text
stringlengths 0
1.16k
|
---|
2025-01-20 16:22:13.029695: Epoch time: 47.77 s |
2025-01-20 16:22:13.029729: Yayy! New best EMA pseudo Dice: 0.7695000171661377 |
2025-01-20 16:22:13.876381: |
2025-01-20 16:22:13.880178: Epoch 60 |
2025-01-20 16:22:13.880282: Current learning rate: 0.00946 |
2025-01-20 16:23:01.628436: train_loss -0.6713 |
2025-01-20 16:23:01.663608: val_loss -0.6823 |
2025-01-20 16:23:01.663681: Pseudo dice [np.float32(0.7397), np.float32(0.7652), np.float32(0.8347), np.float32(0.7251), np.float32(0.8776), np.float32(0.7531)] |
2025-01-20 16:23:01.663739: Epoch time: 47.75 s |
2025-01-20 16:23:01.663783: Yayy! New best EMA pseudo Dice: 0.770799994468689 |
2025-01-20 16:23:02.511387: |
2025-01-20 16:23:02.546733: Epoch 61 |
2025-01-20 16:23:02.546809: Current learning rate: 0.00945 |
2025-01-20 16:23:50.351604: train_loss -0.6834 |
2025-01-20 16:23:50.351718: val_loss -0.6913 |
2025-01-20 16:23:50.351765: Pseudo dice [np.float32(0.7507), np.float32(0.7435), np.float32(0.8514), np.float32(0.716), np.float32(0.8775), np.float32(0.7592)] |
2025-01-20 16:23:50.351820: Epoch time: 47.84 s |
2025-01-20 16:23:50.351841: Yayy! New best EMA pseudo Dice: 0.7720000147819519 |
2025-01-20 16:23:51.140569: |
2025-01-20 16:23:51.143241: Epoch 62 |
2025-01-20 16:23:51.143347: Current learning rate: 0.00944 |
2025-01-20 16:24:38.924830: train_loss -0.6766 |
2025-01-20 16:24:38.959991: val_loss -0.6782 |
2025-01-20 16:24:38.960059: Pseudo dice [np.float32(0.737), np.float32(0.7639), np.float32(0.8427), np.float32(0.6739), np.float32(0.8784), np.float32(0.7523)] |
2025-01-20 16:24:38.960098: Epoch time: 47.78 s |
2025-01-20 16:24:38.960119: Yayy! New best EMA pseudo Dice: 0.7723000049591064 |
2025-01-20 16:24:39.808050: |
2025-01-20 16:24:39.808105: Epoch 63 |
2025-01-20 16:24:39.808177: Current learning rate: 0.00943 |
2025-01-20 16:25:27.606040: train_loss -0.6897 |
2025-01-20 16:25:27.606212: val_loss -0.6773 |
2025-01-20 16:25:27.606255: Pseudo dice [np.float32(0.7342), np.float32(0.7476), np.float32(0.8453), np.float32(0.7528), np.float32(0.8714), np.float32(0.7598)] |
2025-01-20 16:25:27.606294: Epoch time: 47.8 s |
2025-01-20 16:25:27.606316: Yayy! New best EMA pseudo Dice: 0.7735999822616577 |
2025-01-20 16:25:28.454947: |
2025-01-20 16:25:28.458085: Epoch 64 |
2025-01-20 16:25:28.458176: Current learning rate: 0.00942 |
2025-01-20 16:26:16.237535: train_loss -0.6846 |
2025-01-20 16:26:16.272680: val_loss -0.6932 |
2025-01-20 16:26:16.272751: Pseudo dice [np.float32(0.7569), np.float32(0.7704), np.float32(0.8499), np.float32(0.7307), np.float32(0.874), np.float32(0.7562)] |
2025-01-20 16:26:16.272788: Epoch time: 47.78 s |
2025-01-20 16:26:16.272808: Yayy! New best EMA pseudo Dice: 0.7752000093460083 |
2025-01-20 16:26:17.121657: |
2025-01-20 16:26:17.156901: Epoch 65 |
2025-01-20 16:26:17.156976: Current learning rate: 0.00941 |
2025-01-20 16:27:04.932352: train_loss -0.684 |
2025-01-20 16:27:04.967464: val_loss -0.676 |
2025-01-20 16:27:04.967519: Pseudo dice [np.float32(0.7412), np.float32(0.7781), np.float32(0.8441), np.float32(0.7063), np.float32(0.8766), np.float32(0.7573)] |
2025-01-20 16:27:04.967554: Epoch time: 47.81 s |
