File size: 5,616 Bytes
bc4013d 8a2c4c5 bc4013d f0542de bc4013d 91e178f bc4013d f0542de 5bb01b2 f0542de bc4013d 0ac491c f0542de bc4013d 0ac491c f0542de 0ac491c bc4013d c13bce6 0ac491c bc4013d 0ac491c bc4013d f0542de bc4013d 0ac491c f0542de 0ac491c bc4013d 0ac491c bc4013d 0ac491c bc4013d 0ac491c f0542de bc4013d 0ac491c f0542de c13bce6 0ac491c 8a2c4c5 7f5e337 c13bce6 0ac491c 293a235 0ac491c f0542de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import datasets
from datasets import BuilderConfig
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{duan2024boosting,
title={Boosting the Predictive Power of Protein Representations with a Corpus of Text Annotations},
author={Duan, Haonan and Skreta, Marta and Cotta, Leonardo and Rajaonson, Ella Miray and Dhawan, Nikita and Aspuru-Guzik, Alán and Maddison, Chris J},
journal={bioRxiv},
pages={2024--07},
year={2024},
publisher={Cold Spring Harbor Laboratory}
}
"""
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"first_domain": "https://huggingface.co/datasets/mskrt/PAIR/raw/main/test.json",
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
annotation2type = {
"names": datasets.Value("string"),
"function": datasets.Value("string"),
"EC": datasets.Sequence(datasets.Value("string")),
}
class CustomConfig(datasets.BuilderConfig):
"""CustomConfig."""
def __init__(self, **kwargs):
"""__init__.
Parameters
----------
kwargs :
kwargs
"""
self.annotation_type = kwargs.pop("annotation_type", "function")
super(CustomConfig, self).__init__(**kwargs)
class PAIRDataset(datasets.GeneratorBasedBuilder):
"""PAIRDataset."""
BUILDER_CONFIGS = [
CustomConfig(
name="custom_config",
version="1.0.0",
description="your description",
),
] # Configs initialization
BUILDER_CONFIG_CLASS = CustomConfig # Must specify this to use custom config
def _info(self):
"""_info."""
self.annotation_type = self.config_kwargs["annotation_type"]
# Confirm annotation_type is set before continuing
return datasets.DatasetInfo(
description="My custom dataset.",
features=datasets.Features(
{
self.annotation_type: annotation2type[self.annotation_type],
"sequence": datasets.Value("string"),
"pid": datasets.Value("string"),
}
),
supervised_keys=None,
)
# "annotation_type": datasets.Value("string"),
# "annotation": datasets.Value("string"),
def _split_generators(self, dl_manager):
"""_split_generators.
Parameters
----------
dl_manager :
dl_manager
"""
# Implement logic to download and extract data files
# For simplicity, assume data_files is a dict with paths to your data
print("in generator self.annotation", self.annotation_type)
data_files = {
"train": "train.json",
"test": "test.json",
}
return [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={'filepath': data_files['train']},
# ),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_files["test"]},
),
]
def _generate_examples(self, filepath):
"""_generate_examples.
Parameters
----------
filepath :
filepath
"""
# Implement your data reading logic here
print("in generator 2 self.annotation", self.annotation_type)
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
counter = 0
for idx, annotation_type in enumerate(data.keys()):
print(annotation_type, self.annotation_type)
if annotation_type != self.annotation_type:
continue
# Parse your line into the appropriate fields
samples = data[annotation_type]
for idx_2, elem in enumerate(samples):
# example = parse_line_to_example(line)
if elem["content"] != [None]:
content = elem["content"][0]
# print(literal_eval(content), "done")
yield counter, {
"sequence": elem["seq"],
"pid": elem["pid"],
annotation_type: content,
}
counter += 1
# "annotation_type": annotation_type,
|