The dataset viewer is not available for this subset.
Exception: SplitsNotFoundError Message: The split names could not be parsed from the dataset config. Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 499, in get_dataset_config_info for split_generator in builder._split_generators( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 88, in _split_generators inferred_arrow_schema = pa.concat_tables(pa_tables, promote_options="default").schema File "pyarrow/table.pxi", line 5317, in pyarrow.lib.concat_tables File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowTypeError: struct fields don't match or are in the wrong order: Input fields: struct<X: list<item: list<item: int64>>> output fields: struct<X: list<item: list<item: int64>>, Y: list<item: list<item: list<item: list<item: list<item: float>>>>>> The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response for split in get_dataset_split_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 572, in get_dataset_split_names info = get_dataset_config_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 504, in get_dataset_config_info raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Overview Scientific machine learning (SciML) is a promising strategy for designing multiphase flow solvers, but it requires a large dataset. This paper presents a comprehensive dataset created from 11,000 simulations, both in 2D and 3D, using the Lattice Boltzmann method~(LBM). The dataset captures intricate physics by varying factors such as surface tension, density, and viscosity of fluids. These simulations, comprising 1 million time snapshots, provide extensive data on two-fluid behavior. By making this dataset publicly available, we aim to encourage SciML research and its applications in complex fluid systems, facilitating the creation of more precise and efficient SciML frameworks for multiphysics applications. Our dataset spans multiple orders of magnitude of Reynolds and Bond numbers, density, and viscosity ratios, making it exceptionally rich and valuable for understanding multiphase flows.
Dataset Information
Our library contains simulated data from both 2d and 3d simulaions. The library has four categories (with corresponding sample sizes):
2d bubble - 5000
2d drop - 5000
3d bubble - 500
3d drop - 500
Due to size of the datasets and to facilitate easier downloads, we have divided the simulations under each category into groups. Further, we have created tar files (for 2d) and splitted tar files (for 3d) to reduce the download sizes. The following steps show how to extract these into *.npz.tar.gz
files.
2d
tar -xzvf dropGroup1_npz_*.tar.gz
tar -xzvf dropGroup2_npz_*.tar.gz
tar -xzvf dropGroup3_npz_*.tar.gz
tar -xzvf dropGroup4_npz_*.tar.gz
tar -xzvf dropGroup5_npz_*.tar.gz
tar -xzvf bubbleGroup1_npz_*.tar.gz
tar -xzvf bubbleGroup2_npz_*.tar.gz
tar -xzvf bubbleGroup3_npz_*.tar.gz
tar -xzvf bubbleGroup4_npz_*.tar.gz
tar -xzvf bubbleGroup5_npz_*.tar.gz
3d
Step - 1 : Merge split tarred files into tar.gz files
cat 3DbubbleGroup1_npz_* > 3DbubbleGroup1_npz.tar.gz
cat 3DbubbleGroup2_npz_* > 3DbubbleGroup2_npz.tar.gz
cat 3DbubbleGroup3_npz_* > 3DbubbleGroup3_npz.tar.gz
cat 3DbubbleGroup4_npz_* > 3DbubbleGroup4_npz.tar.gz
cat 3DbubbleGroup5_npz_* > 3DbubbleGroup5_npz.tar.gz
cat 3DdropGroup1_npz_* > 3DdropGroup1_npz.tar.gz
cat 3DdropGroup2_npz_* > 3DdropGroup2_npz.tar.gz
cat 3DdropGroup3_npz_* > 3DdropGroup3_npz.tar.gz
cat 3DdropGroup4_npz_* > 3DdropGroup4_npz.tar.gz
cat 3DdropGroup5_npz_* > 3DdropGroup5_npz.tar.gz
Step 2 : Create the *npz.tar.gz files
tar -xzvf 3DdropGroup1_npz.tar.gz
tar -xzvf 3DdropGroup2_npz.tar.gz
tar -xzvf 3DdropGroup3_npz.tar.gz
tar -xzvf 3DdropGroup4_npz.tar.gz
tar -xzvf 3DdropGroup5_npz.tar.gz
tar -xzvf 3DbubbleGroup1_npz.tar.gz
tar -xzvf 3DbubbleGroup2_npz.tar.gz
tar -xzvf 3DbubbleGroup3_npz.tar.gz
tar -xzvf 3DbubbleGroup4_npz.tar.gz
tar -xzvf 3DbubbleGroup5_npz.tar.gz
Refer to the directory structure section below to understand how these files have been staged inside huggingface.
License
CC-BY-NC-SA-4.0
Code
https://anonymous.4open.science/r/mpfbench-tools-67D0/README.md
Directory Structure of the data
main/
βββ 2Dbubble/
β βββ bubbleGroup1_npz/
β β βββ bubbleGroup1_npz_1.tar.gz
β β βββ bubbleGroup1_npz_2.tar.gz
β β βββ .
β β βββ .
β β βββ .
β β βββ bubbleGroup1_npz_10.tar.gz
β βββ bubbleGroup2_npz/
β β βββ bubbleGroup2_npz_1.tar.gz
β β βββ bubbleGroup2_npz_2.tar.gz
β β βββ .