2025-01-20 16:27:04.967577: Yayy! New best EMA pseudo Dice: 0.7760999798774719 |
2025-01-20 16:27:05.898137: |
2025-01-20 16:27:05.902396: Epoch 66 |
2025-01-20 16:27:05.902498: Current learning rate: 0.0094 |
2025-01-20 16:27:53.664447: train_loss -0.6787 |
2025-01-20 16:27:53.699466: val_loss -0.6554 |
2025-01-20 16:27:53.699533: Pseudo dice [np.float32(0.7318), np.float32(0.7195), np.float32(0.847), np.float32(0.6773), np.float32(0.8777), np.float32(0.755)] |
2025-01-20 16:27:53.699574: Epoch time: 47.77 s |
2025-01-20 16:27:54.160348: |
2025-01-20 16:27:54.194685: Epoch 67 |
2025-01-20 16:27:54.194761: Current learning rate: 0.00939 |
2025-01-20 16:28:41.984346: train_loss -0.6731 |
2025-01-20 16:28:41.984526: val_loss -0.6775 |
2025-01-20 16:28:41.984594: Pseudo dice [np.float32(0.7323), np.float32(0.7427), np.float32(0.8474), np.float32(0.7376), np.float32(0.8835), np.float32(0.7603)] |
2025-01-20 16:28:41.984632: Epoch time: 47.82 s |
2025-01-20 16:28:41.984653: Yayy! New best EMA pseudo Dice: 0.7760999798774719 |
2025-01-20 16:28:42.838468: |
2025-01-20 16:28:42.838656: Epoch 68 |
2025-01-20 16:28:42.838710: Current learning rate: 0.00939 |
2025-01-20 16:29:30.629951: train_loss -0.6798 |
2025-01-20 16:29:30.665121: val_loss -0.6763 |
2025-01-20 16:29:30.665203: Pseudo dice [np.float32(0.7437), np.float32(0.7451), np.float32(0.8359), np.float32(0.7331), np.float32(0.8604), np.float32(0.7558)] |
2025-01-20 16:29:30.665240: Epoch time: 47.79 s |
2025-01-20 16:29:30.665262: Yayy! New best EMA pseudo Dice: 0.7764000296592712 |
2025-01-20 16:29:31.512890: |
2025-01-20 16:29:31.548116: Epoch 69 |
2025-01-20 16:29:31.548211: Current learning rate: 0.00938 |
2025-01-20 16:30:19.321309: train_loss -0.6804 |
2025-01-20 16:30:19.380729: val_loss -0.6492 |
2025-01-20 16:30:19.380786: Pseudo dice [np.float32(0.7337), np.float32(0.718), np.float32(0.8397), np.float32(0.7069), np.float32(0.8572), np.float32(0.7324)] |
2025-01-20 16:30:19.380822: Epoch time: 47.81 s |
2025-01-20 16:30:19.846573: |
2025-01-20 16:30:19.880946: Epoch 70 |
2025-01-20 16:30:19.881008: Current learning rate: 0.00937 |
2025-01-20 16:31:07.669622: train_loss -0.6748 |
2025-01-20 16:31:07.704755: val_loss -0.677 |
2025-01-20 16:31:07.704814: Pseudo dice [np.float32(0.7456), np.float32(0.7505), np.float32(0.8363), np.float32(0.7328), np.float32(0.8665), np.float32(0.742)] |
2025-01-20 16:31:07.704851: Epoch time: 47.82 s |
2025-01-20 16:31:08.170349: |
2025-01-20 16:31:08.170404: Epoch 71 |
2025-01-20 16:31:08.170492: Current learning rate: 0.00936 |
2025-01-20 16:31:55.942519: train_loss -0.692 |
2025-01-20 16:31:55.942620: val_loss -0.7014 |
2025-01-20 16:31:55.942678: Pseudo dice [np.float32(0.7495), np.float32(0.7598), np.float32(0.8437), np.float32(0.7027), np.float32(0.8749), np.float32(0.7707)] |
2025-01-20 16:31:55.942727: Epoch time: 47.77 s |
2025-01-20 16:31:56.410116: |
2025-01-20 16:31:56.444568: Epoch 72 |
2025-01-20 16:31:56.444641: Current learning rate: 0.00935 |
2025-01-20 16:32:44.228125: train_loss -0.6846 |
2025-01-20 16:32:44.263208: val_loss -0.6783 |
2025-01-20 16:32:44.263277: Pseudo dice [np.float32(0.7388), np.float32(0.7359), np.float32(0.8465), np.float32(0.7022), np.float32(0.8668), np.float32(0.7704)] |
Subsets and Splits