mskrt commited on
Commit
d6cc8a6
·
verified ·
1 Parent(s): cac46d4

Delete dataset_preprocessing.py

Browse files
Files changed (1) hide show
  1. dataset_preprocessing.py +0 -156
dataset_preprocessing.py DELETED
@@ -1,156 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
- import csv
17
- import json
18
- import os
19
-
20
- import datasets
21
-
22
-
23
- # TODO: Add BibTeX citation
24
- # Find for instance the citation on arxiv or on the dataset repo/website
25
- _CITATION = """\
26
- @article{duan2024boosting,
27
- title={Boosting the Predictive Power of Protein Representations with a Corpus of Text Annotations},
28
- author={Duan, Haonan and Skreta, Marta and Cotta, Leonardo and Rajaonson, Ella Miray and Dhawan, Nikita and Aspuru-Guzik, Alán and Maddison, Chris J},
29
- journal={bioRxiv},
30
- pages={2024--07},
31
- year={2024},
32
- publisher={Cold Spring Harbor Laboratory}
33
- }
34
- """
35
-
36
- _DESCRIPTION = """\
37
- This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
38
- """
39
-
40
- # TODO: Add a link to an official homepage for the dataset here
41
- _HOMEPAGE = ""
42
-
43
- # TODO: Add the licence for the dataset here if you can find it
44
- _LICENSE = ""
45
-
46
- # TODO: Add link to the official dataset URLs here
47
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
48
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
49
- _URLS = {
50
- "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
51
- "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
52
- }
53
-
54
-
55
- # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
56
- class PAIRDataset(datasets.GeneratorBasedBuilder):
57
- """TODO: Short description of my dataset."""
58
-
59
- VERSION = datasets.Version("1.1.0")
60
-
61
- # This is an example of a dataset with multiple configurations.
62
- # If you don't want/need to define several sub-sets in your dataset,
63
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
64
-
65
- # If you need to make complex sub-parts in the datasets with configurable options
66
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
67
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
68
-
69
- # You will be able to load one or the other configurations in the following list with
70
- # data = datasets.load_dataset('my_dataset', 'first_domain')
71
- # data = datasets.load_dataset('my_dataset', 'second_domain')
72
- BUILDER_CONFIGS = [
73
- datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
74
- datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
75
- ]
76
-
77
- DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
78
-
79
- def _info(self):
80
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
81
- if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
82
- features = datasets.Features(
83
- {
84
- "sentence": datasets.Value("string"),
85
- "option1": datasets.Value("string"),
86
- "answer": datasets.Value("string")
87
- # These are the features of your dataset like images, labels ...
88
- }
89
- )
90
- else: # This is an example to show how to have different features for "first_domain" and "second_domain"
91
- features = datasets.Features(
92
- {
93
- "sentence": datasets.Value("string"),
94
- "option2": datasets.Value("string"),
95
- "second_domain_answer": datasets.Value("string")
96
- # These are the features of your dataset like images, labels ...
97
- }
98
- )
99
- return datasets.DatasetInfo(
100
- # This is the description that will appear on the datasets page.
101
- description=_DESCRIPTION,
102
- # This defines the different columns of the dataset and their types
103
- features=features, # Here we define them above because they are different between the two configurations
104
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
105
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
106
- # supervised_keys=("sentence", "label"),
107
- # Homepage of the dataset for documentation
108
- homepage=_HOMEPAGE,
109
- # License for the dataset if available
110
- license=_LICENSE,
111
- # Citation for the dataset
112
- citation=_CITATION,
113
- )
114
-
115
- def _split_generators(self, dl_manager):
116
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
117
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
118
-
119
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
120
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
121
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
122
- urls = _URLS[self.config.name]
123
- data_dir = dl_manager.download_and_extract(urls)
124
- return [
125
- datasets.SplitGenerator(
126
- name=datasets.Split.TRAIN,
127
- # These kwargs will be passed to _generate_examples
128
- gen_kwargs={
129
- "filepath": os.path.join(data_dir, "train.json"),
130
- "split": "train",
131
- },
132
- ),
133
- datasets.SplitGenerator(
134
- name=datasets.Split.TEST,
135
- # These kwargs will be passed to _generate_examples
136
- gen_kwargs={
137
- "filepath": os.path.join(data_dir, "test.json"),
138
- "split": "test"
139
- },
140
- ),
141
- ]
142
-
143
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
144
- def _generate_examples(self, filepath, split):
145
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
146
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
147
- with open(filepath, encoding="utf-8") as f:
148
- for key, row in enumerate(f):
149
- data = json.loads(row)
150
- if data['content'] != [None]:
151
- yield key, {
152
- "sequence": data["seq"],
153
- "pid": data["pid"],
154
- #"content": "" if split == "test" else data["answer"],
155
- "content": data['content'][0],
156
- }