Upload PAIR.py
Browse files
PAIR.py
CHANGED
@@ -13,13 +13,10 @@
|
|
13 |
# limitations under the License.
|
14 |
|
15 |
|
16 |
-
import csv
|
17 |
import json
|
18 |
-
import os
|
19 |
|
20 |
import datasets
|
21 |
|
22 |
-
|
23 |
# TODO: Add BibTeX citation
|
24 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
_CITATION = """\
|
@@ -52,95 +49,168 @@ _URLS = {
|
|
52 |
|
53 |
|
54 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
55 |
-
class PAIRDataset(datasets.GeneratorBasedBuilder):
|
56 |
-
"""TODO: Short description of my dataset."""
|
57 |
-
|
58 |
-
VERSION = datasets.Version("1.1.0")
|
59 |
|
60 |
-
# This is an example of a dataset with multiple configurations.
|
61 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
62 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
67 |
-
|
68 |
-
# You will be able to load one or the other configurations in the following list with
|
69 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
70 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
71 |
-
BUILDER_CONFIGS = [
|
72 |
-
datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
|
73 |
-
]
|
74 |
-
|
75 |
-
DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
76 |
|
77 |
def _info(self):
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
81 |
{
|
82 |
-
"
|
83 |
-
"
|
84 |
-
"
|
85 |
-
|
86 |
}
|
87 |
-
)
|
88 |
-
|
89 |
-
return datasets.DatasetInfo(
|
90 |
-
# This is the description that will appear on the datasets page.
|
91 |
-
description=_DESCRIPTION,
|
92 |
-
# This defines the different columns of the dataset and their types
|
93 |
-
features=features, # Here we define them above because they are different between the two configurations
|
94 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
95 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
96 |
-
# supervised_keys=("sentence", "label"),
|
97 |
-
# Homepage of the dataset for documentation
|
98 |
-
homepage=_HOMEPAGE,
|
99 |
-
# License for the dataset if available
|
100 |
-
license=_LICENSE,
|
101 |
-
# Citation for the dataset
|
102 |
-
citation=_CITATION,
|
103 |
)
|
104 |
|
105 |
def _split_generators(self, dl_manager):
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
#
|
|
|
|
|
|
|
|
|
|
|
114 |
return [
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
# "filepath": os.path.join(data_dir, "train.json"),
|
120 |
-
# "split": "train",
|
121 |
-
# },
|
122 |
-
# ),
|
123 |
datasets.SplitGenerator(
|
124 |
name=datasets.Split.TEST,
|
125 |
-
|
126 |
-
gen_kwargs={
|
127 |
-
"filepath": "test.json", #os.path.join(data_dir, "test.json"),
|
128 |
-
"split": "test"
|
129 |
-
},
|
130 |
),
|
131 |
]
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
137 |
with open(filepath, encoding="utf-8") as f:
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# limitations under the License.
|
14 |
|
15 |
|
|
|
16 |
import json
|
|
|
17 |
|
18 |
import datasets
|
19 |
|
|
|
20 |
# TODO: Add BibTeX citation
|
21 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
22 |
_CITATION = """\
|
|
|
49 |
|
50 |
|
51 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
|
|
|
|
|
|
|
|
52 |
|
|
|
|
|
|
|
53 |
|
54 |
+
class PAIRDataset(datasets.GeneratorBasedBuilder):
|
55 |
+
"""PAIRDataset."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def _info(self):
|
58 |
+
"""_info."""
|
59 |
+
return datasets.DatasetInfo(
|
60 |
+
description="My custom dataset.",
|
61 |
+
features=datasets.Features(
|
62 |
{
|
63 |
+
"annotation_type": datasets.Value("string"),
|
64 |
+
"sequence": datasets.Value("string"),
|
65 |
+
"pid": datasets.Value("string"),
|
66 |
+
"annotation": datasets.Value("string"),
|
67 |
}
|
68 |
+
),
|
69 |
+
supervised_keys=None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
)
|
71 |
|
72 |
def _split_generators(self, dl_manager):
|
73 |
+
"""_split_generators.
|
74 |
+
|
75 |
+
Parameters
|
76 |
+
----------
|
77 |
+
dl_manager :
|
78 |
+
dl_manager
|
79 |
+
"""
|
80 |
+
# Implement logic to download and extract data files
|
81 |
+
# For simplicity, assume data_files is a dict with paths to your data
|
82 |
+
data_files = {
|
83 |
+
"train": "train.json",
|
84 |
+
"test": "test.json",
|
85 |
+
}
|
86 |
return [
|
87 |
+
# datasets.SplitGenerator(
|
88 |
+
# name=datasets.Split.TRAIN,
|
89 |
+
# gen_kwargs={'filepath': data_files['train']},
|
90 |
+
# ),
|
|
|
|
|
|
|
|
|
91 |
datasets.SplitGenerator(
|
92 |
name=datasets.Split.TEST,
|
93 |
+
gen_kwargs={"filepath": data_files["test"]},
|
|
|
|
|
|
|
|
|
94 |
),
|
95 |
]
|
96 |
|
97 |
+
def _generate_examples(self, filepath):
|
98 |
+
"""_generate_examples.
