Results def getResults(self, ids=None, restype=None, uuids=None, actionid=None, simulationid=None, variableid=None, siteid=None, sfids=None, sfuuids=None, sfcodes=None, **kwargs): # TODO what if user sends in both type and actionid vs just actionid """Retrieve a list of Result objects. If no arguments are passed to the function, or their values are None, all Result objects in the database will be returned. Args: ids (list, optional): List of ResultIDs. restype (str, optional): Type of Result from `controlled vocabulary name <http://vocabulary.odm2.org/resulttype/>`_. uuids (list, optional): List of UUIDs string. actionid (int, optional): ActionID. simulationid (int, optional): SimulationID. variableid (int, optional): VariableID. siteid (int, optional): SiteID. - goes through related features table and finds all of results recorded at the given site sfids(list, optional): List of Sampling Feature IDs integer. sfuuids(list, optional): List of Sampling Feature UUIDs string. sfcodes=(list, optional): List of Sampling Feature codes string. Returns: list: List of Result objects Examples: >>> ReadODM2.getResults(ids=[39,40]) >>> ReadODM2.getResults(restype='Time series coverage') >>> ReadODM2.getResults(sfids=[65]) >>> ReadODM2.getResults(uuids=['a6f114f1-5416-4606-ae10-23be32dbc202', ... '5396fdf3-ceb3-46b6-aaf9-454a37278bb4']) >>> ReadODM2.getResults(simulationid=50) >>> ReadODM2.getResults(siteid=6) >>> ReadODM2.getResults(variableid=7) >>> ReadODM2.getResults(actionid=20) """ query = self._session.query(Results) self._check_kwargs(['type', 'sfid'], kwargs) if 'type' in kwargs: warnings.warn("The parameter 'type' is deprecated. Please use the restype parameter instead.", DeprecationWarning, stacklevel=2) restype = kwargs['type'] if restype: query = query.filter_by(ResultTypeCV=restype) if variableid: query = query.filter_by(VariableID=variableid) if ids: query = query.filter(Results.ResultID.in_(ids)) if uuids: query = query.filter(Results.ResultUUID.in_(uuids)) if simulationid: query = query.join(FeatureActions) \ .join(Actions) \ .join(Simulations) \ .filter_by(SimulationID=simulationid) if actionid: query = query.join(FeatureActions).filter_by(ActionID=actionid) if 'sfid' in kwargs: warnings.warn("The parameter 'sfid' is deprecated. " + "Please use the sfids parameter instead and send in a list.", # noqa DeprecationWarning, stacklevel=2) if kwargs['sfid']: query = query.join(FeatureActions).filter_by(SamplingFeatureID=kwargs['sfid']) if sfids or sfcodes or sfuuids: sf_list = self.getSamplingFeatures(ids=sfids, codes=sfcodes, uuids=sfuuids) sfids = [] for sf in sf_list: sfids.append(sf.SamplingFeatureID) query = query.join(FeatureActions).filter(FeatureActions.SamplingFeatureID.in_(sfids)) if siteid: sfids = [x[0] for x in self._session.query( distinct(SamplingFeatures.SamplingFeatureID)) .select_from(RelatedFeatures) .join(RelatedFeatures.SamplingFeatureObj) .filter(RelatedFeatures.RelatedFeatureID == siteid) .all() ] # TODO does this code do the same thing as the code above? # sf_list = self.getRelatedSamplingFeatures(rfid=siteid) # sfids = [] # for sf in sf_list: # sfids.append(sf.SamplingFeatureID) query = query.join(FeatureActions).filter(FeatureActions.SamplingFeatureID.in_(sfids)) try: return query.all() except Exception as e: print('Error running Query: {}'.format(e)) return None # Datasets def getDataSets(self, ids=None, codes=None, uuids=None, dstype=None): """ Retrieve a list of Datasets Args: ids (list, optional): List of DataSetsIDs. codes (list, optional): List of DataSet Codes. uuids (list, optional): List of Dataset UUIDs string. dstype (str, optional): Type of Dataset from `controlled vocabulary name <http://vocabulary.odm2.org/datasettype/>`_. Returns: list: List of DataSets Objects Examples: >>> READ = ReadODM2(SESSION_FACTORY) >>> READ.getDataSets(ids=[39, 40]) >>> READ.getDataSets(codes=['HOME', 'FIELD']) >>> READ.getDataSets(uuids=['a6f114f1-5416-4606-ae10-23be32dbc202', ... '5396fdf3-ceb3-46b6-aaf9-454a37278bb4']) >>> READ.getDataSets(dstype='singleTimeSeries') """ q = self._session.query(DataSets) if ids: q = q.filter(DataSets.DataSetID.in_(ids)) if codes: q = q.filter(DataSets.DataSetCode.in_(codes)) if uuids: q.filter(DataSets.DataSetUUID.in_(uuids)) if dstype: q = q.filter(DataSets.DataSetTypeCV == dstype) try: return q.all() except Exception as e: print('Error running Query {}'.format(e)) return None # Datasets def getDataSetsResults(self, ids=None, codes=None, uuids=None, dstype=None): """ Retrieve a detailed list of Datasets along with detailed metadata about the datasets and the results contained within them **Must specify either DataSetID OR DataSetUUID OR DataSetCode)** Args: ids (list, optional): List of DataSetsIDs. codes (list, optional): List of DataSet Codes. uuids (list, optional): List of Dataset UUIDs string. dstype (str, optional): Type of Dataset from `controlled vocabulary name <http://vocabulary.odm2.org/datasettype/>`_. Returns: list: List of DataSetsResults Objects Examples: >>> READ = ReadODM2(SESSION_FACTORY) >>> READ.getDataSetsResults(ids=[39, 40]) >>> READ.getDataSetsResults(codes=['HOME', 'FIELD']) >>> READ.getDataSetsResults(uuids=['a6f114f1-5416-4606-ae10-23be32dbc202', ... '5396fdf3-ceb3-46b6-aaf9-454a37278bb4']) >>> READ.getDataSetsResults(dstype='singleTimeSeries') """ # make sure one of the three arguments has been sent in if all(v is None for v in [ids, codes, uuids]): raise ValueError('Expected DataSetID OR DataSetUUID OR DataSetCode argument') q = self._session.query(DataSetsResults) \ .join(DataSets) if ids: q = q.filter(DataSets.DataSetID.in_(ids)) if codes: q = q.filter(DataSets.DataSetCode.in_(codes)) if uuids: q.filter(DataSets.DataSetUUID.in_(uuids)) if dstype: q = q.filter(DataSets.DataSetTypeCV == dstype) try: return q.all() except Exception as e: print('Error running Query {}'.format(e)) return None def getDataSetsValues(self, ids=None, codes=None, uuids=None, dstype=None, lowercols=True): """ Retrieve a list of datavalues associated with the given dataset info **Must specify either DataSetID OR DataSetUUID OR DataSetCode)** Args: ids (list, optional): List of DataSetsIDs. codes (list, optional): List of DataSet Codes. uuids (list, optional): List of Dataset UUIDs string. dstype (str, optional): Type of Dataset from `controlled vocabulary name <http://vocabulary.odm2.org/datasettype/>`_. lowercols (bool, optional): Make column names to be lowercase. Default to True. **Please start upgrading your code to rely on CamelCase column names, In a near-future release, the default will be changed to False, and later the parameter may be removed**. Returns: list: List of Result Values Objects Examples: >>> READ = ReadODM2(SESSION_FACTORY) >>> READ.getDataSetsValues(ids=[39, 40]) >>> READ.getDataSetsValues(codes=['HOME', 'FIELD']) >>> READ.getDataSetsValues(uuids=['a6f114f1-5416-4606-ae10-23be32dbc202', ... '5396fdf3-ceb3-46b6-aaf9-454a37278bb4']) >>> READ.getDataSetsValues(dstype='singleTimeSeries', lowercols=False) """ dsr = self.getDataSetsResults(ids, codes, uuids, dstype) resids = [] for ds in dsr: resids.append(ds.ResultID) try: return self.getResultValues(resultids=resids, lowercols=lowercols) except Exception as e: print('Error running Query {}'.format(e)) return None def getSamplingFeatureDatasets(self, ids=None, codes=None, uuids=None, dstype=None, sftype=None): """ Retrieve a list of Datasets associated with the given sampling feature data. **Must specify either samplingFeatureID OR samplingFeatureUUID OR samplingFeatureCode)** Args: ids (list, optional): List of SamplingFeatureIDs. codes (list, optional): List of SamplingFeature Codes. uuids (list, optional): List of UUIDs string. dstype (str, optional): Type of Dataset from `controlled vocabulary name <http://vocabulary.odm2.org/datasettype/>`_. sftype (str, optional): Type of SamplingFeature from `controlled vocabulary name <http://vocabulary.odm2.org/samplingfeaturetype/>`_. Returns: list: List of DataSetsResults Objects associated with the given sampling feature Examples: >>> READ = ReadODM2(SESSION_FACTORY) >>> READ.getSamplingFeatureDatasets(ids=[39, 40]) >>> READ.getSamplingFeatureDatasets(codes=['HOME', 'FIELD']) >>> READ.getSamplingFeatureDatasets(uuids=['a6f114f1-5416-4606-ae10-23be32dbc202', ... '5396fdf3-ceb3-46b6-aaf9-454a37278bb4']) >>> READ.getSamplingFeatureDatasets(dstype='singleTimeSeries') >>> READ.getSamplingFeatureDatasets(sftype='Specimen') """ # make sure one of the three arguments has been sent in if all(v is None for v in [ids, codes, uuids, sftype]): raise ValueError( 'Expected samplingFeatureID OR samplingFeatureUUID ' 'OR samplingFeatureCode OR samplingFeatureType ' 'argument') sf_query = self._session.query(SamplingFeatures) if sftype: sf_query = sf_query.filter(SamplingFeatures.SamplingFeatureTypeCV == sftype) if ids: sf_query = sf_query.filter(SamplingFeatures.SamplingFeatureID.in_(ids)) if codes: sf_query = sf_query.filter(SamplingFeatures.SamplingFeatureCode.in_(codes)) if uuids: sf_query = sf_query.filter(SamplingFeatures.SamplingFeatureUUID.in_(uuids)) sf_list = [] for sf in sf_query.all(): sf_list.append(sf) try: sfds = [] for sf in sf_list: # Eager loading the data. q = self._session.query(DataSetsResults)\ .join(DataSetsResults.ResultObj)\ .join(Results.FeatureActionObj)\ .filter(FeatureActions.SamplingFeatureID == sf.SamplingFeatureID)\ .options(contains_eager(DataSetsResults.ResultObj) .contains_eager(Results.FeatureActionObj) .load_only(FeatureActions.SamplingFeatureID)) if dstype: q = q.filter_by(DatasetTypeCV=dstype) vals = q.all() related = self.getRelatedSamplingFeatures(sf.SamplingFeatureID) sfds.append(SamplingFeatureDataSet(sf, vals, related)) except Exception as e: print('Error running Query: {}'.format(e)) return None return sfds # Data Quality def getDataQuality(self): """ * Pass nothing - return a list of all objects """ return self._session.query(DataQuality).all() # TODO DataQuality Schema Queries def getReferenceMaterials(self): """ * Pass nothing - return a list of all objects """ return self._session.query(ReferenceMaterials).all() def getReferenceMaterialValues(self): """ * Pass nothing - return a list of all objects """ return self._session.query(ReferenceMaterialValues).all() def getResultNormalizationValues(self): """ * Pass nothing - return a list of all objects """ return self._session.query(ResultNormalizationValues).all() def getResultsDataQuality(self): """ * Pass nothing - return a list of all objects """ return self._session.query(ResultsDataQuality).all() # TODO Equipment Schema Queries # Equipment def getEquipment(self, codes=None, equiptype=None, sfid=None, actionid=None, **kwargs): """ * Pass nothing - returns a list of all Equipment objects * Pass a list of EquipmentCodes- return a list of all Equipment objects that match each of the codes * Pass a EquipmentType - returns a single Equipment object * Pass a SamplingFeatureID - returns a single Equipment object * Pass an ActionID - returns a single Equipment object """ self._check_kwargs(['type'], kwargs) if 'type' in kwargs: warnings.warn("The parameter 'type' is deprecated. Please use the equiptype parameter instead.", DeprecationWarning, stacklevel=2) equiptype = kwargs['type'] # NOTE: Equiptype currently unused! if equiptype: pass e = self._session.query(Equipment) if sfid: e = e.join(EquipmentUsed) \ .join(Actions) \ .join(FeatureActions) \ .filter(FeatureActions.SamplingFeatureID == sfid) if codes: e = e.filter(Equipment.EquipmentCode.in_(codes)) if actionid: e = e.join(EquipmentUsed).join(Actions) \ .filter(Actions.ActionID == actionid) return e.all() def CalibrationReferenceEquipment(self): """ * Pass nothing - return a list of all objects """ return self._session.query(CalibrationReferenceEquipment).all() def CalibrationStandards(self): """ * Pass nothing - return a list of all objects """ return self._session.query(CalibrationStandards).all() def DataloggerFileColumns(self): """ * Pass nothing - return a list of all objects """ return self._session.query(DataLoggerFileColumns).all() def DataLoggerFiles(self): """ * Pass nothing - return a list of all objects """ return self._session.query(DataLoggerFiles).all() def DataloggerProgramFiles(self): """ * Pass Nothing - return a list of all objects """ return self._session.query(DataLoggerProgramFiles).all() def EquipmentModels(self): """ * Pass Nothing - return a list of all objects """ return self._session.query(EquipmentModels).all() def EquipmentUsed(self): """ * Pass Nothing - return a list of all objects """ return self._session.query(EquipmentUsed).all() def InstrumentOutputVariables(self, modelid=None, variableid=None): """ * Pass Nothing - return a list of all objects * Pass ModelID * Pass VariableID """ i = self._session.query(InstrumentOutputVariables) if modelid: i = i.filter_by(ModelID=modelid) if variableid: i = i.filter_by(VariableID=variableid) return i.all() def RelatedEquipment(self, code=None): """ * Pass nothing - return a list of all objects * Pass code- return a single object with the given code """ r = self._session.query(RelatedEquipment) if code: r = r.filter_by(EquipmentCode=code) return r.all() # Extension Properties def getExtensionProperties(self, exptype=None, **kwargs): """ * Pass nothing - return a list of all objects * Pass type- return a list of all objects of the given type """ # Todo what values to use for extensionproperties type self._check_kwargs(['type'], kwargs) if 'type' in kwargs: warnings.warn("The parameter 'type' is deprecated. Please use the exptype parameter instead.", DeprecationWarning, stacklevel=2) exptype = kwargs['type'] e = ExtensionProperties if exptype == 'action': e = ActionExtensionPropertyValues elif exptype == 'citation': e = CitationExtensionPropertyValues elif exptype == 'method': e = MethodExtensionPropertyValues elif exptype == 'result': e = ResultExtensionPropertyValues elif exptype == 'samplingfeature': e = SamplingFeatureExtensionPropertyValues elif exptype == 'variable': e = VariableExtensionPropertyValues try: return self._session.query(e).all() except Exception as e: print('Error running Query: {}'.format(e)) return None # External Identifiers def getExternalIdentifiers(self, eitype=None, **kwargs): """ * Pass nothing - return a list of all objects * Pass type- return a list of all objects of the given type """ self._check_kwargs(['type'], kwargs) if 'type' in kwargs: warnings.warn("The parameter 'type' is deprecated. Please use the eitype parameter instead.", DeprecationWarning, stacklevel=2) eitype = kwargs['type'] e = ExternalIdentifierSystems if eitype.lowercase == 'citation': e = CitationExternalIdentifiers elif eitype == 'method': e = MethodExternalIdentifiers elif eitype == 'person': e = PersonExternalIdentifiers elif eitype == 'referencematerial': e = ReferenceMaterialExternalIdentifiers elif eitype == 'samplingfeature': e = SamplingFeatureExternalIdentifiers elif eitype == 'spatialreference': e = SpatialReferenceExternalIdentifiers elif eitype == 'taxonomicclassifier': e = TaxonomicClassifierExternalIdentifiers elif eitype == 'variable': e = VariableExternalIdentifiers try: return self._session.query(e).all() except Exception as e: print('Error running Query: {}'.format(e)) return None # TODO functions for Lab Analyses # Lab Analyses def getDirectives(self): """ getDirectives(self) * Pass nothing - return a list of all objects """ return self._session.query(Directives).all() def getActionDirectives(self): """ getActionDirectives(self) * Pass nothing - return a list of all objects """ return self._session.query(ActionDirectives).all() def getSpecimenBatchPositions(self): """ getSpecimenBatchPositions(self) * Pass nothing - return a list of all objects """ return self._session.query(SpecimenBatchPositions).all() # TODO functions for Provenance # Provenance def getAuthorLists(self): """ getAuthorLists(self) * Pass nothing - return a list of all objects """ return self._session.query(AuthorLists).all() def getDatasetCitations(self): """ getDatasetCitations(self) * Pass nothing - return a list of all objects """ return self._session.query(DataSetCitations).all() def getDerivationEquations(self): """ getDerivationEquations(self) * Pass nothing - return a list of all objects """ return self._session.query(DerivationEquations).all() def getMethodCitations(self): """ getMethodCitations(self) * Pass nothing - return a list of all objects """ return self._session.query(MethodCitations).all() def getRelatedAnnotations(self): """ getRelatedAnnotations(self) * Pass nothing - return a list of all objects """ return self._session.query(RelatedAnnotations).all() def getRelatedCitations(self): """ getRelatedCitations(self) * Pass nothing - return a list of all objects """ return self._session.query(RelatedCitations).all() def getRelatedDatasets(self): """ getRelatedDatasets(self) * Pass nothing - return a list of all objects """ return self._session.query(RelatedDataSets).all() def getRelatedResults(self): """ getRelatedResults(self) * Pass nothing - return a list of all objects """ return self._session.query(RelatedResults).all() def getResultDerivationEquations(self): """ getResultDerivationEquations(self) * Pass nothing - return a list of all objects """ return self._session.query(ResultDerivationEquations).all() def getResultValues(self, resultids, starttime=None, endtime=None, lowercols=True): """ Retrieve result values associated with the given result. **The resultids must be associated with the same result type** Args: resultids (list): List of SamplingFeatureIDs. starttime (object, optional): Start time to filter by as datetime object. endtime (object, optional): End time to filter by as datetime object. lowercols (bool, optional): Make column names to be lowercase. Default to True. **Please start upgrading your code to rely on CamelCase column names, In a near-future release, the default will be changed to False, and later the parameter may be removed**. Returns: DataFrame: Pandas dataframe of result values. Examples: >>> READ = ReadODM2(SESSION_FACTORY) >>> READ.getResultValues(resultids=[10, 11]) >>> READ.getResultValues(resultids=[100, 20, 34], starttime=datetime.today()) >>> READ.getResultValues(resultids=[1, 2, 3, 4], >>> starttime=datetime(2000, 01, 01), >>> endtime=datetime(2003, 02, 01), lowercols=False) """ restype = self._session.query(Results).filter_by(ResultID=resultids[0]).first().ResultTypeCV ResultValues = TimeSeriesResultValues if 'categorical' in restype.lower(): ResultValues = CategoricalResultValues elif 'measurement' in restype.lower(): ResultValues = MeasurementResultValues elif 'point' in restype.lower(): ResultValues = PointCoverageResultValues elif 'profile' in restype.lower(): ResultValues = ProfileResultValues elif 'section' in restype.lower(): ResultValues = SectionResults elif 'spectra' in restype.lower(): ResultValues = SpectraResultValues elif 'time' in restype.lower(): ResultValues = TimeSeriesResultValues elif 'trajectory' in restype.lower(): ResultValues = TrajectoryResultValues elif 'transect' in restype.lower(): ResultValues = TransectResultValues q = self._session.query(ResultValues).filter(ResultValues.ResultID.in_(resultids)) if starttime: q = q.filter(ResultValues.ValueDateTime >= starttime) if endtime: q = q.filter(ResultValues.ValueDateTime <= endtime) try: # F841 local variable 'vals' is assigned to but never used # vals = q.order_by(ResultType.ValueDateTime) query = q.statement.compile(dialect=self._session_factory.engine.dialect) df = pd.read_sql_query( sql=query, con=self._session_factory.engine, params=query.params ) if not lowercols: df.columns = [self._get_columns(ResultValues)[c] for c in df.columns] else: warnings.warn( "In a near-future release, " + # noqa "the parameter 'lowercols' default will be changed to False, " + "and later the parameter may be removed.", # noqa DeprecationWarning, stacklevel=2) return df except Exception as e: print('Error running Query: {}'.format(e)) return None # SamplingFeatures # Site def getSpatialReferences(self, srsCodes=None): """ getSpatialReferences(self, srsCodes=None) * Pass nothing - return a list of all Spatial References * Pass in a list of SRS Codes- """ q = self._session.query(SpatialReferences) if srsCodes: q.filter(SpatialReferences.SRSCode.in_(srsCodes)) try: return q.all() except Exception as e: print('Error running Query: {}'.format(e)) return None # Simulation def getSimulations(self, name=None, actionid=None): """ getSimulations(self, name=None, actionid=None) * Pass nothing - get a list of all converter simuation objects * Pass a SimulationName - get a single simulation object * Pass an ActionID - get a single simulation object """ s = self._session.query(Simulations) if name: s = s.filter(Simulations.SimulationName.ilike(name)) if actionid: s = s.filter_by(ActionID=actionid) try: return s.all() except Exception as e: print('Error running Query: {}'.format(e)) return None def getModels(self, codes=None): """ getModels(self, codes=None) * Pass nothing - return a list of all Model Objects * Pass a list of ModelCodes - get a list of converter objects related to the converter having ModeCode """ m = self._session.query(Models) if codes: m = m.filter(Models.ModelCode.in_(codes)) try: return m.all() except Exception as e: print('Error running Query: {}'.format(e)) return None def getRelatedModels(self, modid=None, code=None, **kwargs): """ getRelatedModels(self, id=None, code=None) * Pass a ModelID - get a list of converter objects related to the converter having ModelID * Pass a ModelCode - get a list of converter objects related to the converter having ModeCode """ self._check_kwargs(['id'], kwargs) if 'id' in kwargs: warnings.warn("The parameter 'id' is deprecated. Please use the modid parameter instead.", DeprecationWarning, stacklevel=2) modid = kwargs['id'] m = self._session.query(Models).select_from(RelatedModels).join(RelatedModels.ModelObj) if modid: m = m.filter(RelatedModels.ModelID == modid) if code: m = m.filter(Models.ModelCode == code) try: return m.all() except Exception as e: print('Error running Query: {}'.format(e)) return None
{ "repo_name": "ODM2/ODM2PythonAPI", "path": "odm2api/services/readService.py", "copies": "1", "size": "59584", "license": "bsd-3-clause", "hash": -4594977475727984600, "line_mean": 38.6433799069, "line_max": 158, "alpha_frac": 0.5968380773, "autogenerated": false, "ratio": 4.4211619796690655, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5518000056969066, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings import datashape from datashape import String, DataShape, Option, bool_ from odo.utils import copydoc from .expressions import schema_method_list, ElemWise from .arithmetic import Interp, Repeat, _mkbin, repeat, interp, _add, _radd from ..compatibility import basestring, _inttypes, builtins from ..deprecation import deprecated __all__ = ['Like', 'like', 'Pad', 'Replace', 'SliceReplace', # prevent 'len' to end up in global namespace #'len', 'upper', 'lower', 'cat', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'islower', 'isnumeric', 'isspace', 'istitle', 'isupper', 'StrCat', 'find', 'StrFind', 'StrSlice', 'slice', 'slice_replace', 'replace', 'capitalize', 'strip', 'lstrip', 'rstrip', 'pad', 'UnaryStringFunction'] def _validate(var, name, type, typename): if not isinstance(var, type): raise TypeError('"%s" argument must be a %s'%(name, typename)) def _validate_optional(var, name, type, typename): if var is not None and not isinstance(var, type): raise TypeError('"%s" argument must be a %s'%(name, typename)) class Like(ElemWise): """ Filter expression by string comparison >>> from blaze import symbol, like, compute >>> t = symbol('t', 'var * {name: string, city: string}') >>> expr = t[t.name.like('Alice*')] >>> data = [('Alice Smith', 'New York'), ... ('Bob Jones', 'Chicago'), ... ('Alice Walker', 'LA')] >>> list(compute(expr, data)) [('Alice Smith', 'New York'), ('Alice Walker', 'LA')] """ _arguments = '_child', 'pattern' def _dshape(self): shape, schema = self._child.dshape.shape, self._child.schema schema = Option(bool_) if isinstance(schema.measure, Option) else bool_ return DataShape(*(shape + (schema,))) @copydoc(Like) def like(child, pattern): if not isinstance(pattern, basestring): raise TypeError('pattern argument must be a string') return Like(child, pattern) class UnaryStringFunction(ElemWise): """String function that only takes a single argument. """ _arguments = '_child', class len(UnaryStringFunction): schema = datashape.int64 class upper(UnaryStringFunction): @property def schema(self): return self._child.schema class lower(UnaryStringFunction): @property def schema(self): return self._child.schema class PredicateFunction(UnaryStringFunction): @property def schema(self): return bool_ if self._child.schema == datashape.string else Option(bool_) class isalnum(PredicateFunction): pass class isalpha(PredicateFunction): pass class isdecimal(PredicateFunction): pass class isdigit(PredicateFunction): pass class islower(PredicateFunction): pass class isnumeric(PredicateFunction): pass class isspace(PredicateFunction): pass class istitle(PredicateFunction): pass class isupper(PredicateFunction): pass class StrFind(ElemWise): """ Find literal substring in string column. """ _arguments = '_child', 'sub' schema = Option(datashape.int64) @copydoc(StrFind) def find(col, sub): if not isinstance(sub, basestring): raise TypeError("'sub' argument must be a String") return StrFind(col, sub) class Replace(ElemWise): _arguments = '_child', 'old', 'new', 'max' @property def schema(self): return self._child.schema def replace(col, old, new, max=None): _validate(old, 'old', basestring, 'string') _validate(new, 'new', basestring, 'string') _validate_optional(max, 'max', int, 'integer') return Replace(col, old, new, max) class Pad(ElemWise): _arguments = '_child', 'width', 'side', 'fillchar' @property def schema(self): return self._child.schema def pad(col, width, side=None, fillchar=None): _validate(width, 'width', int, 'integer') if side not in (None, 'left', 'right'): raise TypeError('"side" argument must be either "left" or "right"') _validate_optional(fillchar, 'fillchar', basestring, 'string') return Pad(col, width, side, fillchar) class capitalize(UnaryStringFunction): @property def schema(self): return self._child.schema class strip(UnaryStringFunction): @property def schema(self): return self._child.schema class lstrip(UnaryStringFunction): @property def schema(self): return self._child.schema class rstrip(UnaryStringFunction): @property def schema(self): return self._child.schema class StrSlice(ElemWise): _arguments = '_child', 'slice' @property def schema(self): return self._child.schema class SliceReplace(ElemWise): _arguments = '_child', 'start', 'stop', 'repl' @property def schema(self): return self._child.schema def slice_replace(col, start=None, stop=None, repl=None): _validate_optional(start, 'start', int, 'integer') _validate_optional(stop, 'stop', int, 'integer') _validate_optional(repl, 'repl', basestring, 'string') return SliceReplace(col, start, stop, repl) @copydoc(StrSlice) def slice(col, idx): if not isinstance(idx, (builtins.slice, _inttypes)): raise TypeError("idx argument must be a slice or integer, given {}".format(slc)) return StrSlice(col, (idx.start, idx.stop, idx.step) if isinstance(idx, builtins.slice) else idx) class StrCat(ElemWise): """ Concatenate two string columns together with optional 'sep' argument. >>> import pandas as pd >>> from blaze import symbol, compute, dshape >>> ds = dshape('3 * {name: ?string, comment: ?string, num: int32}') >>> s = symbol('s', dshape=ds) >>> data = [('al', 'good', 0), ('suri', 'not good', 1), ('jinka', 'ok', 2)] >>> df = pd.DataFrame(data, columns=['name', 'comment', 'num']) >>> compute(s.name.str.cat(s.comment, sep=' -- '), df) 0 al -- good 1 suri -- not good 2 jinka -- ok Name: name, dtype: object For rows with null entries, it returns null. This is consistent with default pandas behavior with kwarg: na_rep=None. >>> data = [(None, None, 0), ('suri', 'not good', 1), ('jinka', None, 2)] >>> df = pd.DataFrame(data, columns=['name', 'comment', 'num']) >>> compute(s.name.str.cat(s.comment, sep=' -- '), df) 0 NaN 1 suri -- not good 2 NaN Name: name, dtype: object """ _arguments = 'lhs', 'rhs', 'sep' _input_attributes = 'lhs', 'rhs' def _dshape(self): ''' since pandas supports concat for string columns, do the same for blaze ''' shape = self.lhs.dshape.shape if isinstance(self.lhs.schema.measure, Option): schema = self.lhs.schema elif isinstance(self.rhs.schema.measure, Option): schema = self.rhs.schema else: _, lhs_encoding = self.lhs.schema.measure.parameters _, rhs_encoding = self.rhs.schema.measure.parameters assert lhs_encoding == rhs_encoding # convert fixed length string to variable length string schema = DataShape(String(None, lhs_encoding)) return DataShape(*(shape + (schema,))) @copydoc(StrCat) def cat(lhs, rhs, sep=None): """ returns lhs + sep + rhs Raises: Invoking on a non string column raises a TypeError If kwarg 'sep' is not a string, raises a TypeError """ # pandas supports concat for string columns only, do the same for blaze if not isstring(rhs.dshape): raise TypeError("can only concat string columns") _validate_optional(sep, 'sep', basestring, 'string') return StrCat(lhs, rhs, sep=sep) def isstring(ds): measure = ds.measure return isinstance(getattr(measure, 'ty', measure), String) _mod, _rmod = _mkbin('mod', Interp) _mul, _rmul = _mkbin('mul', Repeat) class str_ns(object): def __init__(self, field): self.field = field def upper(self): return upper(self.field) def lower(self): return lower(self.field) def len(self): return len(self.field) def like(self, pattern): return like(self.field, pattern) def cat(self, other, sep=None): return cat(self.field, other, sep=sep) def find(self, sub): return find(self.field, sub) def isalnum(self): return isalnum(self.field) def isalpha(self): return isalpha(self.field) def isdecimal(self): return isdecimal(self.field) def isdigit(self): return isdigit(self.field) def islower(self): return islower(self.field) def isnumeric(self): return isnumeric(self.field) def isspace(self): return isspace(self.field) def istitle(self): return istitle(self.field) def isupper(self): return isupper(self.field) def replace(self, old, new, max=None): return replace(self.field, old, new, max) def capitalize(self): return capitalize(self.field) def pad(self, width, side=None, fillchar=None): return pad(self.field, width, side, fillchar) def strip(self): return strip(self.field) def lstrip(self): return lstrip(self.field) def rstrip(self): return rstrip(self.field) def __getitem__(self, idx): return slice(self.field, idx) def slice_replace(self, start=None, stop=None, repl=None): return slice_replace(self.field, start, stop, repl) class str(object): __name__ = 'str' def __get__(self, obj, type): return str_ns(obj) if obj is not None else self @deprecated('0.11', replacement='len()') def str_len(*args, **kwds): return len(*args, **kwds) @deprecated('0.11', replacement='upper()') def str_upper(*args, **kwds): return upper(*args, **kwds) @deprecated('0.11', replacement='lower()') def str_lower(*args, **kwds): return lower(*args, **kwds) @deprecated('0.11', replacement='cat(lhs, rhs, sep=None)') def str_cat(*args, **kwds): return cat(*args, **kwds) schema_method_list.extend([(isstring, set([_add, _radd, _mod, _rmod, _mul, _rmul, str(), repeat, interp, like, str_len, # deprecated str_upper, # deprecated str_lower, # deprecated str_cat]))]) # deprecated
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/expr/strings.py", "copies": "3", "size": "10912", "license": "bsd-3-clause", "hash": -7644352640154388000, "line_mean": 29.1436464088, "line_max": 101, "alpha_frac": 0.5998900293, "autogenerated": false, "ratio": 3.7941585535465925, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5894048582846593, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings import numpy as np import pandas as pd import pkg_resources from ..core.pycompat import basestring from ..core.utils import is_scalar ROBUST_PERCENTILE = 2.0 def _load_default_cmap(fname='default_colormap.csv'): """ Returns viridis color map """ from matplotlib.colors import LinearSegmentedColormap # Not sure what the first arg here should be f = pkg_resources.resource_stream(__name__, fname) cm_data = pd.read_csv(f, header=None).values f.close() return LinearSegmentedColormap.from_list('viridis', cm_data) def import_seaborn(): '''import seaborn and handle deprecation of apionly module''' with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") try: import seaborn.apionly as sns if (w and issubclass(w[-1].category, UserWarning) and ("seaborn.apionly module" in str(w[-1].message))): raise ImportError except ImportError: import seaborn as sns finally: warnings.resetwarnings() return sns _registered = False def register_pandas_datetime_converter_if_needed(): # based on https://github.com/pandas-dev/pandas/pull/17710 global _registered if not _registered: try: from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() except ImportError: # register_matplotlib_converters new in pandas 0.22 from pandas.tseries import converter converter.register() _registered = True def import_matplotlib_pyplot(): """Import pyplot as register appropriate converters.""" register_pandas_datetime_converter_if_needed() import matplotlib.pyplot as plt return plt def _determine_extend(calc_data, vmin, vmax): extend_min = calc_data.min() < vmin extend_max = calc_data.max() > vmax if extend_min and extend_max: extend = 'both' elif extend_min: extend = 'min' elif extend_max: extend = 'max' else: extend = 'neither' return extend def _build_discrete_cmap(cmap, levels, extend, filled): """ Build a discrete colormap and normalization of the data. """ import matplotlib as mpl if not filled: # non-filled contour plots extend = 'max' if extend == 'both': ext_n = 2 elif extend in ['min', 'max']: ext_n = 1 else: ext_n = 0 n_colors = len(levels) + ext_n - 1 pal = _color_palette(cmap, n_colors) new_cmap, cnorm = mpl.colors.from_levels_and_colors( levels, pal, extend=extend) # copy the old cmap name, for easier testing new_cmap.name = getattr(cmap, 'name', cmap) return new_cmap, cnorm def _color_palette(cmap, n_colors): import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap colors_i = np.linspace(0, 1., n_colors) if isinstance(cmap, (list, tuple)): # we have a list of colors cmap = ListedColormap(cmap, N=n_colors) pal = cmap(colors_i) elif isinstance(cmap, basestring): # we have some sort of named palette try: # is this a matplotlib cmap? cmap = plt.get_cmap(cmap) pal = cmap(colors_i) except ValueError: # ValueError happens when mpl doesn't like a colormap, try seaborn try: from seaborn.apionly import color_palette pal = color_palette(cmap, n_colors=n_colors) except (ValueError, ImportError): # or maybe we just got a single color as a string cmap = ListedColormap([cmap], N=n_colors) pal = cmap(colors_i) else: # cmap better be a LinearSegmentedColormap (e.g. viridis) pal = cmap(colors_i) return pal # _determine_cmap_params is adapted from Seaborn: # https://github.com/mwaskom/seaborn/blob/v0.6/seaborn/matrix.py#L158 # Used under the terms of Seaborn's license, see licenses/SEABORN_LICENSE. def _determine_cmap_params(plot_data, vmin=None, vmax=None, cmap=None, center=None, robust=False, extend=None, levels=None, filled=True, norm=None): """ Use some heuristics to set good defaults for colorbar and range. Parameters ========== plot_data: Numpy array Doesn't handle xarray objects Returns ======= cmap_params : dict Use depends on the type of the plotting function """ import matplotlib as mpl calc_data = np.ravel(plot_data[np.isfinite(plot_data)]) # Handle all-NaN input data gracefully if calc_data.size == 0: # Arbitrary default for when all values are NaN calc_data = np.array(0.0) # Setting center=False prevents a divergent cmap possibly_divergent = center is not False # Set center to 0 so math below makes sense but remember its state center_is_none = False if center is None: center = 0 center_is_none = True # Setting both vmin and vmax prevents a divergent cmap if (vmin is not None) and (vmax is not None): possibly_divergent = False # Setting vmin or vmax implies linspaced levels user_minmax = (vmin is not None) or (vmax is not None) # vlim might be computed below vlim = None if vmin is None: if robust: vmin = np.percentile(calc_data, ROBUST_PERCENTILE) else: vmin = calc_data.min() elif possibly_divergent: vlim = abs(vmin - center) if vmax is None: if robust: vmax = np.percentile(calc_data, 100 - ROBUST_PERCENTILE) else: vmax = calc_data.max() elif possibly_divergent: vlim = abs(vmax - center) if possibly_divergent: # kwargs not specific about divergent or not: infer defaults from data divergent = ((vmin < 0) and (vmax > 0)) or not center_is_none else: divergent = False # A divergent map should be symmetric around the center value if divergent: if vlim is None: vlim = max(abs(vmin - center), abs(vmax - center)) vmin, vmax = -vlim, vlim # Now add in the centering value and set the limits vmin += center vmax += center # Choose default colormaps if not provided if cmap is None: if divergent: cmap = "RdBu_r" else: cmap = "viridis" # Allow viridis before matplotlib 1.5 if cmap == "viridis": cmap = _load_default_cmap() # Handle discrete levels if levels is not None: if is_scalar(levels): if user_minmax or levels == 1: levels = np.linspace(vmin, vmax, levels) else: # N in MaxNLocator refers to bins, not ticks ticker = mpl.ticker.MaxNLocator(levels - 1) levels = ticker.tick_values(vmin, vmax) vmin, vmax = levels[0], levels[-1] if extend is None: extend = _determine_extend(calc_data, vmin, vmax) if levels is not None: cmap, norm = _build_discrete_cmap(cmap, levels, extend, filled) return dict(vmin=vmin, vmax=vmax, cmap=cmap, extend=extend, levels=levels, norm=norm) def _infer_xy_labels_3d(darray, x, y, rgb): """ Determine x and y labels for showing RGB images. Attempts to infer which dimension is RGB/RGBA by size and order of dims. """ assert rgb is None or rgb != x assert rgb is None or rgb != y # Start by detecting and reporting invalid combinations of arguments assert darray.ndim == 3 not_none = [a for a in (x, y, rgb) if a is not None] if len(set(not_none)) < len(not_none): raise ValueError( 'Dimension names must be None or unique strings, but imshow was ' 'passed x=%r, y=%r, and rgb=%r.' % (x, y, rgb)) for label in not_none: if label not in darray.dims: raise ValueError('%r is not a dimension' % (label,)) # Then calculate rgb dimension if certain and check validity could_be_color = [label for label in darray.dims if darray[label].size in (3, 4) and label not in (x, y)] if rgb is None and not could_be_color: raise ValueError( 'A 3-dimensional array was passed to imshow(), but there is no ' 'dimension that could be color. At least one dimension must be ' 'of size 3 (RGB) or 4 (RGBA), and not given as x or y.') if rgb is None and len(could_be_color) == 1: rgb = could_be_color[0] if rgb is not None and darray[rgb].size not in (3, 4): raise ValueError('Cannot interpret dim %r of size %s as RGB or RGBA.' % (rgb, darray[rgb].size)) # If rgb dimension is still unknown, there must be two or three dimensions # in could_be_color. We therefore warn, and use a heuristic to break ties. if rgb is None: assert len(could_be_color) in (2, 3) rgb = could_be_color[-1] warnings.warn( 'Several dimensions of this array could be colors. Xarray ' 'will use the last possible dimension (%r) to match ' 'matplotlib.pyplot.imshow. You can pass names of x, y, ' 'and/or rgb dimensions to override this guess.' % rgb) assert rgb is not None # Finally, we pick out the red slice and delegate to the 2D version: return _infer_xy_labels(darray.isel(**{rgb: 0}), x, y) def _infer_xy_labels(darray, x, y, imshow=False, rgb=None): """ Determine x and y labels. For use in _plot2d darray must be a 2 dimensional data array, or 3d for imshow only. """ assert x is None or x != y if imshow and darray.ndim == 3: return _infer_xy_labels_3d(darray, x, y, rgb) if x is None and y is None: if darray.ndim != 2: raise ValueError('DataArray must be 2d') y, x = darray.dims elif x is None: if y not in darray.dims: raise ValueError('y must be a dimension name if x is not supplied') x = darray.dims[0] if y == darray.dims[1] else darray.dims[1] elif y is None: if x not in darray.dims: raise ValueError('x must be a dimension name if y is not supplied') y = darray.dims[0] if x == darray.dims[1] else darray.dims[1] elif any(k not in darray.coords and k not in darray.dims for k in (x, y)): raise ValueError('x and y must be coordinate variables') return x, y def get_axis(figsize, size, aspect, ax): import matplotlib as mpl import matplotlib.pyplot as plt if figsize is not None: if ax is not None: raise ValueError('cannot provide both `figsize` and ' '`ax` arguments') if size is not None: raise ValueError('cannot provide both `figsize` and ' '`size` arguments') _, ax = plt.subplots(figsize=figsize) elif size is not None: if ax is not None: raise ValueError('cannot provide both `size` and `ax` arguments') if aspect is None: width, height = mpl.rcParams['figure.figsize'] aspect = width / height figsize = (size * aspect, size) _, ax = plt.subplots(figsize=figsize) elif aspect is not None: raise ValueError('cannot provide `aspect` argument without `size`') if ax is None: ax = plt.gca() return ax
{ "repo_name": "jcmgray/xarray", "path": "xarray/plot/utils.py", "copies": "1", "size": "11666", "license": "apache-2.0", "hash": -669678987555741200, "line_mean": 31.7696629213, "line_max": 79, "alpha_frac": 0.6083490485, "autogenerated": false, "ratio": 3.8349769888231426, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49433260373231425, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings import numpy as np import pandas as pd from .core import DataFrame, Series, Index, aca, map_partitions, no_default from .shuffle import shuffle from .utils import make_meta, insert_meta_param_description from ..utils import derived_from, M def _maybe_slice(grouped, columns): """ Slice columns if grouped is pd.DataFrameGroupBy """ if isinstance(grouped, pd.core.groupby.DataFrameGroupBy): if columns is not None: columns = columns if isinstance(columns, str) else list(columns) return grouped[columns] return grouped def _groupby_slice_apply(df, grouper, key, func): g = df.groupby(grouper) if key: g = g[key] return g.apply(func) def _groupby_get_group(df, by_key, get_key, columns): # SeriesGroupBy may pass df which includes group key grouped = df.groupby(by_key) if get_key in grouped.groups: if isinstance(df, pd.DataFrame): grouped = grouped[columns] return grouped.get_group(get_key) else: # to create empty DataFrame/Series, which has the same # dtype as the original if isinstance(df, pd.DataFrame): # may be SeriesGroupBy df = df[columns] return df.iloc[0:0] ############################################################### # Aggregation ############################################################### def _groupby_aggregate(df, aggfunc=None, levels=None): return aggfunc(df.groupby(level=levels)) def _apply_chunk(df, index, func, columns): if isinstance(df, pd.Series): return func(df.groupby(index)) else: columns = columns if isinstance(columns, str) else list(columns) return func(df.groupby(index)[columns]) def _var_chunk(df, index): if isinstance(df, pd.Series): df = df.to_frame() x = df.groupby(index).sum() x2 = (df**2).rename(columns=lambda c: c + '-x2') cols = [c + '-x2' for c in x.columns] x2 = pd.concat([df, x2], axis=1).groupby(index)[cols].sum() n = (df.groupby(index).count() .rename(columns=lambda c: c + '-count')) result = pd.concat([x, x2, n], axis=1) return result def _var_agg(g, ddof): g = g.groupby(level=0).sum() nc = len(g.columns) x = g[g.columns[:nc//3]] x2 = g[g.columns[nc//3:2*nc//3]].rename(columns=lambda c: c[:-3]) n = g[g.columns[-nc//3:]].rename(columns=lambda c: c[:-6]) result = x2 - x**2 / n div = (n - ddof) div[div < 0] = 0 result /= div result[(n - ddof) == 0] = np.nan assert isinstance(result, pd.DataFrame) return result ############################################################### # nunique ############################################################### def _nunique_df_chunk(df, index): # we call set_index here to force a possibly duplicate index # for our reduce step grouped = (df.groupby(index).apply(pd.DataFrame.drop_duplicates)) grouped.index = grouped.index.get_level_values(level=0) return grouped def _nunique_df_aggregate(df, name): return df.groupby(level=0)[name].nunique() def _nunique_series_chunk(df, index): assert isinstance(df, pd.Series) if isinstance(index, np.ndarray): assert len(index) == len(df) index = pd.Series(index, index=df.index) grouped = pd.concat([df, index], axis=1).drop_duplicates() return grouped def _nunique_series_aggregate(df): return df.groupby(df.columns[1])[df.columns[0]].nunique() class _GroupBy(object): """ Superclass for DataFrameGroupBy and SeriesGroupBy Parameters ---------- obj: DataFrame or Series DataFrame or Series to be grouped index: str, list or Series The key for grouping kwargs: dict Other keywords passed to groupby """ def __init__(self, df, index=None, slice=None, **kwargs): assert isinstance(df, (DataFrame, Series)) self.obj = df # grouping key passed via groupby method if (isinstance(index, (DataFrame, Series, Index)) and isinstance(df, DataFrame)): if (isinstance(index, Series) and index.name in df.columns and index._name == df[index.name]._name): index = index.name elif (isinstance(index, DataFrame) and set(index.columns).issubset(df.columns) and index._name == df[index.columns]._name): index = list(index.columns) self.index = index # slicing key applied to _GroupBy instance self._slice = slice self.kwargs = kwargs if isinstance(index, Series) and df.divisions != index.divisions: msg = ("The Series and index of the groupby" " must have the same divisions.") raise NotImplementedError(msg) if self._is_grouped_by_sliced_column(self.obj, index): # check whether given Series is taken from given df and unchanged. # If any operations are performed, _name will be changed to # e.g. "elemwise-xxxx" # if group key (index) is a Series sliced from DataFrame, # emulation must be performed as the same. # otherwise, group key is regarded as a separate column self._meta = self.obj._meta.groupby(self.obj._meta[index.name]) elif isinstance(self.index, Series): self._meta = self.obj._meta.groupby(self.index._meta) else: self._meta = self.obj._meta.groupby(self.index) def _is_grouped_by_sliced_column(self, df, index): """ Return whether index is a Series sliced from df """ if isinstance(df, Series): return False if (isinstance(index, Series) and index._name in df.columns and index._name == df[index.name]._name): return True if (isinstance(index, DataFrame) and set(index.columns).issubset(df.columns) and index._name == df[index.columns]._name): index = list(index.columns) return True return False @property def _meta_nonempty(self): """ Return a pd.DataFrameGroupBy / pd.SeriesGroupBy which contains sample data. """ sample = self.obj._meta_nonempty if isinstance(self.index, Series): if self._is_grouped_by_sliced_column(self.obj, self.index): grouped = sample.groupby(sample[self.index.name]) else: grouped = sample.groupby(self.index._meta_nonempty) else: grouped = sample.groupby(self.index) return _maybe_slice(grouped, self._slice) def _aca_agg(self, token, func, aggfunc=None): if aggfunc is None: aggfunc = func meta = func(self._meta) columns = meta.name if isinstance(meta, pd.Series) else meta.columns token = self._token_prefix + token if isinstance(self.index, (tuple, list)) and len(self.index) > 1: levels = list(range(len(self.index))) else: levels = 0 return aca([self.obj, self.index, func, columns], chunk=_apply_chunk, aggregate=_groupby_aggregate, meta=meta, token=token, aggregate_kwargs=dict(aggfunc=aggfunc, levels=levels)) @derived_from(pd.core.groupby.GroupBy) def sum(self): return self._aca_agg(token='sum', func=M.sum) @derived_from(pd.core.groupby.GroupBy) def min(self): return self._aca_agg(token='min', func=M.min) @derived_from(pd.core.groupby.GroupBy) def max(self): return self._aca_agg(token='max', func=M.max) @derived_from(pd.core.groupby.GroupBy) def count(self): return self._aca_agg(token='count', func=M.count, aggfunc=M.sum) @derived_from(pd.core.groupby.GroupBy) def mean(self): return self.sum() / self.count() @derived_from(pd.core.groupby.GroupBy) def var(self, ddof=1): from functools import partial meta = self.obj._meta if isinstance(meta, pd.Series): meta = meta.to_frame() meta = meta.groupby(self.index).var(ddof=1) result = aca([self.obj, self.index], chunk=_var_chunk, aggregate=partial(_var_agg, ddof=ddof), meta=meta, token=self._token_prefix + 'var') if isinstance(self.obj, Series): result = result[result.columns[0]] if self._slice: result = result[self._slice] return result @derived_from(pd.core.groupby.GroupBy) def std(self, ddof=1): v = self.var(ddof) result = map_partitions(np.sqrt, v, meta=v) return result @derived_from(pd.core.groupby.GroupBy) def get_group(self, key): token = self._token_prefix + 'get_group' meta = self._meta.obj if isinstance(meta, pd.DataFrame) and self._slice is not None: meta = meta[self._slice] columns = meta.columns if isinstance(meta, pd.DataFrame) else meta.name return map_partitions(_groupby_get_group, self.obj, self.index, key, columns, meta=meta, token=token) @insert_meta_param_description(pad=12) def apply(self, func, meta=no_default, columns=no_default): """ Parallel version of pandas GroupBy.apply This mimics the pandas version except for the following: 1. The user should provide output metadata. 2. If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. Parameters ---------- func: function Function to apply $META columns: list, scalar or None Deprecated, use `meta` instead. If list is given, the result is a DataFrame which columns is specified list. Otherwise, the result is a Series which name is given scalar or None (no name). If name keyword is not given, dask tries to infer the result type using its beginning of data. This inference may take some time and lead to unexpected result Returns ------- applied : Series or DataFrame depending on columns keyword """ if columns is not no_default: warnings.warn("`columns` is deprecated, please use `meta` instead") if meta is no_default and isinstance(columns, (pd.DataFrame, pd.Series)): meta = columns if meta is no_default: msg = ("`meta` is not specified, inferred from partial data. " "Please provide `meta` if the result is unexpected.\n" " Before: .apply(func)\n" " After: .apply(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n" " or: .apply(func, meta=('x', 'f8')) for series result") warnings.warn(msg) try: meta = self._meta_nonempty.apply(func) except: raise ValueError("Metadata inference failed, please provide " "`meta` keyword") else: meta = make_meta(meta) df = self.obj if isinstance(self.index, DataFrame): # add index columns to dataframe df2 = df.assign(**{'_index_' + c: self.index[c] for c in self.index.columns}) index = self.index elif isinstance(self.index, Series): df2 = df.assign(_index=self.index) index = self.index else: df2 = df index = df[self.index] df3 = shuffle(df2, index, **self.kwargs) # shuffle dataframe and index if isinstance(self.index, DataFrame): # extract index from dataframe cols = ['_index_' + c for c in self.index.columns] index2 = df3[cols] df4 = df3.drop(cols, axis=1, dtype=meta.columns.dtype if isinstance(meta, pd.DataFrame) else None) elif isinstance(self.index, Series): index2 = df3['_index'] index2.name = self.index.name df4 = df3.drop('_index', axis=1, dtype=meta.columns.dtype if isinstance(meta, DataFrame) else None) else: df4 = df3 index2 = self.index # Perform embarrassingly parallel groupby-apply df5 = map_partitions(_groupby_slice_apply, df4, index2, self._slice, func, meta=meta) return df5 class DataFrameGroupBy(_GroupBy): _token_prefix = 'dataframe-groupby-' def __init__(self, df, index=None, slice=None, **kwargs): if not kwargs.get('as_index', True): msg = ("The keyword argument `as_index=False` is not supported in " "dask.dataframe.groupby") raise NotImplementedError(msg) super(DataFrameGroupBy, self).__init__(df, index=index, slice=slice, **kwargs) @property def column_info(self): warnings.warn('column_info is deprecated') return self.obj.columns def __getitem__(self, key): if isinstance(key, list): g = DataFrameGroupBy(self.obj, index=self.index, slice=key, **self.kwargs) else: g = SeriesGroupBy(self.obj, index=self.index, slice=key, **self.kwargs) # error is raised from pandas g._meta = g._meta[key] return g def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + list(filter(pd.compat.isidentifier, self.obj.columns)))) def __getattr__(self, key): try: return self[key] except KeyError as e: raise AttributeError(e) class SeriesGroupBy(_GroupBy): _token_prefix = 'series-groupby-' def __init__(self, df, index, slice=None, **kwargs): # raise pandas-compat error message if isinstance(df, Series): # When obj is Series, index must be Series if not isinstance(index, Series): if isinstance(index, list): if len(index) == 0: raise ValueError("No group keys passed!") msg = "Grouper for '{0}' not 1-dimensional" raise ValueError(msg.format(index[0])) # raise error from pandas df._meta.groupby(index) super(SeriesGroupBy, self).__init__(df, index=index, slice=slice, **kwargs) @property def column_info(self): warnings.warn('column_info is deprecated') return self._slice def nunique(self): name = self._meta.obj.name meta = pd.Series([], dtype='int64', index=pd.Index([], dtype=self._meta.obj.dtype), name=name) if isinstance(self.obj, DataFrame): return aca([self.obj, self.index], chunk=_nunique_df_chunk, aggregate=_nunique_df_aggregate, meta=meta, token='series-groupby-nunique', aggregate_kwargs={'name': name}) else: return aca([self.obj, self.index], chunk=_nunique_series_chunk, aggregate=_nunique_series_aggregate, meta=meta, token='series-groupby-nunique')
{ "repo_name": "cowlicks/dask", "path": "dask/dataframe/groupby.py", "copies": "1", "size": "15815", "license": "bsd-3-clause", "hash": -371227985008019400, "line_mean": 33.9116997792, "line_max": 95, "alpha_frac": 0.5638318052, "autogenerated": false, "ratio": 4.064507838601902, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0003819833631414533, "num_lines": 453 }