β β βββ .
β β βββ .
β β βββ bubbleGroup2_npz_10.tar.gz
.
.
.
β βββ bubbleGroup5_npz/
β β βββ bubbleGroup5_npz_1.tar.gz
β β βββ bubbleGroup5_npz_2.tar.gz
β β βββ .
β β βββ .
β β βββ .
β β βββ bubbleGroup5_npz_10.tar.gz
βββ 2Ddrop/
β βββ dropGroup1_npz/
β β βββ dropGroup1_npz_1.tar.gz
β β βββ dropGroup1_npz_2.tar.gz
β β βββ .
β β βββ .
β β βββ .
β β βββ dropGroup1_npz_10.tar.gz
β βββ dropGroup2_npz/
β β βββ dropGroup2_npz_1.tar.gz
β β βββ dropGroup2_npz_2.tar.gz
β β βββ .
β β βββ .
β β βββ .
β β βββ dropGroup2_npz_10.tar.gz
.
.
.
β βββ dropGroup5_npz/
β β βββ dropGroup5_npz_1.tar.gz
β β βββ dropGroup5_npz_2.tar.gz
β β βββ .
β β βββ .
β β βββ .
β β βββ dropGroup5_npz_10.tar.gz
βββ 3Dbubble/
β βββ split/
β β βββ 3DbubbleGroup1_npz_aa
β β βββ 3DbubbleGroup1_npz_ab
β β βββ .
β β βββ .
β β βββ .
β β βββ 3DbubbleGroup1_npz_af
β β βββ 3DbubbleGroup2_npz_aa
β β βββ 3DbubbleGroup2_npz_ab
β β βββ .
β β βββ .
β β βββ .
β β βββ 3DbubbleGroup2_npz_af
.
.
.
β β βββ 3DbubbleGroup5_npz_aa
β β βββ 3DbubbleGroup5_npz_ab
β β βββ .
β β βββ .
β β βββ .
β β βββ 3DbubbleGroup5_npz_af
βββ 3Ddrop/
β βββ split/
β β βββ 3DdropGroup1_npz_aa
β β βββ 3DdropGroup1_npz_ab
β β βββ .
β β βββ .
β β βββ .
β β βββ 3DdropGroup1_npz_af
β β βββ 3DdropGroup2_npz_aa
β β βββ 3DdropGroup2_npz_ab
β β βββ .
β β βββ .
β β βββ .
β β βββ 3DdropGroup2_npz_af
.
.
.
β β βββ 3DdropGroup5_npz_aa
β β βββ 3DdropGroup5_npz_ab
β β βββ .
β β βββ .
β β βββ .
β β βββ 3DdropGroup5_npz_af
βββ Sample Dataset/
β βββ 2D/
β β βββ bubble/
β β β βββ Sample1/
β β β β |ββ X_bubble_padded_dataset_1.npz
β β β β |ββ Y_bubble_padded_dataset_1.npz
β β β βββ Sample2/
β β β β |ββ X_bubble_padded_dataset_2.npz
β β β β |ββ Y_bubble_padded_dataset_2.npz
.
.
.
β β β βββ Sample10/
β β β β |ββ X_bubble_padded_dataset_10.npz
β β β β |ββ Y_bubble_padded_dataset_10.npz
β β βββ drop/
β β β βββ Sample1/
β β β β |ββ X_drop_padded_dataset_1.npz
β β β β |ββ Y_drop_padded_dataset_1.npz
β β β βββ Sample2/
β β β β |ββ X_drop_padded_dataset_2.npz
β β β β |ββ Y_drop_padded_dataset_2.npz
.
.
.
β β β βββ Sample10/
β β β β |ββ X_drop_padded_dataset_10.npz
β β β β |ββ Y_drop_padded_dataset_10.npz
β βββ 3D/
β β βββ bubble/
β β β βββ Sample1/
β β β β |ββ X_bubble_padded_dataset_3d_1.npz
β β β β |ββ Y_bubble_padded_dataset_3d_1.npz
β β β βββ Sample2/
β β β β |ββ X_bubble_padded_dataset_3d_2.npz
β β β β |ββ Y_bubble_padded_dataset_3d_2.npz
.
.
.
β β β βββ Sample10/
β β β β |ββ X_bubble_padded_dataset_3d_10.npz
β β β β |ββ Y_bubble_padded_dataset_3d_10.npz
β β βββ drop/
β β β βββ Sample1/
β β β β |ββ X_drop_padded_dataset_3d_1.npz
β β β β |ββ Y_drop_padded_dataset_3d_1.npz
β β β βββ Sample2/
β β β β |ββ X_drop_padded_dataset_3d_2.npz
β β β β |ββ Y_drop_padded_dataset_3d_2.npz
.
.
.
β β β βββ Sample10/
β β β β |ββ X_drop_padded_dataset_3d_10.npz
β β β β |ββ Y_drop_padded_dataset_3d_10.npz
βββ README.md
βββ .gitattributes
βββ info.txt
- Downloads last month
- 32