|
99 |
+
|
100 |
+
Parameters
|
101 |
+
----------
|
102 |
+
filepath :
|
103 |
+
filepath
|
104 |
+
"""
|
105 |
+
# Implement your data reading logic here
|
106 |
with open(filepath, encoding="utf-8") as f:
|
107 |
+
data = json.load(f)
|
108 |
+
counter = 0
|
109 |
+
for idx, annotation_type in enumerate(data.keys()):
|
110 |
+
# Parse your line into the appropriate fields
|
111 |
+
samples = data[annotation_type]
|
112 |
+
for idx_2, elem in enumerate(samples):
|
113 |
+
# example = parse_line_to_example(line)
|
114 |
+
print(elem["content"], type(elem["content"]))
|
115 |
+
if elem["content"] != [None]:
|
116 |
+
yield annotation_type, {
|
117 |
+
"annotation_type": annotation_type,
|
118 |
+
"sequence": elem["seq"],
|
119 |
+
"pid": elem["pid"],
|
120 |
+
"annotation": elem["content"][0],
|
121 |
+
}
|
122 |
+
counter += 1
|
123 |
+
|
124 |
+
|
125 |
+
# class PAIRDataset(datasets.GeneratorBasedBuilder):
|
126 |
+
# """TODO: Short description of my dataset."""
|
127 |
+
#
|
128 |
+
# VERSION = datasets.Version("1.1.0")
|
129 |
+
#
|
130 |
+
# # This is an example of a dataset with multiple configurations.
|
131 |
+
# # If you don't want/need to define several sub-sets in your dataset,
|
132 |
+
# # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
133 |
+
#
|
134 |
+
# # If you need to make complex sub-parts in the datasets with configurable options
|
135 |
+
# # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
136 |
+
# # BUILDER_CONFIG_CLASS = MyBuilderConfig
|
137 |
+
#
|
138 |
+
# # You will be able to load one or the other configurations in the following list with
|
139 |
+
# # data = datasets.load_dataset('my_dataset', 'first_domain')
|
140 |
+
# # data = datasets.load_dataset('my_dataset', 'second_domain')
|
141 |
+
# BUILDER_CONFIGS = [
|
142 |
+
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
|
143 |
+
# ]
|
144 |
+
#
|
145 |
+
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
146 |
+
#
|
147 |
+
# def _info(self):
|
148 |
+
# # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
149 |
+
# if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
150 |
+
# features = datasets.Features(
|
151 |
+
# {
|
152 |
+
# "sentence": datasets.Value("string"),
|
153 |
+
# "option1": datasets.Value("string"),
|
154 |
+
# "answer": datasets.Value("string")
|
155 |
+
# # These are the features of your dataset like images, labels ...
|
156 |
+
# }
|
157 |
+
# )
|
158 |
+
#
|
159 |
+
# return datasets.DatasetInfo(
|
160 |
+
# # This is the description that will appear on the datasets page.
|
161 |
+
# description=_DESCRIPTION,
|
162 |
+
# # This defines the different columns of the dataset and their types
|
163 |
+
# features=features, # Here we define them above because they are different between the two configurations
|
164 |
+
# # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
165 |
+
# # specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
166 |
+
# # supervised_keys=("sentence", "label"),
|
167 |
+
# # Homepage of the dataset for documentation
|
168 |
+
# homepage=_HOMEPAGE,
|
169 |
+
# # License for the dataset if available
|
170 |
+
# license=_LICENSE,
|
171 |
+
# # Citation for the dataset
|
172 |
+
# citation=_CITATION,
|
173 |
+
# )
|
174 |
+
#
|
175 |
+
# def _split_generators(self, dl_manager):
|
176 |
+
# # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
177 |
+
# # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
178 |
+
#
|
179 |
+
# # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
180 |
+
# # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
181 |
+
# # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
182 |
+
# # urls = _URLS[self.config.name]
|
183 |
+
# #data_dir = dl_manager.download_and_extract(urls)
|
184 |
+
# return [
|
185 |
+
# # datasets.SplitGenerator(
|
186 |
+
# # name=datasets.Split.TRAIN,
|
187 |
+
# # # These kwargs will be passed to _generate_examples
|
188 |
+
# ### gen_kwargs={
|
189 |
+
# # "filepath": os.path.join(data_dir, "train.json"),
|
190 |
+
# # "split": "train",
|
191 |
+
# # },
|
192 |
+
# # ),
|
193 |
+
# datasets.SplitGenerator(
|
194 |
+
# name=datasets.Split.TEST,
|
195 |
+
# # These kwargs will be passed to _generate_examples
|
196 |
+
# gen_kwargs={
|
197 |
+
# "filepath": "test.json", #os.path.join(data_dir, "test.json"),
|
198 |
+
# "split": "test"
|
199 |
+
# },
|
200 |
+
# ),
|
201 |
+
# ]
|
202 |
+
#
|
203 |
+
# # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
204 |
+
# def _generate_examples(self, filepath, split):
|
205 |
+
# # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
206 |
+
# # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
207 |
+
# with open(filepath, encoding="utf-8") as f:
|
208 |
+
# for key, row in enumerate(f):
|
209 |
+
# data = json.loads(row)
|
210 |
+
# if data['content'] != [None]:
|
211 |
+
# yield key, {
|
212 |
+
# "sequence": data["seq"],
|
213 |
+
# "pid": data["pid"],
|
214 |
+
# #"content": "" if split == "test" else data["answer"],
|
215 |
+
# "content": data['content'][0],
|
216 |
+
# }
|