from __future__ import absolute_import, division, print_function import warnings import numpy as np import pandas as pd from dask.dataframe.core import (DataFrame, Series, Index, aca, map_partitions, no_default) from dask.utils import derived_from def _maybe_slice(grouped, columns): """ Slice columns if grouped is pd.DataFrameGroupBy """ if isinstance(grouped, pd.core.groupby.DataFrameGroupBy): if columns is not None: return grouped[columns] return grouped def _groupby_apply_level0(df, key, func): grouped = df.groupby(level=0) grouped = _maybe_slice(grouped, key) return grouped.apply(func) def _groupby_apply_index(df, ind, key, func): grouped = df.groupby(ind) grouped = _maybe_slice(grouped, key) return grouped.apply(func) def _groupby_get_group(df, by_key, get_key, columns): # SeriesGroupBy may pass df which includes group key grouped = df.groupby(by_key) if get_key in grouped.groups: if isinstance(df, pd.DataFrame): grouped = grouped[columns] return grouped.get_group(get_key) else: # to create empty DataFrame/Series, which has the same # dtype as the original if isinstance(df, pd.DataFrame): # may be SeriesGroupBy df = df[columns] return df.iloc[0:0] ############################################################### # Aggregation ############################################################### def _apply_chunk(df, index, func, columns): if isinstance(df, pd.Series): return func(df.groupby(index)) else: return func(df.groupby(index)[columns]) def _sum(g): return g.sum() def _min(g): return g.min() def _max(g): return g.max() def _count(g): return g.count() def _var_chunk(df, index): if isinstance(df, pd.Series): df = df.to_frame() x = df.groupby(index).sum() x2 = (df**2).rename(columns=lambda c: c + '-x2') cols = [c + '-x2' for c in x.columns] x2 = pd.concat([df, x2], axis=1).groupby(index)[cols].sum() n = (df.groupby(index).count() .rename(columns=lambda c: c + '-count')) result = pd.concat([x, x2, n], axis=1) return result def _var_agg(g, ddof): g = g.groupby(level=0).sum() nc = len(g.columns) x = g[g.columns[:nc//3]] x2 = g[g.columns[nc//3:2*nc//3]].rename(columns=lambda c: c[:-3]) n = g[g.columns[-nc//3:]].rename(columns=lambda c: c[:-6]) result = x2 - x**2 / n div = (n - ddof) div[div < 0] = 0 result /= div result[(n - ddof) == 0] = np.nan assert isinstance(result, pd.DataFrame) return result ############################################################### # nunique ############################################################### def _nunique_df_chunk(df, index): # we call set_index here to force a possibly duplicate index # for our reduce step grouped = (df.groupby(index).apply(pd.DataFrame.drop_duplicates)) grouped.index = grouped.index.get_level_values(level=0) return grouped def _nunique_series_chunk(df, index): assert isinstance(df, pd.Series) if isinstance(index, np.ndarray): assert len(index) == len(df) index = pd.Series(index, index=df.index) grouped = pd.concat([df, index], axis=1).drop_duplicates() return grouped class _GroupBy(object): """ Superclass for DataFrameGroupBy and SeriesGroupBy Parameters ---------- obj: DataFrame or Series DataFrame or Series to be grouped index: str, list or Series The key for grouping kwargs: dict Other keywords passed to groupby """ def __init__(self, df, index=None, slice=None, **kwargs): assert isinstance(df, (DataFrame, Series)) self.obj = df # grouping key passed via groupby method if (isinstance(index, (DataFrame, Series, Index)) and isinstance(df, DataFrame)): if (isinstance(index, Series) and index.name in df.columns and index._name == df[index.name]._name): index = index.name elif (isinstance(index, DataFrame) and set(index.columns).issubset(df.columns) and index._name == df[index.columns]._name): index = list(index.columns) self.index = index # slicing key applied to _GroupBy instance self._slice = slice self.kwargs = kwargs if isinstance(index, Series) and df.divisions != index.divisions: msg = ("The Series and index of the groupby" " must have the same divisions.") raise NotImplementedError(msg) if self._is_grouped_by_sliced_column(self.obj, index): # check whether given Series is taken from given df and unchanged. # If any operations are performed, _name will be changed to # e.g. "elemwise-xxxx" # if group key (index) is a Series sliced from DataFrame, # emulation must be performed as the same. # otherwise, group key is regarded as a separate column self._pd = self.obj._pd.groupby(self.obj._pd[index.name]) elif isinstance(self.index, Series): self._pd = self.obj._pd.groupby(self.index._pd) else: self._pd = self.obj._pd.groupby(self.index) def _is_grouped_by_sliced_column(self, df, index): """ Return whether index is a Series sliced from df """ if isinstance(df, Series): return False if (isinstance(index, Series) and index._name in df.columns and index._name == df[index.name]._name): return True if (isinstance(index, DataFrame) and set(index.columns).issubset(df.columns) and index._name == df[index.columns]._name): index = list(index.columns) return True return False def _head(self): """ Return a pd.DataFrameGroupBy / pd.SeriesGroupBy which contais head data. """ head = self.obj.head() if isinstance(self.index, Series): if self._is_grouped_by_sliced_column(self.obj, self.index): grouped = head.groupby(head[self.index.name]) else: grouped = head.groupby(self.index.head()) else: grouped = head.groupby(self.index) grouped = _maybe_slice(grouped, self._slice) return grouped def _aca_agg(self, token, func, aggfunc=None): if aggfunc is None: aggfunc = func dummy = func(self._pd) columns = dummy.name if isinstance(dummy, pd.Series) else dummy.columns token = self._token_prefix + token if isinstance(self.index, (tuple, list)) and len(self.index) > 1: levels = list(range(len(self.index))) else: levels = 0 agg = lambda df: aggfunc(df.groupby(level=levels)) return aca([self.obj, self.index, func, columns], chunk=_apply_chunk, aggregate=agg, columns=dummy, token=token) @derived_from(pd.core.groupby.GroupBy) def sum(self): return self._aca_agg(token='sum', func=_sum) @derived_from(pd.core.groupby.GroupBy) def min(self): return self._aca_agg(token='min', func=_min) @derived_from(pd.core.groupby.GroupBy) def max(self): return self._aca_agg(token='max', func=_max) @derived_from(pd.core.groupby.GroupBy) def count(self): return self._aca_agg(token='count', func=_count, aggfunc=_sum) @derived_from(pd.core.groupby.GroupBy) def mean(self): return self.sum() / self.count() @derived_from(pd.core.groupby.GroupBy) def var(self, ddof=1): from functools import partial meta = self.obj._pd if isinstance(meta, pd.Series): meta = meta.to_frame() meta = meta.groupby(self.index).var(ddof=1) result = aca([self.obj, self.index], _var_chunk, partial(_var_agg, ddof=ddof), meta, token=self._token_prefix + 'var') if isinstance(self.obj, Series): result = result[result.columns[0]] if self._slice: result = result[self._slice] return result @derived_from(pd.core.groupby.GroupBy) def std(self, ddof=1): v = self.var(ddof) result = map_partitions(np.sqrt, v, v) return result @derived_from(pd.core.groupby.GroupBy) def get_group(self, key): token = self._token_prefix + 'get_group' dummy = self._pd.obj if isinstance(dummy, pd.DataFrame) and self._slice is not None: dummy = dummy[self._slice] columns = dummy.columns if isinstance(dummy, pd.DataFrame) else dummy.name return map_partitions(_groupby_get_group, dummy, self.obj, self.index, key, columns, token=token) def apply(self, func, columns=no_default): """ Parallel version of pandas GroupBy.apply This mimics the pandas version except for the following: 1. The user should provide output columns. 2. If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. Parameters ---------- func: function Function to apply columns: list, scalar or None If list is given, the result is a DataFrame which columns is specified list. Otherwise, the result is a Series which name is given scalar or None (no name). If name keyword is not given, dask tries to infer the result type using its beginning of data. This inference may take some time and lead to unexpected result Returns ------- applied : Series or DataFrame depending on columns keyword """ if columns is no_default: msg = ("columns is not specified, inferred from partial data. " "Please provide columns if the result is unexpected.\n" " Before: .apply(func)\n" " After: .apply(func, columns=['x', 'y']) for dataframe result\n" " or: .apply(func, columns='x') for series result") warnings.warn(msg) dummy = self._head().apply(func) columns = dummy.columns if isinstance(dummy, pd.DataFrame) else dummy.name else: dummy = columns columns = self._slice if isinstance(self.index, Series): if self.index._name == self.obj.index._name: df = self.obj else: df = self.obj.set_index(self.index, drop=False, **self.kwargs) return map_partitions(_groupby_apply_level0, dummy, df, columns, func) else: from .shuffle import shuffle df = shuffle(self.obj, self.index, **self.kwargs) return map_partitions(_groupby_apply_index, dummy, df, self.index, columns, func) class DataFrameGroupBy(_GroupBy): _token_prefix = 'dataframe-groupby-' def __init__(self, df, index=None, slice=None, **kwargs): if not kwargs.get('as_index', True): msg = ("The keyword argument `as_index=False` is not supported in " "dask.dataframe.groupby") raise NotImplementedError(msg) super(DataFrameGroupBy, self).__init__(df, index=index, slice=slice, **kwargs) @property def column_info(self): warnings.warn('column_info is deprecated') return self.obj.columns def __getitem__(self, key): if isinstance(key, list): g = DataFrameGroupBy(self.obj, index=self.index, slice=key, **self.kwargs) else: g = SeriesGroupBy(self.obj, index=self.index, slice=key, **self.kwargs) # error is raised from pandas g._pd = g._pd[key] return g def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + list(filter(pd.compat.isidentifier, self.obj.columns)))) def __getattr__(self, key): try: return self[key] except KeyError as e: raise AttributeError(e) class SeriesGroupBy(_GroupBy): _token_prefix = 'series-groupby-' def __init__(self, df, index, slice=None, **kwargs): # raise pandas-compat error message if isinstance(df, Series): # When obj is Series, index must be Series if not isinstance(index, Series): if isinstance(index, list): if len(index) == 0: raise ValueError("No group keys passed!") msg = "Grouper for '{0}' not 1-dimensional" raise ValueError(msg.format(index[0])) # raise error from pandas df._pd.groupby(index) super(SeriesGroupBy, self).__init__(df, index=index, slice=slice, **kwargs) @property def column_info(self): warnings.warn('column_info is deprecated') return self._slice def nunique(self): name = self._pd.obj.name if isinstance(self.obj, DataFrame): def agg(df): return df.groupby(level=0)[name].nunique() return aca([self.obj, self.index], chunk=_nunique_df_chunk, aggregate=agg, columns=name, token='series-groupby-nunique') else: def agg(df): return df.groupby(df.columns[1])[df.columns[0]].nunique() return aca([self.obj, self.index], chunk=_nunique_series_chunk, aggregate=agg, columns=name, token='series-groupby-nunique')
{ "repo_name": "mikegraham/dask", "path": "dask/dataframe/groupby.py", "copies": "1", "size": "14261", "license": "bsd-3-clause", "hash": -5082556406472813000, "line_mean": 31.5593607306, "line_max": 86, "alpha_frac": 0.5601991445, "autogenerated": false, "ratio": 4.0571834992887625, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5117382643788763, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings import numpy as np import pandas as pd from . import npcompat def _validate_axis(data, axis): ndim = data.ndim if not -ndim <= axis < ndim: raise IndexError('axis %r out of bounds [-%r, %r)' % (axis, ndim, ndim)) if axis < 0: axis += ndim return axis def _select_along_axis(values, idx, axis): other_ind = np.ix_(*[np.arange(s) for s in idx.shape]) sl = other_ind[:axis] + (idx,) + other_ind[axis:] return values[sl] def nanfirst(values, axis): axis = _validate_axis(values, axis) idx_first = np.argmax(~pd.isnull(values), axis=axis) return _select_along_axis(values, idx_first, axis) def nanlast(values, axis): axis = _validate_axis(values, axis) rev = (slice(None),) * axis + (slice(None, None, -1),) idx_last = -1 - np.argmax(~pd.isnull(values)[rev], axis=axis) return _select_along_axis(values, idx_last, axis) def inverse_permutation(indices): """Return indices for an inverse permutation. Parameters ---------- indices : 1D np.ndarray with dtype=int Integer positions to assign elements to. Returns ------- inverse_permutation : 1D np.ndarray with dtype=int Integer indices to take from the original array to create the permutation. """ # use intp instead of int64 because of windows :( inverse_permutation = np.empty(len(indices), dtype=np.intp) inverse_permutation[indices] = np.arange(len(indices), dtype=np.intp) return inverse_permutation def _ensure_bool_is_ndarray(result, *args): # numpy will sometimes return a scalar value from binary comparisons if it # can't handle the comparison instead of broadcasting, e.g., # In [10]: 1 == np.array(['a', 'b']) # Out[10]: False # This function ensures that the result is the appropriate shape in these # cases if isinstance(result, bool): shape = np.broadcast(*args).shape constructor = np.ones if result else np.zeros result = constructor(shape, dtype=bool) return result def array_eq(self, other): with warnings.catch_warnings(): warnings.filterwarnings('ignore', r'elementwise comparison failed') return _ensure_bool_is_ndarray(self == other, self, other) def array_ne(self, other): with warnings.catch_warnings(): warnings.filterwarnings('ignore', r'elementwise comparison failed') return _ensure_bool_is_ndarray(self != other, self, other) def _is_contiguous(positions): """Given a non-empty list, does it consist of contiguous integers?""" previous = positions[0] for current in positions[1:]: if current != previous + 1: return False previous = current return True def _advanced_indexer_subspaces(key): """Indices of the advanced indexes subspaces for mixed indexing and vindex. """ if not isinstance(key, tuple): key = (key,) advanced_index_positions = [i for i, k in enumerate(key) if not isinstance(k, slice)] if (not advanced_index_positions or not _is_contiguous(advanced_index_positions)): # Nothing to reorder: dimensions on the indexing result are already # ordered like vindex. See NumPy's rule for "Combining advanced and # basic indexing": # https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#combining-advanced-and-basic-indexing return (), () non_slices = [k for k in key if not isinstance(k, slice)] ndim = len(np.broadcast(*non_slices).shape) mixed_positions = advanced_index_positions[0] + np.arange(ndim) vindex_positions = np.arange(ndim) return mixed_positions, vindex_positions class NumpyVIndexAdapter(object): """Object that implements indexing like vindex on a np.ndarray. This is a pure Python implementation of (some of) the logic in this NumPy proposal: https://github.com/numpy/numpy/pull/6256 """ def __init__(self, array): self._array = array def __getitem__(self, key): mixed_positions, vindex_positions = _advanced_indexer_subspaces(key) return np.moveaxis(self._array[key], mixed_positions, vindex_positions) def __setitem__(self, key, value): """Value must have dimensionality matching the key.""" mixed_positions, vindex_positions = _advanced_indexer_subspaces(key) self._array[key] = np.moveaxis(value, vindex_positions, mixed_positions) def rolling_window(a, axis, window, center, fill_value): """ rolling window with padding. """ pads = [(0, 0) for s in a.shape] if center: start = int(window / 2) # 10 -> 5, 9 -> 4 end = window - 1 - start pads[axis] = (start, end) else: pads[axis] = (window - 1, 0) a = np.pad(a, pads, mode='constant', constant_values=fill_value) return _rolling_window(a, window, axis) def _rolling_window(a, window, axis=-1): """ Make an ndarray with a rolling window along axis. Parameters ---------- a : array_like Array to add rolling window to axis: int axis position along which rolling window will be applied. window : int Size of rolling window Returns ------- Array that is a view of the original array with a added dimension of size w. Examples -------- >>> x=np.arange(10).reshape((2,5)) >>> np.rolling_window(x, 3, axis=-1) array([[[0, 1, 2], [1, 2, 3], [2, 3, 4]], [[5, 6, 7], [6, 7, 8], [7, 8, 9]]]) Calculate rolling mean of last dimension: >>> np.mean(np.rolling_window(x, 3, axis=-1), -1) array([[ 1., 2., 3.], [ 6., 7., 8.]]) This function is taken from https://github.com/numpy/numpy/pull/31 but slightly modified to accept axis option. """ axis = _validate_axis(a, axis) a = np.swapaxes(a, axis, -1) if window < 1: raise ValueError( "`window` must be at least 1. Given : {}".format(window)) if window > a.shape[-1]: raise ValueError("`window` is too long. Given : {}".format(window)) shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) rolling = npcompat.as_strided(a, shape=shape, strides=strides, writeable=False) return np.swapaxes(rolling, -2, axis)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/nputils.py", "copies": "1", "size": "6524", "license": "apache-2.0", "hash": -4987010971066444000, "line_mean": 31.783919598, "line_max": 111, "alpha_frac": 0.6201716738, "autogenerated": false, "ratio": 3.736540664375716, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9856712338175716, "avg_score": 0, "num_lines": 199 }
from __future__ import absolute_import, division, print_function import warnings import pandas as pd import numpy as np from pandas.tseries.resample import Resampler as pd_Resampler from ..core import DataFrame, Series from ...base import tokenize from ...utils import derived_from def getnanos(rule): try: return getattr(rule, 'nanos', None) except ValueError: return None def _resample(obj, rule, how, **kwargs): resampler = Resampler(obj, rule, **kwargs) if how is not None: w = FutureWarning(("how in .resample() is deprecated " "the new syntax is .resample(...)" ".{0}()").format(how)) warnings.warn(w) return getattr(resampler, how)() return resampler def _resample_series(series, start, end, reindex_closed, rule, resample_kwargs, how, fill_value): out = getattr(series.resample(rule, **resample_kwargs), how)() return out.reindex(pd.date_range(start, end, freq=rule, closed=reindex_closed), fill_value=fill_value) def _resample_bin_and_out_divs(divisions, rule, closed='left', label='left'): rule = pd.tseries.frequencies.to_offset(rule) g = pd.TimeGrouper(rule, how='count', closed=closed, label=label) # Determine bins to apply `how` to. Disregard labeling scheme. divs = pd.Series(range(len(divisions)), index=divisions) temp = divs.resample(rule, closed=closed, label='left').count() tempdivs = temp.loc[temp > 0].index # Cleanup closed == 'right' and label == 'right' res = pd.offsets.Nano() if hasattr(rule, 'delta') else pd.offsets.Day() if g.closed == 'right': newdivs = tempdivs + res else: newdivs = tempdivs if g.label == 'right': outdivs = tempdivs + rule else: outdivs = tempdivs newdivs = newdivs.tolist() outdivs = outdivs.tolist() # Adjust ends if newdivs[0] < divisions[0]: newdivs[0] = divisions[0] if newdivs[-1] < divisions[-1]: if len(newdivs) < len(divs): setter = lambda a, val: a.append(val) else: setter = lambda a, val: a.__setitem__(-1, val) setter(newdivs, divisions[-1]) if outdivs[-1] > divisions[-1]: setter(outdivs, outdivs[-1]) elif outdivs[-1] < divisions[-1]: setter(outdivs, temp.index[-1]) return tuple(map(pd.Timestamp, newdivs)), tuple(map(pd.Timestamp, outdivs)) class Resampler(object): def __init__(self, obj, rule, **kwargs): if not obj.known_divisions: msg = ("Can only resample dataframes with known divisions\n" "See dask.pydata.io/en/latest/dataframe-partitions.html\n" "for more information.") raise ValueError(msg) self.obj = obj rule = pd.tseries.frequencies.to_offset(rule) day_nanos = pd.tseries.frequencies.Day().nanos if getnanos(rule) and day_nanos % rule.nanos: raise NotImplementedError('Resampling frequency %s that does' ' not evenly divide a day is not ' 'implemented' % rule) self._rule = rule self._kwargs = kwargs def _agg(self, how, meta=None, fill_value=np.nan): rule = self._rule kwargs = self._kwargs name = 'resample-' + tokenize(self.obj, rule, kwargs, how) # Create a grouper to determine closed and label conventions newdivs, outdivs = _resample_bin_and_out_divs(self.obj.divisions, rule, **kwargs) # Repartition divs into bins. These won't match labels after mapping partitioned = self.obj.repartition(newdivs, force=True) keys = partitioned._keys() dsk = partitioned.dask args = zip(keys, outdivs, outdivs[1:], ['left'] * (len(keys) - 1) + [None]) for i, (k, s, e, c) in enumerate(args): dsk[(name, i)] = (_resample_series, k, s, e, c, rule, kwargs, how, fill_value) # Infer output metadata meta_r = self.obj._meta_nonempty.resample(self._rule, **self._kwargs) meta = getattr(meta_r, how)() if isinstance(meta, pd.DataFrame): return DataFrame(dsk, name, meta, outdivs) return Series(dsk, name, meta, outdivs) @derived_from(pd_Resampler) def count(self): return self._agg('count', fill_value=0) @derived_from(pd_Resampler) def first(self): return self._agg('first') @derived_from(pd_Resampler) def last(self): return self._agg('last') @derived_from(pd_Resampler) def mean(self): return self._agg('mean') @derived_from(pd_Resampler) def min(self): return self._agg('min') @derived_from(pd_Resampler) def median(self): return self._agg('median') @derived_from(pd_Resampler) def max(self): return self._agg('max') @derived_from(pd_Resampler) def ohlc(self): return self._agg('ohlc') @derived_from(pd_Resampler) def prod(self): return self._agg('prod') @derived_from(pd_Resampler) def sem(self): return self._agg('sem') @derived_from(pd_Resampler) def std(self): return self._agg('std') @derived_from(pd_Resampler) def sum(self): return self._agg('sum') @derived_from(pd_Resampler) def var(self): return self._agg('var')
{ "repo_name": "gameduell/dask", "path": "dask/dataframe/tseries/resample.py", "copies": "2", "size": "5597", "license": "bsd-3-clause", "hash": -232735422896459360, "line_mean": 30.8011363636, "line_max": 83, "alpha_frac": 0.5819188851, "autogenerated": false, "ratio": 3.558169103623649, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0002775790593587204, "num_lines": 176 }
from __future__ import absolute_import, division, print_function import warnings import pandas as pd import numpy as np from ..core import DataFrame, Series from ...base import tokenize def getnanos(rule): try: return getattr(rule, 'nanos', None) except ValueError: return None def _resample(obj, rule, how, **kwargs): resampler = Resampler(obj, rule, **kwargs) if how is not None: w = FutureWarning(("how in .resample() is deprecated " "the new syntax is .resample(...)" ".{0}()").format(how)) warnings.warn(w) return getattr(resampler, how)() return resampler def _resample_series(series, start, end, reindex_closed, rule, resample_kwargs, how, fill_value): out = getattr(series.resample(rule, **resample_kwargs), how)() return out.reindex(pd.date_range(start, end, freq=rule, closed=reindex_closed), fill_value=fill_value) def _resample_bin_and_out_divs(divisions, rule, closed='left', label='left'): rule = pd.datetools.to_offset(rule) g = pd.TimeGrouper(rule, how='count', closed=closed, label=label) # Determine bins to apply `how` to. Disregard labeling scheme. divs = pd.Series(range(len(divisions)), index=divisions) temp = divs.resample(rule, how='count', closed=closed, label='left') tempdivs = temp.loc[temp > 0].index # Cleanup closed == 'right' and label == 'right' res = pd.offsets.Nano() if hasattr(rule, 'delta') else pd.offsets.Day() if g.closed == 'right': newdivs = tempdivs + res else: newdivs = tempdivs if g.label == 'right': outdivs = tempdivs + rule else: outdivs = tempdivs newdivs = newdivs.tolist() outdivs = outdivs.tolist() # Adjust ends if newdivs[0] < divisions[0]: newdivs[0] = divisions[0] if newdivs[-1] < divisions[-1]: if len(newdivs) < len(divs): setter = lambda a, val: a.append(val) else: setter = lambda a, val: a.__setitem__(-1, val) setter(newdivs, divisions[-1]) if outdivs[-1] > divisions[-1]: setter(outdivs, outdivs[-1]) elif outdivs[-1] < divisions[-1]: setter(outdivs, temp.index[-1]) return tuple(map(pd.Timestamp, newdivs)), tuple(map(pd.Timestamp, outdivs)) class Resampler(object): def __init__(self, obj, rule, **kwargs): if not obj.known_divisions: raise ValueError("Can only resample dataframes with known divisions" "\nSee dask.pydata.io/en/latest/dataframe-partitions.html" "\nfor more information.") self.obj = obj rule = pd.datetools.to_offset(rule) day_nanos = pd.datetools.Day().nanos if getnanos(rule) and day_nanos % rule.nanos: raise NotImplementedError('Resampling frequency %s that does' ' not evenly divide a day is not ' 'implemented' % rule) self._rule = rule self._kwargs = kwargs def _agg(self, how, meta=None, fill_value=np.nan): rule = self._rule kwargs = self._kwargs name = 'resample-' + tokenize(self.obj, rule, kwargs, how) # Create a grouper to determine closed and label conventions newdivs, outdivs = _resample_bin_and_out_divs(self.obj.divisions, rule, **kwargs) # Repartition divs into bins. These won't match labels after mapping partitioned = self.obj.repartition(newdivs, force=True) keys = partitioned._keys() dsk = partitioned.dask args = zip(keys, outdivs, outdivs[1:], ['left']*(len(keys)-1) + [None]) for i, (k, s, e, c) in enumerate(args): dsk[(name, i)] = (_resample_series, k, s, e, c, rule, kwargs, how, fill_value) # Infer output metadata meta_r = self.obj._meta_nonempty.resample(self._rule, **self._kwargs) meta = getattr(meta_r, how)() if isinstance(meta, pd.DataFrame): return DataFrame(dsk, name, meta, outdivs) return Series(dsk, name, meta, outdivs) def count(self): return self._agg('count', fill_value=0) def first(self): return self._agg('first') def last(self): return self._agg('last') def mean(self): return self._agg('mean') def min(self): return self._agg('min') def median(self): return self._agg('median') def max(self): return self._agg('max') def ohlc(self): return self._agg('ohlc') def prod(self): return self._agg('prod') def sem(self): return self._agg('sem') def std(self): return self._agg('std') def sum(self): return self._agg('sum') def var(self): return self._agg('var')
{ "repo_name": "cowlicks/dask", "path": "dask/dataframe/tseries/resample.py", "copies": "2", "size": "5034", "license": "bsd-3-clause", "hash": -5633275493435163000, "line_mean": 30.4625, "line_max": 80, "alpha_frac": 0.568533969, "autogenerated": false, "ratio": 3.663755458515284, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5232289427515284, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings import pandas as pd import numpy as np from ..core import DataFrame, Series from ..utils import PANDAS_VERSION from ...base import tokenize from ...utils import derived_from if PANDAS_VERSION >= '0.20.0': from pandas.core.resample import Resampler as pd_Resampler else: from pandas.tseries.resample import Resampler as pd_Resampler def getnanos(rule): try: return getattr(rule, 'nanos', None) except ValueError: return None def _resample(obj, rule, how, **kwargs): resampler = Resampler(obj, rule, **kwargs) if how is not None: w = FutureWarning(("how in .resample() is deprecated " "the new syntax is .resample(...)" ".{0}()").format(how)) warnings.warn(w) return getattr(resampler, how)() return resampler def _resample_series(series, start, end, reindex_closed, rule, resample_kwargs, how, fill_value): out = getattr(series.resample(rule, **resample_kwargs), how)() return out.reindex(pd.date_range(start, end, freq=rule, closed=reindex_closed), fill_value=fill_value) def _resample_bin_and_out_divs(divisions, rule, closed='left', label='left'): rule = pd.tseries.frequencies.to_offset(rule) g = pd.TimeGrouper(rule, how='count', closed=closed, label=label) # Determine bins to apply `how` to. Disregard labeling scheme. divs = pd.Series(range(len(divisions)), index=divisions) temp = divs.resample(rule, closed=closed, label='left').count() tempdivs = temp.loc[temp > 0].index # Cleanup closed == 'right' and label == 'right' res = pd.offsets.Nano() if hasattr(rule, 'delta') else pd.offsets.Day() if g.closed == 'right': newdivs = tempdivs + res else: newdivs = tempdivs if g.label == 'right': outdivs = tempdivs + rule else: outdivs = tempdivs newdivs = newdivs.tolist() outdivs = outdivs.tolist() # Adjust ends if newdivs[0] < divisions[0]: newdivs[0] = divisions[0] if newdivs[-1] < divisions[-1]: if len(newdivs) < len(divs): setter = lambda a, val: a.append(val) else: setter = lambda a, val: a.__setitem__(-1, val) setter(newdivs, divisions[-1]) if outdivs[-1] > divisions[-1]: setter(outdivs, outdivs[-1]) elif outdivs[-1] < divisions[-1]: setter(outdivs, temp.index[-1]) return tuple(map(pd.Timestamp, newdivs)), tuple(map(pd.Timestamp, outdivs)) class Resampler(object): def __init__(self, obj, rule, **kwargs): if not obj.known_divisions: msg = ("Can only resample dataframes with known divisions\n" "See dask.pydata.org/en/latest/dataframe-design.html#partitions\n" "for more information.") raise ValueError(msg) self.obj = obj rule = pd.tseries.frequencies.to_offset(rule) day_nanos = pd.tseries.frequencies.Day().nanos if getnanos(rule) and day_nanos % rule.nanos: raise NotImplementedError('Resampling frequency %s that does' ' not evenly divide a day is not ' 'implemented' % rule) self._rule = rule self._kwargs = kwargs def _agg(self, how, meta=None, fill_value=np.nan): rule = self._rule kwargs = self._kwargs name = 'resample-' + tokenize(self.obj, rule, kwargs, how) # Create a grouper to determine closed and label conventions newdivs, outdivs = _resample_bin_and_out_divs(self.obj.divisions, rule, **kwargs) # Repartition divs into bins. These won't match labels after mapping partitioned = self.obj.repartition(newdivs, force=True) keys = partitioned._keys() dsk = partitioned.dask args = zip(keys, outdivs, outdivs[1:], ['left'] * (len(keys) - 1) + [None]) for i, (k, s, e, c) in enumerate(args): dsk[(name, i)] = (_resample_series, k, s, e, c, rule, kwargs, how, fill_value) # Infer output metadata meta_r = self.obj._meta_nonempty.resample(self._rule, **self._kwargs) meta = getattr(meta_r, how)() if isinstance(meta, pd.DataFrame): return DataFrame(dsk, name, meta, outdivs) return Series(dsk, name, meta, outdivs) @derived_from(pd_Resampler) def count(self): return self._agg('count', fill_value=0) @derived_from(pd_Resampler) def first(self): return self._agg('first') @derived_from(pd_Resampler) def last(self): return self._agg('last') @derived_from(pd_Resampler) def mean(self): return self._agg('mean') @derived_from(pd_Resampler) def min(self): return self._agg('min') @derived_from(pd_Resampler) def median(self): return self._agg('median') @derived_from(pd_Resampler) def max(self): return self._agg('max') @derived_from(pd_Resampler) def ohlc(self): return self._agg('ohlc') @derived_from(pd_Resampler) def prod(self): return self._agg('prod') @derived_from(pd_Resampler) def sem(self): return self._agg('sem') @derived_from(pd_Resampler) def std(self): return self._agg('std') @derived_from(pd_Resampler) def sum(self): return self._agg('sum') @derived_from(pd_Resampler) def var(self): return self._agg('var')
{ "repo_name": "mraspaud/dask", "path": "dask/dataframe/tseries/resample.py", "copies": "2", "size": "5745", "license": "bsd-3-clause", "hash": 5152296525017448000, "line_mean": 30.7403314917, "line_max": 85, "alpha_frac": 0.5857267189, "autogenerated": false, "ratio": 3.544108574953732, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5129835293853733, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import warnings import pandas as pd from . import utils from .alignment import align from .merge import merge from .pycompat import OrderedDict, basestring, iteritems from .variable import concat as concat_vars from .variable import IndexVariable, Variable, as_variable def concat(objs, dim=None, data_vars='all', coords='different', compat='equals', positions=None, indexers=None, mode=None, concat_over=None): """Concatenate xarray objects along a new or existing dimension. Parameters ---------- objs : sequence of Dataset and DataArray objects xarray objects to concatenate together. Each object is expected to consist of variables and coordinates with matching shapes except for along the concatenated dimension. dim : str or DataArray or pandas.Index Name of the dimension to concatenate along. This can either be a new dimension name, in which case it is added along axis=0, or an existing dimension name, in which case the location of the dimension is unchanged. If dimension is provided as a DataArray or Index, its name is used as the dimension to concatenate along and the values are added as a coordinate. data_vars : {'minimal', 'different', 'all' or list of str}, optional These data variables will be concatenated together: * 'minimal': Only data variables in which the dimension already appears are included. * 'different': Data variables which are not equal (ignoring attributes) across all datasets are also concatenated (as well as all for which dimension already appears). Beware: this option may load the data payload of data variables into memory if they are not already loaded. * 'all': All data variables will be concatenated. * list of str: The listed data variables will be concatenated, in addition to the 'minimal' data variables. If objects are DataArrays, data_vars must be 'all'. coords : {'minimal', 'different', 'all' o list of str}, optional These coordinate variables will be concatenated together: * 'minimal': Only coordinates in which the dimension already appears are included. * 'different': Coordinates which are not equal (ignoring attributes) across all datasets are also concatenated (as well as all for which dimension already appears). Beware: this option may load the data payload of coordinate variables into memory if they are not already loaded. * 'all': All coordinate variables will be concatenated, except those corresponding to other dimensions. * list of str: The listed coordinate variables will be concatenated, in addition the 'minimal' coordinates. compat : {'equals', 'identical'}, optional String indicating how to compare non-concatenated variables and dataset global attributes for potential conflicts. 'equals' means that all variable values and dimensions must be the same; 'identical' means that variable attributes and global attributes must also be equal. positions : None or list of integer arrays, optional List of integer arrays which specifies the integer positions to which to assign each dataset along the concatenated dimension. If not supplied, objects are concatenated in the provided order. indexers, mode, concat_over : deprecated Returns ------- concatenated : type of objs See also -------- merge auto_combine """ # TODO: add join and ignore_index arguments copied from pandas.concat # TODO: support concatenating scalar coordinates even if the concatenated # dimension already exists from .dataset import Dataset from .dataarray import DataArray try: first_obj, objs = utils.peek_at(objs) except StopIteration: raise ValueError('must supply at least one object to concatenate') if dim is None: warnings.warn('the `dim` argument to `concat` will be required ' 'in a future version of xarray; for now, setting it to ' "the old default of 'concat_dim'", FutureWarning, stacklevel=2) dim = 'concat_dims' if indexers is not None: # pragma: nocover warnings.warn('indexers has been renamed to positions; the alias ' 'will be removed in a future version of xarray', FutureWarning, stacklevel=2) positions = indexers if mode is not None: raise ValueError('`mode` is no longer a valid argument to ' 'xarray.concat; it has been split into the ' '`data_vars` and `coords` arguments') if concat_over is not None: raise ValueError('`concat_over` is no longer a valid argument to ' 'xarray.concat; it has been split into the ' '`data_vars` and `coords` arguments') if isinstance(first_obj, DataArray): f = _dataarray_concat elif isinstance(first_obj, Dataset): f = _dataset_concat else: raise TypeError('can only concatenate xarray Dataset and DataArray ' 'objects, got %s' % type(first_obj)) return f(objs, dim, data_vars, coords, compat, positions) def _calc_concat_dim_coord(dim): """ Infer the dimension name and 1d coordinate variable (if appropriate) for concatenating along the new dimension. """ if isinstance(dim, basestring): coord = None elif not hasattr(dim, 'dims'): # dim is not a DataArray or IndexVariable dim_name = getattr(dim, 'name', None) if dim_name is None: dim_name = 'concat_dim' coord = IndexVariable(dim_name, dim) dim = dim_name elif not hasattr(dim, 'name'): coord = as_variable(dim).to_index_variable() dim, = coord.dims else: coord = dim dim, = coord.dims return dim, coord def _calc_concat_over(datasets, dim, data_vars, coords): """ Determine which dataset variables need to be concatenated in the result, and which can simply be taken from the first dataset. """ # Return values concat_over = set() equals = {} if dim in datasets[0]: concat_over.add(dim) for ds in datasets: concat_over.update(k for k, v in ds.variables.items() if dim in v.dims) def process_subset_opt(opt, subset): if isinstance(opt, basestring): if opt == 'different': # all nonindexes that are not the same in each dataset for k in getattr(datasets[0], subset): if k not in concat_over: # Compare the variable of all datasets vs. the one # of the first dataset. Perform the minimum amount of # loads in order to avoid multiple loads from disk # while keeping the RAM footprint low. v_lhs = datasets[0].variables[k].load() # We'll need to know later on if variables are equal. computed = [] for ds_rhs in datasets[1:]: v_rhs = ds_rhs.variables[k].compute() computed.append(v_rhs) if not v_lhs.equals(v_rhs): concat_over.add(k) equals[k] = False # computed variables are not to be re-computed # again in the future for ds, v in zip(datasets[1:], computed): ds.variables[k].data = v.data break else: equals[k] = True elif opt == 'all': concat_over.update(set(getattr(datasets[0], subset)) - set(datasets[0].dims)) elif opt == 'minimal': pass else: raise ValueError("unexpected value for %s: %s" % (subset, opt)) else: invalid_vars = [k for k in opt if k not in getattr(datasets[0], subset)] if invalid_vars: if subset == 'coords': raise ValueError( 'some variables in coords are not coordinates on ' 'the first dataset: %s' % (invalid_vars,)) else: raise ValueError( 'some variables in data_vars are not data variables ' 'on the first dataset: %s' % (invalid_vars,)) concat_over.update(opt) process_subset_opt(data_vars, 'data_vars') process_subset_opt(coords, 'coords') return concat_over, equals def _dataset_concat(datasets, dim, data_vars, coords, compat, positions): """ Concatenate a sequence of datasets along a new or existing dimension """ from .dataset import Dataset if compat not in ['equals', 'identical']: raise ValueError("compat=%r invalid: must be 'equals' " "or 'identical'" % compat) dim, coord = _calc_concat_dim_coord(dim) # Make sure we're working on a copy (we'll be loading variables) datasets = [ds.copy() for ds in datasets] datasets = align(*datasets, join='outer', copy=False, exclude=[dim]) concat_over, equals = _calc_concat_over(datasets, dim, data_vars, coords) def insert_result_variable(k, v): assert isinstance(v, Variable) if k in datasets[0].coords: result_coord_names.add(k) result_vars[k] = v # create the new dataset and add constant variables result_vars = OrderedDict() result_coord_names = set(datasets[0].coords) result_attrs = datasets[0].attrs result_encoding = datasets[0].encoding for k, v in datasets[0].variables.items(): if k not in concat_over: insert_result_variable(k, v) # check that global attributes and non-concatenated variables are fixed # across all datasets for ds in datasets[1:]: if (compat == 'identical' and not utils.dict_equiv(ds.attrs, result_attrs)): raise ValueError('dataset global attributes not equal') for k, v in iteritems(ds.variables): if k not in result_vars and k not in concat_over: raise ValueError('encountered unexpected variable %r' % k) elif (k in result_coord_names) != (k in ds.coords): raise ValueError('%r is a coordinate in some datasets but not ' 'others' % k) elif k in result_vars and k != dim: # Don't use Variable.identical as it internally invokes # Variable.equals, and we may already know the answer if compat == 'identical' and not utils.dict_equiv( v.attrs, result_vars[k].attrs): raise ValueError( 'variable %s not identical across datasets' % k) # Proceed with equals() try: # May be populated when using the "different" method is_equal = equals[k] except KeyError: result_vars[k].load() is_equal = v.equals(result_vars[k]) if not is_equal: raise ValueError( 'variable %s not equal across datasets' % k) # we've already verified everything is consistent; now, calculate # shared dimension sizes so we can expand the necessary variables dim_lengths = [ds.dims.get(dim, 1) for ds in datasets] non_concat_dims = {} for ds in datasets: non_concat_dims.update(ds.dims) non_concat_dims.pop(dim, None) def ensure_common_dims(vars): # ensure each variable with the given name shares the same # dimensions and the same shape for all of them except along the # concat dimension common_dims = tuple(pd.unique([d for v in vars for d in v.dims])) if dim not in common_dims: common_dims = (dim,) + common_dims for var, dim_len in zip(vars, dim_lengths): if var.dims != common_dims: common_shape = tuple(non_concat_dims.get(d, dim_len) for d in common_dims) var = var.set_dims(common_dims, common_shape) yield var # stack up each variable to fill-out the dataset (in order) for k in datasets[0].variables: if k in concat_over: vars = ensure_common_dims([ds.variables[k] for ds in datasets]) combined = concat_vars(vars, dim, positions) insert_result_variable(k, combined) result = Dataset(result_vars, attrs=result_attrs) result = result.set_coords(result_coord_names) result.encoding = result_encoding if coord is not None: # add concat dimension last to ensure that its in the final Dataset result[coord.name] = coord return result def _dataarray_concat(arrays, dim, data_vars, coords, compat, positions): arrays = list(arrays) if data_vars != 'all': raise ValueError('data_vars is not a valid argument when ' 'concatenating DataArray objects') datasets = [] for n, arr in enumerate(arrays): if n == 0: name = arr.name elif name != arr.name: if compat == 'identical': raise ValueError('array names not identical') else: arr = arr.rename(name) datasets.append(arr._to_temp_dataset()) ds = _dataset_concat(datasets, dim, data_vars, coords, compat, positions) return arrays[0]._from_temp_dataset(ds, name) def _auto_concat(datasets, dim=None, data_vars='all', coords='different'): if len(datasets) == 1 and dim is None: # There is nothing more to combine, so kick out early. return datasets[0] else: if dim is None: ds0 = datasets[0] ds1 = datasets[1] concat_dims = set(ds0.dims) if ds0.dims != ds1.dims: dim_tuples = set(ds0.dims.items()) - set(ds1.dims.items()) concat_dims = set(i for i, _ in dim_tuples) if len(concat_dims) > 1: concat_dims = set(d for d in concat_dims if not ds0[d].equals(ds1[d])) if len(concat_dims) > 1: raise ValueError('too many different dimensions to ' 'concatenate: %s' % concat_dims) elif len(concat_dims) == 0: raise ValueError('cannot infer dimension to concatenate: ' 'supply the ``concat_dim`` argument ' 'explicitly') dim, = concat_dims return concat(datasets, dim=dim, data_vars=data_vars, coords=coords) _CONCAT_DIM_DEFAULT = '__infer_concat_dim__' def auto_combine(datasets, concat_dim=_CONCAT_DIM_DEFAULT, compat='no_conflicts', data_vars='all', coords='different'): """Attempt to auto-magically combine the given datasets into one. This method attempts to combine a list of datasets into a single entity by inspecting metadata and using a combination of concat and merge. It does not concatenate along more than one dimension or sort data under any circumstances. It does align coordinates, but different variables on datasets can cause it to fail under some scenarios. In complex cases, you may need to clean up your data and use ``concat``/``merge`` explicitly. ``auto_combine`` works well if you have N years of data and M data variables, and each combination of a distinct time period and set of data variables is saved its own dataset. Parameters ---------- datasets : sequence of xarray.Dataset Dataset objects to merge. concat_dim : str or DataArray or Index, optional Dimension along which to concatenate variables, as used by :py:func:`xarray.concat`. You only need to provide this argument if the dimension along which you want to concatenate is not a dimension in the original datasets, e.g., if you want to stack a collection of 2D arrays along a third dimension. By default, xarray attempts to infer this argument by examining component files. Set ``concat_dim=None`` explicitly to disable concatenation. compat : {'identical', 'equals', 'broadcast_equals', 'no_conflicts'}, optional String indicating how to compare variables of the same name for potential conflicts: - 'broadcast_equals': all values must be equal when variables are broadcast against each other to ensure common dimensions. - 'equals': all values and dimensions must be the same. - 'identical': all values, dimensions and attributes must be the same. - 'no_conflicts': only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. data_vars : {'minimal', 'different', 'all' or list of str}, optional Details are in the documentation of concat coords : {'minimal', 'different', 'all' o list of str}, optional Details are in the documentation of concat Returns ------- combined : xarray.Dataset See also -------- concat Dataset.merge """ from toolz import itertoolz if concat_dim is not None: dim = None if concat_dim is _CONCAT_DIM_DEFAULT else concat_dim grouped = itertoolz.groupby(lambda ds: tuple(sorted(ds.data_vars)), datasets).values() concatenated = [_auto_concat(ds, dim=dim, data_vars=data_vars, coords=coords) for ds in grouped] else: concatenated = datasets merged = merge(concatenated, compat=compat) return merged
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/combine.py", "copies": "1", "size": "18716", "license": "apache-2.0", "hash": -7987946823958506000, "line_mean": 41.5363636364, "line_max": 79, "alpha_frac": 0.5915793973, "autogenerated": false, "ratio": 4.659198406771222, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5750777804071223, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import weakref from itertools import chain from weakref import WeakKeyDictionary from contextlib import contextmanager from .callback_container import CallbackContainer __all__ = ['CallbackProperty', 'callback_property', 'add_callback', 'remove_callback', 'delay_callback', 'ignore_callback', 'HasCallbackProperties', 'keep_in_sync'] class CallbackProperty(object): """ A property that callback functions can be added to. When a callback property changes value, each callback function is called with information about the state change. Otherwise, callback properties behave just like normal instance variables. CallbackProperties must be defined at the class level. Use the helper function :func:`~echo.add_callback` to attach a callback to a specific instance of a class with CallbackProperties Parameters ---------- default The initial value for the property docstring : str The docstring for the property getter, setter : func Custom getter and setter functions (advanced) """ def __init__(self, default=None, docstring=None, getter=None, setter=None): """ :param default: The initial value for the property """ self._default = default self._callbacks = WeakKeyDictionary() self._2arg_callbacks = WeakKeyDictionary() self._disabled = WeakKeyDictionary() self._values = WeakKeyDictionary() if getter is None: getter = self._default_getter if setter is None: setter = self._default_setter self._getter = getter self._setter = setter if docstring is not None: self.__doc__ = docstring def _default_getter(self, instance, owner=None): return self._values.get(instance, self._default) def _default_setter(self, instance, value): self._values.__setitem__(instance, value) def __get__(self, instance, owner=None): if instance is None: return self return self._getter(instance) def __set__(self, instance, value): try: old = self.__get__(instance) except AttributeError: # pragma: no cover old = None self._setter(instance, value) new = self.__get__(instance) if old != new: self.notify(instance, old, new) def setter(self, func): """ Method to use as a decorator, to mimic @property.setter """ self._setter = func return self def _get_full_info(self, instance): # Some callback subclasses may contain additional info in addition # to the main value, and we need to use this full information when # comparing old and new 'values', so this method is used in that # case. The result should be a tuple where the first item is the # actual primary value of the property and the second item is any # additional data to use in the comparison. # Note that we need to make sure we convert any list here to a tuple # to make sure the value is immutable, otherwise comparisons of # old != new will not show any difference (since the list can still) # be modified in-place value = self.__get__(instance) if isinstance(value, list): value = tuple(value) return value, None def notify(self, instance, old, new): """ Call all callback functions with the current value Each callback will either be called using callback(new) or callback(old, new) depending on whether ``echo_old`` was set to `True` when calling :func:`~echo.add_callback` Parameters ---------- instance The instance to consider old The old value of the property new The new value of the property """ if not self.enabled(instance): return for cback in self._callbacks.get(instance, []): cback(new) for cback in self._2arg_callbacks.get(instance, []): cback(old, new) def disable(self, instance): """ Disable callbacks for a specific instance """ self._disabled[instance] = True def enable(self, instance): """ Enable previously-disabled callbacks for a specific instance """ self._disabled[instance] = False def enabled(self, instance): return not self._disabled.get(instance, False) def add_callback(self, instance, func, echo_old=False, priority=0): """ Add a callback to a specific instance that manages this property Parameters ---------- instance The instance to add the callback to func : func The callback function to add echo_old : bool, optional If `True`, the callback function will be invoked with both the old and new values of the property, as ``func(old, new)``. If `False` (the default), will be invoked as ``func(new)`` priority : int, optional This can optionally be used to force a certain order of execution of callbacks (larger values indicate a higher priority). """ if echo_old: self._2arg_callbacks.setdefault(instance, CallbackContainer()).append(func, priority=priority) else: self._callbacks.setdefault(instance, CallbackContainer()).append(func, priority=priority) def remove_callback(self, instance, func): """ Remove a previously-added callback Parameters ---------- instance The instance to detach the callback from func : func The callback function to remove """ for cb in [self._callbacks, self._2arg_callbacks]: if instance not in cb: continue if func in cb[instance]: cb[instance].remove(func) return else: raise ValueError("Callback function not found: %s" % func) class HasCallbackProperties(object): """ A class that adds functionality to subclasses that use callback properties. """ def __init__(self): from .list import ListCallbackProperty self._global_callbacks = CallbackContainer() self._ignored_properties = set() self._delayed_properties = {} self._delay_global_calls = {} self._callback_wrappers = {} for prop_name, prop in self.iter_callback_properties(): if isinstance(prop, ListCallbackProperty): prop.add_callback(self, self._notify_global_lists) def _ignore_global_callbacks(self, properties): # This is to allow ignore_callbacks to work for global callbacks self._ignored_properties.update(properties) def _unignore_global_callbacks(self, properties): # Once this is called, we simply remove properties from _ignored_properties # and don't call the callbacks. This is used by ignore_callback self._ignored_properties -= set(properties) def _delay_global_callbacks(self, properties): # This is to allow delay_callback to still have an effect in delaying # global callbacks. We set _delayed_properties to a dictionary of the # values at the point at which the callbacks are delayed. self._delayed_properties.update(properties) def _process_delayed_global_callbacks(self, properties): # Once this is called, the global callbacks are called once each with # a dictionary of the current values of properties that have been # resumed. kwargs = {} for prop, new_value in properties.items(): old_value = self._delayed_properties.pop(prop) if old_value != new_value: kwargs[prop] = new_value[0] self._notify_global(**kwargs) def _notify_global_lists(self, *args): from .list import ListCallbackProperty properties = {} for prop_name, prop in self.iter_callback_properties(): if isinstance(prop, ListCallbackProperty): callback_list = getattr(self, prop_name) if callback_list is args[0]: properties[prop_name] = callback_list break self._notify_global(**properties) def _notify_global(self, **kwargs): for prop in set(self._delayed_properties) | set(self._ignored_properties): if prop in kwargs: kwargs.pop(prop) if len(kwargs) > 0: for callback in self._global_callbacks: callback(**kwargs) def __setattr__(self, attribute, value): super(HasCallbackProperties, self).__setattr__(attribute, value) if self.is_callback_property(attribute): self._notify_global(**{attribute: value}) def add_callback(self, name, callback, echo_old=False, priority=0): """ Add a callback that gets triggered when a callback property of the class changes. Parameters ---------- name : str The instance to add the callback to. callback : func The callback function to add echo_old : bool, optional If `True`, the callback function will be invoked with both the old and new values of the property, as ``callback(old, new)``. If `False` (the default), will be invoked as ``callback(new)`` priority : int, optional This can optionally be used to force a certain order of execution of callbacks (larger values indicate a higher priority). """ if self.is_callback_property(name): prop = getattr(type(self), name) prop.add_callback(self, callback, echo_old=echo_old, priority=priority) else: raise TypeError("attribute '{0}' is not a callback property".format(name)) def remove_callback(self, name, callback): """ Remove a previously-added callback Parameters ---------- name : str The instance to remove the callback from. func : func The callback function to remove """ if self.is_callback_property(name): prop = getattr(type(self), name) try: prop.remove_callback(self, callback) except ValueError: # pragma: nocover pass # Be forgiving if callback was already removed before else: raise TypeError("attribute '{0}' is not a callback property".format(name)) def add_global_callback(self, callback): """ Add a global callback function, which is a callback that gets triggered when any callback properties on the class change. Parameters ---------- callback : func The callback function to add """ self._global_callbacks.append(callback) def remove_global_callback(self, callback): """ Remove a global callback function. Parameters ---------- callback : func The callback function to remove """ self._global_callbacks.remove(callback) def is_callback_property(self, name): """ Whether a property (identified by name) is a callback property. Parameters ---------- name : str The name of the property to check """ return isinstance(getattr(type(self), name, None), CallbackProperty) def iter_callback_properties(self): """ Iterator to loop over all callback properties. """ for name in dir(self): if self.is_callback_property(name): yield name, getattr(type(self), name) def add_callback(instance, prop, callback, echo_old=False, priority=0): """ Attach a callback function to a property in an instance Parameters ---------- instance The instance to add the callback to prop : str Name of callback property in `instance` callback : func The callback function to add echo_old : bool, optional If `True`, the callback function will be invoked with both the old and new values of the property, as ``func(old, new)``. If `False` (the default), will be invoked as ``func(new)`` priority : int, optional This can optionally be used to force a certain order of execution of callbacks (larger values indicate a higher priority). Examples -------- :: class Foo: bar = CallbackProperty(0) def callback(value): pass f = Foo() add_callback(f, 'bar', callback) """ p = getattr(type(instance), prop) if not isinstance(p, CallbackProperty): raise TypeError("%s is not a CallbackProperty" % prop) p.add_callback(instance, callback, echo_old=echo_old, priority=priority) def remove_callback(instance, prop, callback): """ Remove a callback function from a property in an instance Parameters ---------- instance The instance to detach the callback from prop : str Name of callback property in `instance` callback : func The callback function to remove """ p = getattr(type(instance), prop) if not isinstance(p, CallbackProperty): raise TypeError("%s is not a CallbackProperty" % prop) p.remove_callback(instance, callback) def callback_property(getter): """ A decorator to build a CallbackProperty. This is used by wrapping a getter method, similar to the use of @property:: class Foo(object): @callback_property def x(self): return self._x @x.setter def x(self, value): self._x = value In simple cases with no getter or setter logic, it's easier to create a :class:`~echo.CallbackProperty` directly:: class Foo(object); x = CallbackProperty(initial_value) """ cb = CallbackProperty(getter=getter) cb.__doc__ = getter.__doc__ return cb class delay_callback(object): """ Delay any callback functions from one or more callback properties This is a context manager. Within the context block, no callbacks will be issued. Each callback will be called once on exit Parameters ---------- instance An instance object with callback properties *props : str One or more properties within instance to delay Examples -------- :: with delay_callback(foo, 'bar', 'baz'): f.bar = 20 f.baz = 30 f.bar = 10 print('done') # callbacks triggered at this point, if needed """ # Class-level registry of properties and how many times the callbacks have # been delayed. The idea is that when nesting calls to delay_callback, the # delay count is increased, and every time __exit__ is called, the count is # decreased, and once the count reaches zero, the callback is triggered. delay_count = {} old_values = {} def __init__(self, instance, *props): self.instance = instance self.props = props def __enter__(self): delay_props = {} for prop in self.props: p = getattr(type(self.instance), prop) if not isinstance(p, CallbackProperty): raise TypeError("%s is not a CallbackProperty" % prop) if (self.instance, prop) not in self.delay_count: self.delay_count[self.instance, prop] = 1 self.old_values[self.instance, prop] = p._get_full_info(self.instance) delay_props[prop] = p._get_full_info(self.instance) else: self.delay_count[self.instance, prop] += 1 p.disable(self.instance) if isinstance(self.instance, HasCallbackProperties): self.instance._delay_global_callbacks(delay_props) def __exit__(self, *args): resume_props = {} notifications = [] for prop in self.props: p = getattr(type(self.instance), prop) if not isinstance(p, CallbackProperty): # pragma: no cover raise TypeError("%s is not a CallbackProperty" % prop) if self.delay_count[self.instance, prop] > 1: self.delay_count[self.instance, prop] -= 1 else: self.delay_count.pop((self.instance, prop)) old = self.old_values.pop((self.instance, prop)) p.enable(self.instance) new = p._get_full_info(self.instance) if old != new: notifications.append((p, (self.instance, old[0], new[0]))) resume_props[prop] = new if isinstance(self.instance, HasCallbackProperties): self.instance._process_delayed_global_callbacks(resume_props) for p, args in notifications: p.notify(*args) @contextmanager def ignore_callback(instance, *props): """ Temporarily ignore any callbacks from one or more callback properties This is a context manager. Within the context block, no callbacks will be issued. In contrast with :func:`~echo.delay_callback`, no callbakcs will be called on exiting the context manager Parameters ---------- instance An instance object with callback properties *props : str One or more properties within instance to ignore Examples -------- :: with ignore_callback(foo, 'bar', 'baz'): f.bar = 20 f.baz = 30 f.bar = 10 print('done') # no callbacks called """ for prop in props: p = getattr(type(instance), prop) if not isinstance(p, CallbackProperty): raise TypeError("%s is not a CallbackProperty" % prop) p.disable(instance) if isinstance(instance, HasCallbackProperties): instance._ignore_global_callbacks(props) yield for prop in props: p = getattr(type(instance), prop) assert isinstance(p, CallbackProperty) p.enable(instance) if isinstance(instance, HasCallbackProperties): instance._unignore_global_callbacks(props) class keep_in_sync(object): def __init__(self, instance1, prop1, instance2, prop2): self.instance1 = weakref.ref(instance1, self.disable_syncing) self.prop1 = prop1 self.instance2 = weakref.ref(instance2, self.disable_syncing) self.prop2 = prop2 self._syncing = False self.enabled = False self.enable_syncing() def prop1_from_prop2(self, value): if not self._syncing: self._syncing = True setattr(self.instance1(), self.prop1, getattr(self.instance2(), self.prop2)) self._syncing = False def prop2_from_prop1(self, value): if not self._syncing: self._syncing = True setattr(self.instance2(), self.prop2, getattr(self.instance1(), self.prop1)) self._syncing = False def enable_syncing(self, *args): if self.enabled: return add_callback(self.instance1(), self.prop1, self.prop2_from_prop1) add_callback(self.instance2(), self.prop2, self.prop1_from_prop2) self.enabled = True def disable_syncing(self, *args): if not self.enabled: return if self.instance1() is not None: remove_callback(self.instance1(), self.prop1, self.prop2_from_prop1) if self.instance2() is not None: remove_callback(self.instance2(), self.prop2, self.prop1_from_prop2) self.enabled = False
{ "repo_name": "stscieisenhamer/glue", "path": "glue/external/echo/core.py", "copies": "1", "size": "20093", "license": "bsd-3-clause", "hash": 4903858446537994000, "line_mean": 31.7781402936, "line_max": 106, "alpha_frac": 0.6016523167, "autogenerated": false, "ratio": 4.59688858384809, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.569854090054809, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import weakref import logging from abc import ABCMeta, abstractmethod from glue.utils import CallbackMixin from glue.core.data_factories import load_data from glue.core.edit_subset_mode import EditSubsetMode MAX_UNDO = 50 """ The classes in this module allow user actions to be stored as commands, which can be undone/redone All UI frontends should map interactions to command objects, instead of directly performing an action. Commands have access to two sources of data: the first are the keyword arguments passed to the constructor. These are stored as attributes of self. The second is a session object passed to all Command.do and Command.undo calls. """ class Command(object): """ A class to encapsulate (and possibly undo) state changes Subclasses of this abstract base class must implement the `do` and `undo` methods. Both `do` and `undo` receive a single input argument named `session` -- this is whatever object is passed to the constructor of :class:`glue.core.command.CommandStack`. This object is used to store and retrieve resources needed by each command. The Glue application itself uses a :class:`~glue.core.session.Session` instance for this. Each class should also override the class-level kwargs list, to list the required keyword arguments that should be passed to the command constructor. The base class will check that these keywords are indeed provided. Commands should not take non-keyword arguments in the constructor method """ __metaclass__ = ABCMeta kwargs = [] def __init__(self, **kwargs): kwargs = kwargs.copy() for k in self.kwargs: if k not in kwargs: raise RuntimeError("Required keyword %s not passed to %s" % (k, type(self))) setattr(self, k, kwargs.pop(k)) self.extra = kwargs @abstractmethod def do(self, session): """ Execute the command :param session: An object used to store and fetch resources needed by a Command. """ pass @abstractmethod def undo(self, session): pass @property def label(self): return type(self).__name__ class CommandStack(CallbackMixin): """ The command stack collects commands, and saves them to enable undoing/redoing After instantiation, something can be assigned to the session property. This is passed as the sole argument of all Command (un)do methods. """ def __init__(self): super(CommandStack, self).__init__() self._session = None self._command_stack = [] self._undo_stack = [] @property def session(self): return self._session @session.setter def session(self, value): self._session = value @property def undo_label(self): """ Brief label for the command reversed by an undo """ if len(self._command_stack) == 0: return '' cmd = self._command_stack[-1] return cmd.label @property def redo_label(self): """ Brief label for the command executed on a redo""" if len(self._undo_stack) == 0: return '' cmd = self._undo_stack[-1] return cmd.label def do(self, cmd): """ Execute and log a new command :rtype: The return value of cmd.do() """ logging.getLogger(__name__).debug("Do %s", cmd) self._command_stack.append(cmd) result = cmd.do(self._session) self._command_stack = self._command_stack[-MAX_UNDO:] self._undo_stack = [] self.notify('do') return result def undo(self): """ Undo the previous command :raises: IndexError, if there are no objects to undo """ try: c = self._command_stack.pop() logging.getLogger(__name__).debug("Undo %s", c) except IndexError: raise IndexError("No commands to undo") self._undo_stack.append(c) c.undo(self._session) self.notify('undo') def redo(self): """ Redo the previously-undone command :raises: IndexError, if there are no undone actions """ try: c = self._undo_stack.pop() logging.getLogger(__name__).debug("Undo %s", c) except IndexError: raise IndexError("No commands to redo") result = c.do(self._session) self._command_stack.append(c) self.notify('redo') return result def can_undo_redo(self): """ Return whether undo and redo options are possible :rtype: (bool, bool) - Whether undo and redo are possible, respectively """ return len(self._command_stack) > 0, len(self._undo_stack) > 0 class LoadData(Command): kwargs = ['path', 'factory'] label = 'load data' def do(self, session): return load_data(self.path, self.factory) def undo(self, session): pass class AddData(Command): kwargs = ['data'] label = 'add data' def do(self, session): session.data_collection.append(self.data) def undo(self, session): session.data_collection.remove(self.data) class RemoveData(Command): kwargs = ['data'] label = 'remove data' def do(self, session): session.data_collection.remove(self.data) def undo(self, session): session.data_collection.append(self.data) class NewDataViewer(Command): """Add a new data viewer to the application :param viewer: The class of viewer to create :param data: The data object to initialize the viewer with, or None :type date: :class:`~glue.core.data.Data` or None """ kwargs = ['viewer', 'data'] label = 'new data viewer' def do(self, session): v = session.application.new_data_viewer(self.viewer, self.data) self.created = weakref.ref(v) return v def undo(self, session): created = self.created() if created is not None: created.close(warn=False) class AddLayer(Command): """Add a new layer to a viewer :param layer: The layer to add :type layer: :class:`~glue.core.data.Data` or :class:`~glue.core.subset.Subset` :param viewer: The viewer to add the layer to """ kwargs = ['layer', 'viewer'] label = 'add layer' def do(self, session): self.viewer.add_layer(self.layer) def undo(self, session): self.viewer.remove_layer(self.layer) class ApplyROI(Command): """ Apply an ROI to a data collection, updating subset states Parameters ---------- data_collection: :class:`~glue.core.data_collection.DataCollection` DataCollection to operate on roi: :class:`~glue.core.roi.Roi` ROI to apply apply_func: callable The function to call which takes the ROI and actually applies it. """ kwargs = ['data_collection', 'roi', 'apply_func'] label = 'apply ROI' def do(self, session): self.old_states = {} for data in self.data_collection: for subset in data.subsets: self.old_states[subset] = subset.subset_state self.apply_func(self.roi) def undo(self, session): for data in self.data_collection: for subset in data.subsets: if subset not in self.old_states: subset.delete() for k, v in self.old_states.items(): k.subset_state = v class ApplySubsetState(Command): """ Apply an ROI to a data collection, updating subset states Parameters ---------- data_collection: :class:`~glue.core.data_collection.DataCollection` DataCollection to operate on subset_state: :class:`~glue.core.subset_state.SubsetState` Subset state to apply """ kwargs = ['data_collection', 'subset_state'] label = 'apply subset' def do(self, session): self.old_states = {} for data in self.data_collection: for subset in data.subsets: self.old_states[subset] = subset.subset_state mode = EditSubsetMode() mode.update(self.data_collection, self.subset_state) def undo(self, session): for data in self.data_collection: for subset in data.subsets: if subset not in self.old_states: subset.delete() for k, v in self.old_states.items(): k.subset_state = v class LinkData(Command): pass class SetViewState(Command): pass class NewTab(Command): pass class CloseTab(Command): pass class NewSubset(Command): pass class CopySubset(Command): pass class PasteSubset(Command): pass class SpecialPasteSubset(Command): pass class DeleteSubset(Command): pass class SetStyle(Command): pass class SetLabel(Command): pass
{ "repo_name": "stscieisenhamer/glue", "path": "glue/core/command.py", "copies": "1", "size": "9078", "license": "bsd-3-clause", "hash": 377555847735910500, "line_mean": 24.716713881, "line_max": 83, "alpha_frac": 0.6156642432, "autogenerated": false, "ratio": 4.098419864559819, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5214084107759819, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import workflows.recipe class RecipeWrapper(object): '''A wrapper object which contains a recipe and a number of functions to make life easier for recipe users. ''' def __init__(self, message=None, transport=None, recipe=None, **kwargs): '''Create a RecipeWrapper object from a wrapped message. References to the transport layer are required to send directly to connected downstream processes. ''' if message: self.recipe = workflows.recipe.Recipe(message['recipe']) self.recipe_pointer = int(message['recipe-pointer']) self.recipe_step = self.recipe[self.recipe_pointer] self.recipe_path = message.get('recipe-path', []) self.environment = message.get('environment', {}) self.payload = message.get('payload') elif recipe: if isinstance(recipe, workflows.recipe.Recipe): self.recipe = recipe else: self.recipe = workflows.recipe.Recipe(recipe) self.recipe_pointer = None self.recipe_step = None self.recipe_path = [] self.environment = {} self.payload = None else: raise ValueError('A message or recipe is required to create ' \ 'a RecipeWrapper object.') self.default_channel = None self.transport = transport def send(self, *args, **kwargs): '''Send messages to another service that is connected to the currently running service via the recipe. The 'send' method will either use a default channel name, set via the set_default_channel method, or an unnamed output definition. ''' if not self.transport: raise ValueError('This RecipeWrapper object does not contain ' \ 'a reference to a transport object.') if not self.recipe_step: raise ValueError('This RecipeWrapper object does not contain ' \ 'a recipe with a selected step.') if 'output' not in self.recipe_step: # The current recipe step does not have output channels. return if isinstance(self.recipe_step['output'], dict): # The current recipe step does have named output channels. if self.default_channel: # Use named output channel self.send_to(self.default_channel, *args, **kwargs) else: # The current recipe step does have unnamed output channels. self._send_to_destinations(self.recipe_step['output'], *args, **kwargs) def send_to(self, channel, *args, **kwargs): '''Send messages to another service that is connected to the currently running service via the recipe. Discard messages if the recipe does not have anything connected to the specified output channel. ''' if not self.transport: raise ValueError('This RecipeWrapper object does not contain ' \ 'a reference to a transport object.') if not self.recipe_step: raise ValueError('This RecipeWrapper object does not contain ' \ 'a recipe with a selected step.') if 'output' not in self.recipe_step: # The current recipe step does not have output channels. return if not isinstance(self.recipe_step['output'], dict): # The current recipe step does not have named output channels. if self.default_channel == channel: # Use unnamed output channels self.send(*args, **kwargs) return if channel not in self.recipe_step['output']: # The current recipe step does not have an output channel with this name. return self._send_to_destinations(self.recipe_step['output'][channel], *args, **kwargs) def set_default_channel(self, channel): '''Define one named output channel to be equivalent to unnamed output channels. For this channel send() and send_to() will be identical.''' self.default_channel = channel def start(self, header=None, **kwargs): '''Trigger the start of a recipe, sending the defined payloads to the recipients set in the recipe. Any parameters to this function are passed to the transport send/broadcast methods. If the wrapped recipe has already been started then a ValueError will be raised. ''' if not self.transport: raise ValueError('This RecipeWrapper object does not contain ' \ 'a reference to a transport object.') if self.recipe_step: raise ValueError('This recipe has already been started.') for destination, payload in self.recipe['start']: self._send_to_destination(destination, header, payload, kwargs) def checkpoint(self, message, header=None, delay=0, **kwargs): '''Send a message to the current recipe destination. This can be used to keep a state for longer processing tasks. :param delay: Delay transport of message by this many seconds ''' if not self.transport: raise ValueError('This RecipeWrapper object does not contain ' \ 'a reference to a transport object.') if not self.recipe_step: raise ValueError('This RecipeWrapper object does not contain ' \ 'a recipe with a selected step.') kwargs['delay'] = delay self._send_to_destination(self.recipe_pointer, header, message, kwargs, \ add_path_step=False) def apply_parameters(self, parameters): '''Recursively apply parameter replacement (see recipe.py) to the wrapped recipe, updating internal references afterwards. While this operation is useful for testing it should not be used in production. Replacing parameters means that the recipe changes as it is passed down the chain of services. This makes debugging very difficult. ''' self.recipe.apply_parameters(parameters) self.recipe_step = self.recipe[self.recipe_pointer] def _generate_full_recipe_message(self, destination, message, add_path_step): '''Factory function to generate independent message objects for downstream recipients with different destinations.''' if add_path_step and self.recipe_pointer: recipe_path = self.recipe_path + [ self.recipe_pointer ] else: recipe_path = self.recipe_path return { 'environment': self.environment, 'payload': message, 'recipe': self.recipe.recipe, 'recipe-path': recipe_path, 'recipe-pointer': destination, } def _send_to_destinations(self, destinations, message, header=None, **kwargs): '''Send messages to a list of numbered destinations. This is an internal helper method used by the public 'send' methods. ''' if not isinstance(destinations, list): destinations = ( destinations, ) for destination in destinations: self._send_to_destination(destination, header, message, kwargs) def _send_to_destination(self, destination, header, payload, \ transport_kwargs, add_path_step=True): '''Helper function to send a message to a specific recipe destination.''' if header: header = header.copy() header['workflows-recipe'] = True else: header = { 'workflows-recipe': True } dest_kwargs = transport_kwargs.copy() if 'transport-delay' in self.recipe[destination] and \ 'delay' not in transport_kwargs: dest_kwargs['delay'] = self.recipe[destination]['transport-delay'] if self.recipe[destination].get('queue'): self.transport.send( self.recipe[destination]['queue'], self._generate_full_recipe_message(destination, payload, add_path_step), headers=header, **dest_kwargs) if self.recipe[destination].get('topic'): self.transport.broadcast( self.recipe[destination]['topic'], self._generate_full_recipe_message(destination, payload, add_path_step), headers=header, **dest_kwargs)
{ "repo_name": "xia2/workflows", "path": "workflows/recipe/wrapper.py", "copies": "1", "size": "7999", "license": "bsd-3-clause", "hash": 1529886499157076000, "line_mean": 40.0205128205, "line_max": 82, "alpha_frac": 0.658832354, "autogenerated": false, "ratio": 4.488776655443322, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.009028049538223995, "num_lines": 195 }
from __future__ import absolute_import, division, print_function import zipfile from fsspec import open_files from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class ZipFileSystem(AbstractArchiveFileSystem): """Read contents of ZIP archive as a file-system Keeps file object open while instance lives. This class is pickleable, but not necessarily thread-safe """ root_marker = "" protocol = "zip" def __init__( self, fo="", mode="r", target_protocol=None, target_options=None, block_size=DEFAULT_BLOCK_SIZE, **kwargs, ): """ Parameters ---------- fo: str or file-like Contains ZIP, and must exist. If a str, will fetch file using `open_files()`, which must return one file exactly. mode: str Currently, only 'r' accepted target_protocol: str (optional) If ``fo`` is a string, this value can be used to override the FS protocol inferred from a URL target_options: dict (optional) Kwargs passed when instantiating the target FS, if ``fo`` is a string. """ super().__init__(self, **kwargs) if mode != "r": raise ValueError("Only read from zip files accepted") if isinstance(fo, str): files = open_files(fo, protocol=target_protocol, **(target_options or {})) if len(files) != 1: raise ValueError( 'Path "{}" did not resolve to exactly' 'one file: "{}"'.format(fo, files) ) fo = files[0] self.fo = fo.__enter__() # the whole instance is a context self.zip = zipfile.ZipFile(self.fo) self.block_size = block_size self.dir_cache = None @classmethod def _strip_protocol(cls, path): # zip file paths are always relative to the archive root return super()._strip_protocol(path).lstrip("/") def _get_dirs(self): if self.dir_cache is None: files = self.zip.infolist() self.dir_cache = { dirname + "/": {"name": dirname + "/", "size": 0, "type": "directory"} for dirname in self._all_dirnames(self.zip.namelist()) } for z in files: f = {s: getattr(z, s) for s in zipfile.ZipInfo.__slots__} f.update( { "name": z.filename, "size": z.file_size, "type": ("directory" if z.is_dir() else "file"), } ) self.dir_cache[f["name"]] = f def cat(self, path, callback=None, **kwargs): return self.zip.read(path) def _open( self, path, mode="rb", block_size=None, autocommit=True, cache_options=None, **kwargs, ): path = self._strip_protocol(path) if mode != "rb": raise NotImplementedError info = self.info(path) out = self.zip.open(path, "r") out.size = info["size"] out.name = info["name"] return out
{ "repo_name": "intake/filesystem_spec", "path": "fsspec/implementations/zip.py", "copies": "1", "size": "3287", "license": "bsd-3-clause", "hash": 4395398571788153300, "line_mean": 30.9126213592, "line_max": 86, "alpha_frac": 0.5223608153, "autogenerated": false, "ratio": 4.279947916666667, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00022318937618569356, "num_lines": 103 }
from __future__ import absolute_import, division, print_function __metaclass__ = type from abc import ABCMeta, abstractmethod class AbstractConsumer: __metaclass__ = ABCMeta """ This class provides facilities to create and manage queue consumers. To create a consumer, subclass this class and override the :meth:`run` method. Then, instantiate the class with the desired parameters and call :meth:`declare` to declare the consumer to the server. Example:: class Consumer(AbstractConsumer): def run(self, msg: Message): print('Received message: {}'.format(msg.body)) msg.ack() c1 = Consumer(ch, 'test.q') c1.declare() conn.drain_events() """ def __init__(self, channel, queue, consumer_tag='', no_local=False, no_ack=False, exclusive=False): """ :param channel: channel :type channel: amqpy.channel.Channel :param str queue: queue :param str consumer_tag: consumer tag, local to the connection; leave blank to let server auto-assign a tag :param bool no_local: if True: do not deliver own messages :param bool no_ack: server will not expect an ack for each message :param bool exclusive: request exclusive access """ self.channel = channel self.queue = queue self.consumer_tag = consumer_tag self.no_local = no_local self.no_ack = no_ack self.exclusive = exclusive #: Number of messages consumed (incremented automatically) self.consume_count = 0 def declare(self): """Declare the consumer This method calls :meth:`~amqpy.channel.Channel.basic_consume()` internally. After the queue consumer is created, :attr:`self.consumer_tag` is set to the server-assigned consumer tag if a tag was not specified initially. """ self.consumer_tag = self.channel.basic_consume( self.queue, self.consumer_tag, self.no_local, self.no_ack, self.exclusive, callback=self.start, on_cancel=self.cancel_cb) def cancel(self): """Cancel the consumer """ self.channel.basic_cancel(self.consumer_tag) @abstractmethod def run(self, msg): """Consumer callback This method is called when the consumer is delivered a message. This method **must** be overridden in the subclass. :param msg: received message :type msg: amqpy.message.Message """ pass def cancel_cb(self, consumer_tag): """Consumer cancel callback This method is called when the consumer is cancelled. This method may be overridden in the subclass. :param str consumer_tag: consumer tag """ pass def start(self, msg): self.run(msg) self.consume_count += 1
{ "repo_name": "veegee/amqpy", "path": "amqpy/consumer.py", "copies": "1", "size": "2942", "license": "mit", "hash": 6078707061962467000, "line_mean": 30.6344086022, "line_max": 86, "alpha_frac": 0.6186267845, "autogenerated": false, "ratio": 4.4174174174174174, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00012359411692003462, "num_lines": 93 }
from __future__ import absolute_import, division, print_function __metaclass__ = type from collections import namedtuple queue_declare_ok_t = namedtuple('queue_declare_ok_t', ['queue', 'message_count', 'consumer_count']) basic_return_t = namedtuple('basic_return_t', ['reply_code', 'reply_text', 'exchange', 'routing_key', 'message']) method_t = namedtuple('method_t', ['class_id', 'method_id']) #: The default, minimum frame size that both the client and server must be able to handle FRAME_MIN_SIZE = 4096 class FrameType: """This class contains frame-related constants METHOD, HEADER, BODY, and HEARTBEAT are all frame type constants which make up the first byte of every frame. The END constant is the termination value which is the last byte of every frame. """ METHOD = 1 # method frame HEADER = 2 # content header frame BODY = 3 # content body frame HEARTBEAT = 8 # heartbeat frame END = 206 # not actually a frame type; this is the frame terminator byte class Connection: CLASS_ID = 10 Start = method_t(10, 10) StartOk = method_t(10, 11) Secure = method_t(10, 20) SecureOk = method_t(10, 21) Tune = method_t(10, 30) TuneOk = method_t(10, 31) Open = method_t(10, 40) OpenOk = method_t(10, 41) Close = method_t(10, 50) CloseOk = method_t(10, 51) Blocked = method_t(10, 60) Unblocked = method_t(10, 61) class Channel: CLASS_ID = 20 Open = method_t(20, 10) OpenOk = method_t(20, 11) Flow = method_t(20, 20) FlowOk = method_t(20, 21) Close = method_t(20, 40) CloseOk = method_t(20, 41) class Exchange: CLASS_ID = 40 Declare = method_t(40, 10) DeclareOk = method_t(40, 11) Delete = method_t(40, 20) DeleteOk = method_t(40, 21) Bind = method_t(40, 30) BindOk = method_t(40, 31) Unbind = method_t(40, 40) UnbindOk = method_t(40, 51) class Queue: CLASS_ID = 50 Declare = method_t(50, 10) DeclareOk = method_t(50, 11) Bind = method_t(50, 20) BindOk = method_t(50, 21) Purge = method_t(50, 30) PurgeOk = method_t(50, 31) Delete = method_t(50, 40) DeleteOk = method_t(50, 41) Unbind = method_t(50, 50) UnbindOk = method_t(50, 51) class Basic: CLASS_ID = 60 Qos = method_t(60, 10) QosOk = method_t(60, 11) Consume = method_t(60, 20) ConsumeOk = method_t(60, 21) Cancel = method_t(60, 30) CancelOk = method_t(60, 31) Publish = method_t(60, 40) Return = method_t(60, 50) Deliver = method_t(60, 60) Get = method_t(60, 70) GetOk = method_t(60, 71) GetEmpty = method_t(60, 72) Ack = method_t(60, 80) Reject = method_t(60, 90) RecoverAsync = method_t(60, 100) Recover = method_t(60, 110) RecoverOk = method_t(60, 111) class Confirm: CLASS_ID = 85 Select = method_t(85, 10) SelectOk = method_t(85, 11) class Tx: CLASS_ID = 90 Select = method_t(90, 10) SelectOk = method_t(90, 11) Commit = method_t(90, 20) CommitOk = method_t(90, 21) Rollback = method_t(90, 30) RollbackOk = method_t(90, 31)
{ "repo_name": "veegee/amqpy", "path": "amqpy/spec.py", "copies": "1", "size": "3150", "license": "mit", "hash": 7623663350077004000, "line_mean": 24.6097560976, "line_max": 100, "alpha_frac": 0.6117460317, "autogenerated": false, "ratio": 2.9275092936802976, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.40392553253802976, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function __metaclass__ = type from datetime import datetime from decimal import Decimal import pickle from .. import Message class TestBasicMessage: def check_proplist(self, msg): """Check roundtrip processing of a single object """ raw_properties = msg.serialize_properties() new_msg = Message() new_msg.load_properties(raw_properties) new_msg.body = msg.body assert msg == new_msg def test_eq(self): msg = Message('hello', content_type='text/plain') assert msg # Make sure that something that looks vaguely like a Message doesn't raise an Attribute # error when compared to a Message, and instead returns False class FakeMsg: pass fake_msg = FakeMsg() fake_msg.properties = {'content_type': 'text/plain'} assert msg != fake_msg def test_pickle(self): msg = Message( 'some body' * 200000, content_type='text/plain', content_encoding='utf-8', application_headers={'foo': 7, 'bar': 'baz', 'd2': {'foo2': 'xxx', 'foo3': -1}}, delivery_mode=1, priority=7, ) msg2 = pickle.loads(pickle.dumps(msg, -1)) assert msg == msg2 def test_roundtrip(self): """Check round-trip processing of content-properties """ self.check_proplist(Message()) self.check_proplist(Message(content_type='text/plain')) self.check_proplist(Message( content_type='text/plain', content_encoding='utf-8', application_headers={'foo': 7, 'bar': 'baz', 'd2': {'foo2': 'xxx', 'foo3': -1}}, delivery_mode=1, priority=7, )) self.check_proplist(Message( application_headers={ 'regular': datetime(2007, 11, 12, 12, 34, 56), 'dst': datetime(2007, 7, 12, 12, 34, 56), }, )) n = datetime.now() # AMQP only does timestamps to 1-second resolution n = n.replace(microsecond=0) self.check_proplist(Message(application_headers={'foo': n})) self.check_proplist(Message(application_headers={'foo': Decimal('10.1')})) self.check_proplist(Message(application_headers={'foo': Decimal('-1987654.193')})) self.check_proplist(Message(timestamp=datetime(1980, 1, 2, 3, 4, 6)))
{ "repo_name": "veegee/amqpy", "path": "amqpy/tests/test_basic_message.py", "copies": "1", "size": "2475", "license": "mit", "hash": -7302332163755806000, "line_mean": 31.5657894737, "line_max": 95, "alpha_frac": 0.5761616162, "autogenerated": false, "ratio": 3.9473684210526314, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5023530037252631, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function __metaclass__ = type from threading import Lock import sys from collections import defaultdict, deque import six import logging import socket import errno from .utils import get_errno if six.PY2: from Queue import Queue else: from queue import Queue from .concurrency import synchronized from .exceptions import UnexpectedFrame, Timeout, METHOD_NAME_MAP from .proto import Method from . import spec from .spec import FrameType log = logging.getLogger('amqpy') __all__ = ['MethodReader'] # these received methods are followed by content headers and bodies _CONTENT_METHODS = [ spec.Basic.Return, spec.Basic.Deliver, spec.Basic.GetOk, ] class MethodReader: """Read frames from the server and construct complete methods There should be one `MethodReader` instance per connection. In the case of a framing error, an :exc:`AMQPConnectionError` is placed in the queue. In the case of unexpected frames, an :exc:`ChannelError` is placed in the queue. """ def __init__(self, transport): """ :param transport: transport to read from :type transport: amqpy.transport.Transport """ self.transport = transport self.sock = transport.sock # deque[Method or Exception] self.method_queue = deque() # dict[channel_id int: PartialMessage] self.partial_methods = {} # next expected frame type for each channel # dict[channel_id int: frame_type int] self.expected_types = defaultdict(lambda: FrameType.METHOD) self.frames_recv = 0 # total number of frames received self._method_read_lock = Lock() def _next_method(self): """Read the next method from the source and process it Once one complete method has been assembled, it is placed in the internal queue. This method will block until a complete `Method` has been constructed, which may consist of one or more frames. """ while not self.method_queue: # keep reading frames until we have at least one complete method in the queue try: frame = self.transport.read_frame() except Exception as exc: # connection was closed? framing error? if six.PY2: _, _, tb = sys.exc_info() exc.tb = tb self.method_queue.append(exc) break self.frames_recv += 1 if frame.frame_type not in (self.expected_types[frame.channel], 8): msg = 'Received frame type {} while expecting type: {}' \ .format(frame.frame_type, self.expected_types[frame.channel]) self.method_queue.append(UnexpectedFrame(msg, channel_id=frame.channel)) elif frame.frame_type == FrameType.METHOD: self._process_method_frame(frame) elif frame.frame_type == FrameType.HEADER: self._process_content_header(frame) elif frame.frame_type == FrameType.BODY: self._process_content_body(frame) def _process_method_frame(self, frame): """Process method frame :param frame: incoming frame :type frame: amqpy.proto.Frame """ channel_id = frame.channel method = Method() method.load_method_frame(frame) if method.method_type in _CONTENT_METHODS: # save what we've got so far and wait for the content header frame self.partial_methods[channel_id] = method self.expected_types[channel_id] = spec.FrameType.HEADER else: # this is a complete method self.method_queue.append(method) def _process_content_header(self, frame): """Process Content Header frames :param frame: incoming frame :type frame: amqpy.proto.Frame """ #: :type: amqpy.proto.Method method = self.partial_methods[frame.channel] method.load_header_frame(frame) if method.complete: # a bodyless message, we're done self.method_queue.append(method) self.partial_methods.pop(frame.channel, None) del self.expected_types[frame.channel] # reset expected frame type for this channel else: # next expected frame type is FrameType.BODY self.expected_types[frame.channel] = spec.FrameType.BODY def _process_content_body(self, frame): """Process Content Body frames :param frame: incoming frame :type frame: amqpy.proto.Frame """ method = self.partial_methods[frame.channel] method.load_body_frame(frame) if method.complete: # message is complete, append it to the queue self.method_queue.append(method) self.partial_methods.pop(frame.channel, None) del self.expected_types[frame.channel] # reset expected frame type for this channel @synchronized('_method_read_lock') def _read_method(self): """Read a method from the peer :return: method :rtype: amqpy.proto.Method """ # fully read and process next method self._next_method() method = self.method_queue.popleft() # `method` may sometimes be an `Exception`, raise it here if isinstance(method, Exception): raise method log.debug('{:7} channel: {} {} {}' .format('Read:', method.channel_id, method.method_type, METHOD_NAME_MAP[method.method_type])) return method def read_method(self, timeout=None): """Read method :param timeout: timeout :type timeout: float :return: method :rtype: amqpy.proto.Method :raise amqpy.exceptions.Timeout: if the operation times out """ if timeout is None: return self._read_method() orig_timeout = self.sock.gettimeout() if orig_timeout != timeout: self.sock.settimeout(timeout) try: return self._read_method() except socket.timeout: raise Timeout() except socket.error as e: if get_errno(e) == errno.EAGAIN: raise Timeout() raise finally: if orig_timeout != timeout: self.sock.settimeout(orig_timeout) class MethodWriter: """Write methods to the server by breaking them up and constructing multiple frames There should be one `MethodWriter` instance per connection, and all channels share that instance. This class is thread-safe. Any thread may call :meth:`write_method()` as long as no more than one thread is writing to any given `channel_id` at a time. """ def __init__(self, transport, frame_max): """ :param transport: transport to write to :param frame_max: maximum frame payload size in bytes :type transport: amqpy.transport.Transport :type frame_max: int """ self.transport = transport self.frame_max = frame_max self.methods_sent = 0 # total number of methods sent def write_method(self, method): """Write method to connection, destined for the channel as set in `method.channel_id` This implementation uses a queue internally to prepare all frames before writing in order to detect issues. This method is thread safe only if the `channel_id` parameter is unique across concurrent invocations. The AMQP protocol allows interleaving frames destined for different channels, but not within the same channel. This means no more than one thread may safely operate on any given channel. :param method: method to write :type method: amqpy.proto.Method """ transport = self.transport log.debug('{:7} channel: {} {} {}' .format('Write:', method.channel_id, method.method_type, METHOD_NAME_MAP[method.method_type])) frames = Queue() # construct a method frame frames.put(method.dump_method_frame()) if method.content: # construct a header frame frames.put(method.dump_header_frame()) # construct one or more body frames, which contain the body of the `Message` chunk_size = self.frame_max - 8 for frame in method.dump_body_frame(chunk_size): frames.put(frame) while not frames.empty(): transport.write_frame(frames.get()) self.methods_sent += 1
{ "repo_name": "veegee/amqpy", "path": "amqpy/method_io.py", "copies": "1", "size": "8751", "license": "mit", "hash": -2020871074423022600, "line_mean": 33.4527559055, "line_max": 98, "alpha_frac": 0.6144440635, "autogenerated": false, "ratio": 4.390868038133467, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000856733010775787, "num_lines": 254 }